叠前反演是获取地下介质弹性参数的一种重要手段,马尔可夫蒙特卡洛(Markov Chain Monte Carlo,MCMC)算法是叠前反演求解的经典方法。相比于传统的数值优化算法和线性反演方法,MCMC反演算法具备更高的精度,但仍然存在依赖初始模型、计算...叠前反演是获取地下介质弹性参数的一种重要手段,马尔可夫蒙特卡洛(Markov Chain Monte Carlo,MCMC)算法是叠前反演求解的经典方法。相比于传统的数值优化算法和线性反演方法,MCMC反演算法具备更高的精度,但仍然存在依赖初始模型、计算耗时长和不确定性大等问题。为此,对常规MCMC反演算法进行改进,提出基于构造倾角约束的BLI-MCMC叠前随机反演方法。首先,将地质构造倾角加入先验约束信息中,提高反演的采样效率,降低反演结果的不确定性;然后,利用贝叶斯线性反演(Bayesian Linear Inversion,BLI)算法为MCMC反演提供良好的初始模型,并作为迭代起点,缩短马尔科夫链的燃烧时间,从初始模型角度提高反演的效率。模拟数据和实际资料应用结果均表明,改进后的方法能够显著提高反演精度和效率,保持了地下介质较高的横向连续性。该方法可为地下起伏介质的反演提供技术支撑。展开更多
为了充分利用已有地质知识来降低三维地质模型的不确定性,采用了一种基于贝叶斯—马尔科夫链蒙特卡洛(Bayesian-MCMC,Bayesian-Markov chain Monte Carlo)方法的三维地质模型概率性推断框架,在协同克里金(Cokriging)插值的三维地质隐式...为了充分利用已有地质知识来降低三维地质模型的不确定性,采用了一种基于贝叶斯—马尔科夫链蒙特卡洛(Bayesian-MCMC,Bayesian-Markov chain Monte Carlo)方法的三维地质模型概率性推断框架,在协同克里金(Cokriging)插值的三维地质隐式建模过程中,显式地考虑先验参数(即建模数据集)的不确定性,并将已有地质知识(如地层厚度、地层产状、断层产状等)或地球物理勘探数据以似然函数的方式嵌入到推断框架中,来充分保证三维地质模型符合已有的地质知识.首先,基于Bayesian概率理论,建立不同建模数据集的先验分布以及已有地质知识似然函数约束;其次,使用MCMC随机采样的方法对先验参数的后验概率空间进行采样,获得大量既满足建模数据先验分布、又符合已有地质知识似然约束的建模数据样本;再次,由重新计算的建模数据样本集采用Cokriging插值算法获得一系列模型实现,获得符合已有地质知识的三维地质模型;最后,相比确定性三维地质建模方法,Bayesian-MCMC概率性建模框架可得到一系列模型实现,同时采用信息熵对模型的不确定性进行评价.以桂西南地区凌念—那茶地区为例,采用本文构建的Bayesian-MCMC概率性推断框架,考虑地层、断层采样点及产状数据的不确定性,由已知的地层厚度、地层倾角和断层倾角等地质知识对三维地质模型进行优化,结果表明该方法既能重建地质体的三维空间形态,又可降低三维地质模型的不确定性,为地质学家通过已有地质知识来降低三维地质模型的不确定性提供了有效的途径.展开更多
现有安全稳定控制系统(简称稳控系统)的可靠性评估方法本质上属于静态建模,由于未能体现系统内各装置老化和检修等动态过程,在一定程度上影响了评估结果的准确性。为此,文中提出一种基于马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MC...现有安全稳定控制系统(简称稳控系统)的可靠性评估方法本质上属于静态建模,由于未能体现系统内各装置老化和检修等动态过程,在一定程度上影响了评估结果的准确性。为此,文中提出一种基于马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)的稳控系统动态可靠性评估方法。首先针对失效过程,构建四状态非齐次马尔可夫模型来模拟装置老化过程,并给出各状态评判方法;其次针对修复过程,分析不同检修策略对装置状态转移的影响以体现状态检修的差异性;最后考虑稳控装置状态转移过程的时序或条件相关性,对稳控系统可靠性进行动态建模。以实际稳控系统为例,仿真对比不同检修策略下的可靠性,并对模型参数进行灵敏度分析。评估结果表明,该方法可以求解稳控系统的时变可用度,用于指导稳控装置现场合理检修。展开更多
【目的】在“双碳”战略目标下,中国天然气消费需求正快速增长,但天然气具有易燃易爆性,一旦天然气管道发生泄漏事故,易造成人员伤亡、环境污染以及经济损失等,天然气管道泄漏检测的研究显得尤为重要。【方法】以高斯烟羽模型与加装甲...【目的】在“双碳”战略目标下,中国天然气消费需求正快速增长,但天然气具有易燃易爆性,一旦天然气管道发生泄漏事故,易造成人员伤亡、环境污染以及经济损失等,天然气管道泄漏检测的研究显得尤为重要。【方法】以高斯烟羽模型与加装甲烷浓度传感器的无人机为基础,采用基于贝叶斯推理的马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)法获取天然气管道泄漏源的泄漏位置、泄漏速率;采用基于概率统计的气体源强反算方法,计算概率最高的泄漏参数区间。利用设置的天然气架空管道连续泄漏事故场景进行气体泄漏模拟,验证MCMC算法确定天然气管道泄漏源的有效性。【结果】MCMC算法通过计算得到天然气管道泄漏位置和泄漏速率,总误差的增大使得MCMC算法的成功率降低,但数据清洗会增强算法误差适应性,未经过数据处理的算法成功率则逐渐降低,而经过数据清洗的算法成功率超过90%;将危险气体源强反算的思想应用于天然气管道泄漏检测中,有助于更加准确地获得管道泄漏位置与泄漏速率;初始点远离真实泄漏源会降低MCMC算法的性能,因此合理地选择初始点有利于算法的运行。【结论】基于MCMC算法与加装甲烷浓度传感器的无人机相结合的检测方法,可同时确定天然气管道的泄漏位置与泄漏速率,对泄漏事故发生后的应急处理具有重要意义。(图7,表5,参24)展开更多
