期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of structural characteristics distribution on strength demand and ductility reduction factor of MDOF systems considering soil-structure interaction
1
作者 Behnoud Ganjavi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第2期205-220,共16页
It is known that structural stiffness and strength distributions have an important role in the seismic response of buildings. The effect of using different code-specified lateral load patterns on the seismic performan... It is known that structural stiffness and strength distributions have an important role in the seismic response of buildings. The effect of using different code-specified lateral load patterns on the seismic performance of fixed-base buildings has been investigated by researchers during the past two decades. However, no investigation has yet been carried out for the case of soil-structure systems. In the present study, through intensive parametric analyses of 21,600 linear and nonlinear MDOF systems and considering five different shear strength and stiffness distribution patterns, including three code-specified patterns as well as uniform and concentric patterns subjected to a group of earthquakes recorded on alluvium and soft soils, the effect of structural characteristics distribution on the strength demand and ductility reduction factor of MDOF fixed-base and soil-structure systems are parametrically investigated. The results of this study show that depending on the level of inelasticity, soil flexibility and number of degrees-of-freedoms (DOFs), structural characteristics distribution can significantly affect the strength demand and ductility reduction factor of MDOF systems. It is also found that at high levels of inelasticity, the ductility reduction factor of low-rise MDOF soil-structure systems could be significantly less than that of fixed-base structures and the reduction is less pronounced as the number of stories increases. 展开更多
关键词 soil-structure interaction mdof systems structural characteristic distribution inelastic behavior strength demand ductility reduction factor
在线阅读 下载PDF
A new methodology for energy-based seismic design of steel moment frames 被引量:3
2
作者 Mebrahtom Gebrekirstos Mezgebo Eric M. Lui 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第1期131-152,共22页
A procedure is proposed whereby input and hysteretic energy spectra developed for single-degree-of-freedom (SDOF) systems are applied to multi-degree-of-freedom (MDOF) steel moment resisting frames. The proposed p... A procedure is proposed whereby input and hysteretic energy spectra developed for single-degree-of-freedom (SDOF) systems are applied to multi-degree-of-freedom (MDOF) steel moment resisting frames. The proposed procedure is verified using four frames, viz., frame with three-, five-, seven- and nine-stories, each of which is subjected to the fault- normal and fault-parallel components of three actual earthquakes. A very good estimate for the three- and five-story frames, and a reasonably acceptable estimate for the seven-, and nine-story frames, have been obtained. A method for distributing the hysteretic energy over the frame height is also proposed. This distribution scheme allows for the determination of the energy demand component of a proposed energy-based seismic design (EBSD) procedure for each story. To address the capacity component of EBSD, a story-wise optimization design procedure is developed by utilizing the energy dissipating capacity from plastic hinge formation/rotation for these moment frames. The proposed EBSD procedure is demonstrated in the design of a three-story one-bay steel moment frame. 展开更多
关键词 energy-based seismic design hysteretic energy distribution mdof systems steel moment frames story-wise optimization design
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部