期刊文献+
共找到1,461篇文章
< 1 2 74 >
每页显示 20 50 100
Matlab语言的Neural Network Toolbox及其在同步中的应用 被引量:4
1
作者 田原 《现代电子技术》 2008年第20期156-158,165,共4页
介绍Matlab神经网络工具箱的相关情况及基本应用。结合一些简单的例子进一步对神经网络工具箱中的一些函数及神经网络结构解释和说明。通过该说明明确神经网络工具箱的相关应用,并利用神经网络在同步中的应用进行简单的介绍。通过仿真... 介绍Matlab神经网络工具箱的相关情况及基本应用。结合一些简单的例子进一步对神经网络工具箱中的一些函数及神经网络结构解释和说明。通过该说明明确神经网络工具箱的相关应用,并利用神经网络在同步中的应用进行简单的介绍。通过仿真验证神经网络在同步中的可行性。 展开更多
关键词 matlab 神经网络 工具箱 同步
在线阅读 下载PDF
Dynamic prediction of gas emission based on wavelet neural network toolbox 被引量:4
2
作者 Yu-Min PAN Yong-Hong DENG Quan-Zhu ZHANG Peng-Qian XUE 《Journal of Coal Science & Engineering(China)》 2013年第2期174-181,共8页
This paper presents a method for dynamically predicting gas emission quantity based on the wavelet neural network (WNN) toolbox. Such a method is able to predict the gas emission quantity in adjacent subsequent time... This paper presents a method for dynamically predicting gas emission quantity based on the wavelet neural network (WNN) toolbox. Such a method is able to predict the gas emission quantity in adjacent subsequent time intervals through training the WNN with even time-interval samples. The method builds successive new model with the width of sliding window remaining invariable so as to obtain a dynamic prediction method for gas emission quantity. Furthermore, the method performs prediction by a self-developed WNN toolbox. Experiments indicate that such a model can overcome the deficiencies of the traditional static prediction model and can fully make use of the feature extraction capability of wavelet base function to reflect the geological feature of gas emission quantity dynamically. The method is characterized by simplicity, flexibility, small data scale, fast convergence rate and high prediction precision. In addition, the method is also characterized by certainty and repeatability of the predicted results. The effectiveness of this method is confirmed by simulation results. Therefore, this method will exert practical significance on promoting the application of WNN. 展开更多
关键词 dynamic prediction gas emission wavelet neural network toolbox prediction model
在线阅读 下载PDF
Neural network modeling for dynamic pulsed GTAW process with wire filler based on MATLAB
3
作者 赵冬斌 陈善本 +1 位作者 吴林 陈强 《China Welding》 EI CAS 2001年第2期10-15,共6页
Double-sided weld pool shapes were determined by multiple welding parameters and wire feed parameters during pulsed GTAW with wire filler. Aiming at such a system with multiple inputs and outputs, an effective modelin... Double-sided weld pool shapes were determined by multiple welding parameters and wire feed parameters during pulsed GTAW with wire filler. Aiming at such a system with multiple inputs and outputs, an effective modeling method, consisting of the impulse signal design, model structure and parameter identification and verification, was developed based on MATLAB software. Then, dynamic neural network models, TDNNM (Topside dynamic neural network model) and BHDNNM (Backside width and topside height dynamic neural network model), were established to predict double-sided shape parameters of the weld pool. The characteristic relationship of the welding process was simulated and analyzed with the models. 展开更多
关键词 GTAW with wire filler dynamic process modeling neural network matlab
在线阅读 下载PDF
STUDY ON ARTIFICIAL NEURAL NETWORK FORECASTING METHOD OF WATER CONSUMPTION PER HOUR 被引量:5
4
作者 刘洪波 张宏伟 +1 位作者 田林 王新芳 《Transactions of Tianjin University》 EI CAS 2001年第4期233-237,共5页
An artificial neural network (ANN) short term forecasting model of consumption per hour was built based on seasonality,trend and randomness of a city period of time water consumption series.Different hidden layer no... An artificial neural network (ANN) short term forecasting model of consumption per hour was built based on seasonality,trend and randomness of a city period of time water consumption series.Different hidden layer nodes,same inputs and forecasting data were selected to train and forecast and then the relative errors were compared so as to confirm the NN structure.A model was set up and used to forecast concretely by Matlab.It is tested by examples and compared with the result of time series trigonometric function analytical method.The result indicates that the prediction errors of NN are small and the velocity of forecasting is fast.It can completely meet the actual needs of the control and run of the water supply system. 展开更多
