In this work we present the results of our study on the physical and mechanical properties of titanium in volume. The work consisted in determining its physical and mechanical properties under different crystallograph...In this work we present the results of our study on the physical and mechanical properties of titanium in volume. The work consisted in determining its physical and mechanical properties under different crystallographic structures (HCP, FCC, BCC and SC) using the Modified Embedded Atom Method (MEAM) and the MEAM potential of titanium. We used the LAMMPS calculation code, based on classical molecular dynamics, to determine the most stable structure of titanium, which is the hexagonal compact structure (HCP) with crystal parameters a = 2.952 Å and c = 4.821 Å and a cohesion energy of -4.87 eV. This structure is seconded by the cubic centred structure (BCC) with a lattice parameter a = 3.274 Å and a cohesive energy of -4.84 eV. It was shown that titanium can crystallise into a third structure which is the face-centred cubic (FCC) structure with a lattice parameter a = 4.143 Å and a cohesive energy of -4.82 eV. The results obtained in this study were compared with the theoretical results and showed considerable agreement.展开更多
This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studi...This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studied;with and without gap. In this work, we present the structural, physical and chemical properties of the lithium, sodium and potassium electrodes. For the structural properties, the cohesive energy and the mesh parameters were calculated, revealing that, whatever the chemical element selected, the compact hexagonal hcp structure is the most stable, followed by the face-centred cubic CFC structure, and finally the BCC structure. The most stable structure is lithium, with a cohesion energy of -6570 eV, and the lowest bcc-hcp transition energy of -0.553 eV/atom, followed by sodium. For physical properties, kinetic and potential energies were calculated for each of the sectioned chemical elements, with lithium achieving the highest value. Finally, for the chemical properties, we studied the diffusion coefficient and the activation energy. Only potassium followed an opposite order to the other two, with the quantities with lacunae being greater than those without lacunae, whatever the multiplicity. The order of magnitude of the diffusion coefficients is given by the relationship D<sub>Li</sub> > D<sub>Na</sub> > D<sub>k</sub> for the multiplicity 6*6*6, while for the activation energy the order is reversed.展开更多
文摘In this work we present the results of our study on the physical and mechanical properties of titanium in volume. The work consisted in determining its physical and mechanical properties under different crystallographic structures (HCP, FCC, BCC and SC) using the Modified Embedded Atom Method (MEAM) and the MEAM potential of titanium. We used the LAMMPS calculation code, based on classical molecular dynamics, to determine the most stable structure of titanium, which is the hexagonal compact structure (HCP) with crystal parameters a = 2.952 Å and c = 4.821 Å and a cohesion energy of -4.87 eV. This structure is seconded by the cubic centred structure (BCC) with a lattice parameter a = 3.274 Å and a cohesive energy of -4.84 eV. It was shown that titanium can crystallise into a third structure which is the face-centred cubic (FCC) structure with a lattice parameter a = 4.143 Å and a cohesive energy of -4.82 eV. The results obtained in this study were compared with the theoretical results and showed considerable agreement.
文摘This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studied;with and without gap. In this work, we present the structural, physical and chemical properties of the lithium, sodium and potassium electrodes. For the structural properties, the cohesive energy and the mesh parameters were calculated, revealing that, whatever the chemical element selected, the compact hexagonal hcp structure is the most stable, followed by the face-centred cubic CFC structure, and finally the BCC structure. The most stable structure is lithium, with a cohesion energy of -6570 eV, and the lowest bcc-hcp transition energy of -0.553 eV/atom, followed by sodium. For physical properties, kinetic and potential energies were calculated for each of the sectioned chemical elements, with lithium achieving the highest value. Finally, for the chemical properties, we studied the diffusion coefficient and the activation energy. Only potassium followed an opposite order to the other two, with the quantities with lacunae being greater than those without lacunae, whatever the multiplicity. The order of magnitude of the diffusion coefficients is given by the relationship D<sub>Li</sub> > D<sub>Na</sub> > D<sub>k</sub> for the multiplicity 6*6*6, while for the activation energy the order is reversed.