期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
城市工业碳排放绩效的测算分析与对策建议——以南昌市为例 被引量:5
1
作者 张征华 彭迪云 《企业经济》 北大核心 2013年第9期124-128,共5页
低碳发展是生态文明建设的必由之路,建设以低能耗、低排放、低污染为特征的低碳工业,将成为城市低碳发展的重心和关键。本文利用以二氧化碳作为非期望产出的DEA模型构建了碳排放绩效指数,并对低碳试点城市——南昌的工业碳排放绩效进行... 低碳发展是生态文明建设的必由之路,建设以低能耗、低排放、低污染为特征的低碳工业,将成为城市低碳发展的重心和关键。本文利用以二氧化碳作为非期望产出的DEA模型构建了碳排放绩效指数,并对低碳试点城市——南昌的工业碳排放绩效进行了测算和分析。结果显示:"十一五"期间,南昌市工业碳排放绩效得到改进,技术进步是主要原因,但改进效果并不显著;不同行业碳排放绩效存在差异;重工业和轻工业碳排放绩效均有改进,且重工业改进幅度大于轻工业。为此,应通过健全行业碳排放绩效测评体系、大力提高技术效率、继续推动技术进步、推行传统产业低碳化、低碳产业支柱化以及主导产业低碳化等措施提高工业碳排放绩效,促进城市低碳发展。 展开更多
关键词 低碳发展战略 低碳城市 曼奎斯特碳排放绩效指数(mcpi) 数据包络分析(DEA)
在线阅读 下载PDF
基于主成分分析的电力市场供应侧主体竞争潜力指数研究 被引量:16
2
作者 李东东 段维伊 +2 位作者 周波 林顺富 周冠廷 《电力系统保护与控制》 EI CSCD 北大核心 2020年第19期1-8,共8页
随着越来越多种类的零售商、聚合商以及大型用户等供应商的兴起,平衡市场的竞争愈发激烈,服务供应商的选择多样性也为交易中心带来了服务效率低下、管理秩序混乱等问题。为了对供应侧主体进行客观考核,提出了基于主成分分析法的电力市... 随着越来越多种类的零售商、聚合商以及大型用户等供应商的兴起,平衡市场的竞争愈发激烈,服务供应商的选择多样性也为交易中心带来了服务效率低下、管理秩序混乱等问题。为了对供应侧主体进行客观考核,提出了基于主成分分析法的电力市场供应侧主体竞争潜力指数研究。首先定性分析影响市场供应侧主体竞争力的主要因素,然后通过指标定量分析各影响因素,形成指标评价体系。其次通过主成分分析的方法对所有指标进行主成分提取,并将提取出的第一主成分定义为市场竞争潜力指数(MCPI),用于表征市场供应侧主体的市场竞争潜力。最后通过仿真算例验证指标的科学性及可行性,为市场参与者及监管者提供了可靠的评价方法。 展开更多
关键词 主成分分析 市场力 市场竞争力 mcpi 市场供应侧主体
在线阅读 下载PDF
CD4^(+)/CD8^(+)、改良临床肺部感染评分、营养风险筛查评分与食管癌胸腔镜术后肺部感染关系及意义 被引量:5
3
作者 薛军英 王继超 +1 位作者 张建华 王稳 《安徽医药》 CAS 2024年第4期773-777,共5页
目的 探讨CD4^(+)/CD8^(+)联合改良临床肺部感染(mCPIS)评分、营养风险筛查(NRS2002)评分预测食管癌胸腔镜术后肺部感染价值。方法 选取2020年12月至2021年10月衡水市第三人民医院与衡水市第二人民医院收治的120例行食管癌胸腔镜术病人... 目的 探讨CD4^(+)/CD8^(+)联合改良临床肺部感染(mCPIS)评分、营养风险筛查(NRS2002)评分预测食管癌胸腔镜术后肺部感染价值。方法 选取2020年12月至2021年10月衡水市第三人民医院与衡水市第二人民医院收治的120例行食管癌胸腔镜术病人进行前瞻性队列研究,根据术后住院期间是否发生肺部感染分为感染组、未感染组,采用logistic回归构建食管癌胸腔镜术后肺部感染状态的联合预测因子模型,并绘制受试者操作特征(ROC)曲线。结果 感染组CD4^(+)/CD8^(+)(0.78±0.14)低于未感染组(1.06±0.18)(P<0.05);感染组mCPIS评分、NRS2002评分分别为(3.49±1.13)分、(10.89±2.18)分高于未感染组的(1.02±0.28)分、(6.22±2.49)分(P<0.05);CD4^(+)/CD8^(+)、mCPIS、NRS2002评分均是影响感染发生的相关影响因素(P<0.05),生成联合预测因子模型表达式:logit(P)=-5.007-0.702×X_(1)+1.832×X_(2)+1.934×X_(3);ROC分析显示联合预测因子预测效能最高,联合预测因子最佳截断值为0.11,预测准确率为83.33%。结论 CD4^(+)/CD8^(+)、mCPIS、NRS2002评分均与食管癌胸腔镜术后肺部感染发生有关,基于三者生成的联合预测因子有望为临床预测术后肺部感染风险提供准确的参考信息。 展开更多
关键词 手术后并发症 呼吸道感染 胸腔镜检查 食管切除术 CD4^(+)/CD8^(+) mcpiS评分 NRS2002评分 食管癌 肺部感染
暂未订购
Integration of the Coupled Orbit-Attitude Dynamics Using Modified Chebyshev-Picard Iteration Methods 被引量:1
4
作者 Xiaoli Bai John L.Junkins 《Computer Modeling in Engineering & Sciences》 SCIE EI 2016年第2期129-146,共18页
This paper presents Modified Chebyshev-Picard Iteration(MCPI)methods for long-term integration of the coupled orbit and attitude dynamics.Although most orbit predictions for operational satellites have assumed that th... This paper presents Modified Chebyshev-Picard Iteration(MCPI)methods for long-term integration of the coupled orbit and attitude dynamics.Although most orbit predictions for operational satellites have assumed that the attitude dynamics is decoupled from the orbit dynamics,the fully coupled dynamics is required for the solutions of uncontrolled space debris and space objects with high area-to-mass ratio,for which cross sectional area is constantly changing leading to significant change on the solar radiation pressure and atmospheric drag.MCPI is a set of methods for solution of initial value problems and boundary value problems.The methods refine an orthogonal function approximation of long-time-interval segments of state trajectories iteratively by fusing Chebyshev polynomials with the classical Picard iteration and have