关键词 artificial neural network consumption per hour FORECAST BP algorithm matlab
在线阅读 下载PDF
Matlab/NNToolbox在压力传感器温度补偿中的应用
5
作者 杨德旭 刘志侠 陶学宗 《沈阳农业大学学报》 CAS CSCD 北大核心 2007年第6期871-873,共3页
压力传感器易受温度、磁场等外界因素的干扰,其测量精度会受到影响。以对温度干扰最敏感的压力传感器为例,阐述如何应用Matlab软件提供的神经网络工具NNToolbox来实现压力传感器的温度补偿。补偿结果表明:温度对压力传感器的干扰波动由... 压力传感器易受温度、磁场等外界因素的干扰,其测量精度会受到影响。以对温度干扰最敏感的压力传感器为例,阐述如何应用Matlab软件提供的神经网络工具NNToolbox来实现压力传感器的温度补偿。补偿结果表明:温度对压力传感器的干扰波动由补偿前的22%减小到补偿后的1.1%,压力传感器的测量精度提高了20倍。由此可见,利用Matlab/NNToolbox对压力传感器温度补偿具有简单精确、补偿效果明显、灵活性强等优点。 展开更多
关键词 压力传感器 matlab 温度干扰 测量精度 神经网络工具箱
在线阅读 下载PDF
Water quality forecast through application of BP neural network at Yuqiao reservoir 被引量:21
6
作者 ZHAO Ying NAN Jun +1 位作者 CUI Fu-yi GUO Liang 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第9期1482-1487,共6页
This paper deals with the study of a water quality forecast model through application of BP neural network technique and GUI (Graphical User Interfaces) function of MATLAB at Yuqiao reservoir in Tianjin. To overcome t... This paper deals with the study of a water quality forecast model through application of BP neural network technique and GUI (Graphical User Interfaces) function of MATLAB at Yuqiao reservoir in Tianjin. To overcome the shortcomings of traditional BP algorithm as being slow to converge and easy to reach extreme minimum value,the model adopts LM (Leven-berg-Marquardt) algorithm to achieve a higher speed and a lower error rate. When factors affecting the study object are identified,the reservoir's 2005 measured values are used as sample data to test the model. The number of neurons and the type of transfer functions in the hidden layer of the neural network are changed from time to time to achieve the best forecast results. Through simulation testing the model shows high efficiency in forecasting the water quality of the reservoir. 展开更多
关键词 Water quality forecast BP neural network matlab Graphical User Interfaces (GUI)
在线阅读 下载PDF
Speeding up the MATLAB complex networks package using graphic processors 被引量:1
7
作者 张百达 唐玉华 +1 位作者 吴俊杰 李鑫 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第9期460-467,共8页
The availability of computers and communication networks allows us to gather and analyse data on a far larger scale than previously. At present, it is believed that statistics is a suitable method to analyse networks ... The availability of computers and communication networks allows us to gather and analyse data on a far larger scale than previously. At present, it is believed that statistics is a suitable method to analyse networks with millions, or more, of vertices. The MATLAB language, with its mass of statistical functions, is a good choice to rapidly realize an algorithm prototype of complex networks. The performance of the MATLAB codes can be further improved by using graphic processor units (GPU). This paper presents the strategies and performance of the GPU implementation of a complex networks package, and the Jacket toolbox of MATLAB is used. Compared with some commercially available CPU implementations, GPU can achieve a speedup of, on average, 11.3x. The experimental result proves that the GPU platform combined with the MATLAB language is a good combination for complex network research. 展开更多
关键词 complex networks graphic processors unit matlab Jacket toolbox
原文传递
NOISE IDENTIFICATION FOR HYDRAULIC AXIAL PISTON PUMP BASED ON ARTIFICIAL NEURAL NETWORKS 被引量:1
8
作者 YANG Jian XU Bing YANG Huayong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期120-123,共4页