Statistical biases may be introduced by imprecisely quantifying background radiation reference levels. It is, therefore, imperative to devise a simple, adaptable approach for precisely describing the reference backgro...Statistical biases may be introduced by imprecisely quantifying background radiation reference levels. It is, therefore, imperative to devise a simple, adaptable approach for precisely describing the reference background levels of naturally occurring radionuclides (NOR) in mining sites. As a substitute statistical method, we suggest using Bayesian modeling in this work to examine the spatial distribution of NOR. For naturally occurring gamma-induced radionuclides like 232Th, 40K, and 238U, statistical parameters are inferred using the Markov Chain Monte Carlo (MCMC) method. After obtaining an accurate subsample using bootstrapping, we exclude any possible outliers that fall outside of the Highest Density Interval (HDI). We use MCMC to build a Bayesian model with the resampled data and make predictions about the posterior distribution of radionuclides produced by gamma irradiation. This method offers a strong and dependable way to describe NOR reference background values, which is important for managing and evaluating radiation risks in mining contexts.展开更多
文摘叠前反演是获取地下介质弹性参数的一种重要手段,马尔可夫蒙特卡洛(Markov Chain Monte Carlo,MCMC)算法是叠前反演求解的经典方法。相比于传统的数值优化算法和线性反演方法,MCMC反演算法具备更高的精度,但仍然存在依赖初始模型、计算耗时长和不确定性大等问题。为此,对常规MCMC反演算法进行改进,提出基于构造倾角约束的BLI-MCMC叠前随机反演方法。首先,将地质构造倾角加入先验约束信息中,提高反演的采样效率,降低反演结果的不确定性;然后,利用贝叶斯线性反演(Bayesian Linear Inversion,BLI)算法为MCMC反演提供良好的初始模型,并作为迭代起点,缩短马尔科夫链的燃烧时间,从初始模型角度提高反演的效率。模拟数据和实际资料应用结果均表明,改进后的方法能够显著提高反演精度和效率,保持了地下介质较高的横向连续性。该方法可为地下起伏介质的反演提供技术支撑。
文摘为了充分利用已有地质知识来降低三维地质模型的不确定性,采用了一种基于贝叶斯—马尔科夫链蒙特卡洛(Bayesian-MCMC,Bayesian-Markov chain Monte Carlo)方法的三维地质模型概率性推断框架,在协同克里金(Cokriging)插值的三维地质隐式建模过程中,显式地考虑先验参数(即建模数据集)的不确定性,并将已有地质知识(如地层厚度、地层产状、断层产状等)或地球物理勘探数据以似然函数的方式嵌入到推断框架中,来充分保证三维地质模型符合已有的地质知识.首先,基于Bayesian概率理论,建立不同建模数据集的先验分布以及已有地质知识似然函数约束;其次,使用MCMC随机采样的方法对先验参数的后验概率空间进行采样,获得大量既满足建模数据先验分布、又符合已有地质知识似然约束的建模数据样本;再次,由重新计算的建模数据样本集采用Cokriging插值算法获得一系列模型实现,获得符合已有地质知识的三维地质模型;最后,相比确定性三维地质建模方法,Bayesian-MCMC概率性建模框架可得到一系列模型实现,同时采用信息熵对模型的不确定性进行评价.以桂西南地区凌念—那茶地区为例,采用本文构建的Bayesian-MCMC概率性推断框架,考虑地层、断层采样点及产状数据的不确定性,由已知的地层厚度、地层倾角和断层倾角等地质知识对三维地质模型进行优化,结果表明该方法既能重建地质体的三维空间形态,又可降低三维地质模型的不确定性,为地质学家通过已有地质知识来降低三维地质模型的不确定性提供了有效的途径.