been applied to multiple challenging aerospace problems.Through the studies on integrating a torque-free rigid body rotation and a long-term integration of the coupled orbit-attitude dynamics through the effect of solar radiation pressure,MCPI methods are shown to achieve several times speedup over the Runge-Kutta 7(8)methods with several orders of magnitudes of better accuracy.MCPI methods are further optimized by integrating the decoupled dynamics at the beginning of the iteration and coupling the full dynamics when the attitude solutions and orbit solutions are converging during the iteration.The approach of decoupling and then coupling during iterations provides a unique and promising perspective on the way to warm start the solution process for the longterm integration of the coupled orbit-attitude dynamics.Furthermore,an attractive feature of MCPI in maintaining the unity constraint for the integration of quaternions within machine accuracy is illustrated to be very appealing. 展开更多
关键词 ORBIT propagation orbit-attitude dynamics MODIFIED Chebyshev-Picard Iteration(mcpi)Methods
在线阅读 下载PDF
Efficient Orbit Propagation of Orbital Elements Using Modified Chebyshev Picard Iteration Method
5
作者 J.L.Read A.Bani Younes J.L.Junkins 《Computer Modeling in Engineering & Sciences》 SCIE EI 2016年第1期65-81,共17页
This paper focuses on propagating perturbed two-body motion using orbital elements combined with a novel integration technique.While previous studies show that Modified Chebyshev Picard Iteration(MCPI)is a powerful to... This paper focuses on propagating perturbed two-body motion using orbital elements combined with a novel integration technique.While previous studies show that Modified Chebyshev Picard Iteration(MCPI)is a powerful tool used to propagate position and velocity,the present results show that using orbital elements to propagate the state vector reduces the number of MCPI iterations and nodes required,which is especially useful for reducing the computation time when including computationally-intensive calculations such as Spherical Harmonic gravity,and it also converges for>5.5x as many revolutions using a single segment when compared with cartesian propagation.Results for the Classical Orbital Elements and the Modified Equinoctial Orbital Elements(the latter provides singularity-free solutions)show that state propagation using these variables is inherently well-suited to the propagation method chosen.Additional benefits are achieved using a segmentation scheme,while future expansion to the two-point boundary value problem is expected to increase the domain of convergence compared with the cartesian case.MCPI is an iterative numerical method used to solve linear and nonlinear,ordinary differential equations(ODEs).It is a fusion of orthogonal Chebyshev function approximation with Picard iteration that approximates a long-arc trajectory at every iteration.Previous studies have shown that it outperforms the state of the practice numerical integrators of ODEs in a serial computing environment;since MCPI is inherently massively parallelizable,this capability is expected to increase the computational efficiency of the method presented. 展开更多
关键词 PROPAGATION Integration Orbital Mechanics Classical Elements MODIFIED Equinoctial CHEBYSHEV PICARD Iteration mcpi Polynomials Initial Value Problem IVP.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部