文摘现有安全稳定控制系统(简称稳控系统)的可靠性评估方法本质上属于静态建模,由于未能体现系统内各装置老化和检修等动态过程,在一定程度上影响了评估结果的准确性。为此,文中提出一种基于马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)的稳控系统动态可靠性评估方法。首先针对失效过程,构建四状态非齐次马尔可夫模型来模拟装置老化过程,并给出各状态评判方法;其次针对修复过程,分析不同检修策略对装置状态转移的影响以体现状态检修的差异性;最后考虑稳控装置状态转移过程的时序或条件相关性,对稳控系统可靠性进行动态建模。以实际稳控系统为例,仿真对比不同检修策略下的可靠性,并对模型参数进行灵敏度分析。评估结果表明,该方法可以求解稳控系统的时变可用度,用于指导稳控装置现场合理检修。
文摘【目的】在“双碳”战略目标下,中国天然气消费需求正快速增长,但天然气具有易燃易爆性,一旦天然气管道发生泄漏事故,易造成人员伤亡、环境污染以及经济损失等,天然气管道泄漏检测的研究显得尤为重要。【方法】以高斯烟羽模型与加装甲烷浓度传感器的无人机为基础,采用基于贝叶斯推理的马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)法获取天然气管道泄漏源的泄漏位置、泄漏速率;采用基于概率统计的气体源强反算方法,计算概率最高的泄漏参数区间。利用设置的天然气架空管道连续泄漏事故场景进行气体泄漏模拟,验证MCMC算法确定天然气管道泄漏源的有效性。【结果】MCMC算法通过计算得到天然气管道泄漏位置和泄漏速率,总误差的增大使得MCMC算法的成功率降低,但数据清洗会增强算法误差适应性,未经过数据处理的算法成功率则逐渐降低,而经过数据清洗的算法成功率超过90%;将危险气体源强反算的思想应用于天然气管道泄漏检测中,有助于更加准确地获得管道泄漏位置与泄漏速率;初始点远离真实泄漏源会降低MCMC算法的性能,因此合理地选择初始点有利于算法的运行。【结论】基于MCMC算法与加装甲烷浓度传感器的无人机相结合的检测方法,可同时确定天然气管道的泄漏位置与泄漏速率,对泄漏事故发生后的应急处理具有重要意义。(图7,表5,参24)
文摘Statistical biases may be introduced by imprecisely quantifying background radiation reference levels. It is, therefore, imperative to devise a simple, adaptable approach for precisely describing the reference background levels of naturally occurring radionuclides (NOR) in mining sites. As a substitute statistical method, we suggest using Bayesian modeling in this work to examine the spatial distribution of NOR. For naturally occurring gamma-induced radionuclides like 232Th, 40K, and 238U, statistical parameters are inferred using the Markov Chain Monte Carlo (MCMC) method. After obtaining an accurate subsample using bootstrapping, we exclude any possible outliers that fall outside of the Highest Density Interval (HDI). We use MCMC to build a Bayesian model with the resampled data and make predictions about the posterior distribution of radionuclides produced by gamma irradiation. This method offers a strong and dependable way to describe NOR reference background values, which is important for managing and evaluating radiation risks in mining contexts.