The noise identification model of the neural networks is established for the 63SCY14 IB hydraulic axial piston pump. Taking four kinds of different port plates as instances, the noise identification is successfully ca... The noise identification model of the neural networks is established for the 63SCY14 IB hydraulic axial piston pump. Taking four kinds of different port plates as instances, the noise identification is successfully carried out for hydraulic axial piston pump based on experiments with the MATLAB and the toolbox of neural networks, The operating pressure, the flow rate of hydraulic axial piston pump, the temperature of hydraulic oil, and bulk modulus of hydraulic oil are the main parameters having influences on the noise of hydraulic axial piston pump. These four parameters are used as inputs of neural networks, and experimental data of the noise are used as outputs of neural networks, Error of noise identification is less than 1% after the neural networks have been trained. The results show that the noise identification of hydraulic axial piston pump is feasible and reliable by using artificial neural networks. The method of noise identification with neural networks is also creative one of noise theoretical research for hydraulic axial piston pump. 展开更多
关键词 Hydraulic axial piston pump neural networks Noise Identification matlab
在线阅读 下载PDF
Fuzzy Optimization of an Elevator Mechanism Applying the Genetic Algorithm and Neural Networks 被引量:2
9
作者 XI Ping-yuan WANG Bing +1 位作者 SHENTU Liu-fang HU Heng-yin 《International Journal of Plant Engineering and Management》 2005年第4期236-240,共5页
Considering the indefinite character of the value of design parameters and being satisfied with load-bearing capacity and stiffness, the fuzzy optimization mathematical model is set up to minimize the volume of tooth ... Considering the indefinite character of the value of design parameters and being satisfied with load-bearing capacity and stiffness, the fuzzy optimization mathematical model is set up to minimize the volume of tooth corona of a worm gear in an elevator mechanism. The method of second-class comprehensive evaluation was used based on the optimal level cut set, thus the optimal level value of every fuzzy constraint can be attained; the fuzzy optimization is transformed into the usual optimization. The Fast Back Propagation of the neural networks algorithm are adopted to train feed-forward networks so as to fit a relative coefficient. Then the fitness function with penalty terms is built by a penalty strategy, a neural networks program is recalled, and solver functions of the Genetic Algorithm Toolbox of Matlab software are adopted to solve the optimization model. 展开更多
关键词 elevator mechanism fuzzy design optimization genetic algorithm and neural networks toolbox
在线阅读 下载PDF
Classification of Cardiovascular Disease Using Feature Extraction and Artificial Neural Networks
10
作者 Shalin Savalia Eder Acosta Vahid Emamian 《Journal of Biosciences and Medicines》 2017年第11期64-79,共16页
Electrocardiogram (ECG) signals are used to identify cardiovascular disease. The availability of signal processing and neural networks techniques for processing ECG signals has inspired us to do research that consists... Electrocardiogram (ECG) signals are used to identify cardiovascular disease. The availability of signal processing and neural networks techniques for processing ECG signals has inspired us to do research that consists of extracting features of an ECG signals to identify types of cardiovascular diseases. We distinguish between normal and abnormal ECG data using signal processing and neural networks toolboxes in Matlab. Data, which are downloaded from an ECG database, Physiobank, are used for training and testing the neural network. To distinguish normal and abnormal ECG with the significant accuracy, pattern recognition tools with NN is used. Feature Extraction method is also used to identify specific heart diseases. The diseases that were identified include Tachycardia, Bradycardia, first-degree Atrioventricular (AV), and second-degree Atrioventricular. Since ECG signals are very noisy, signal processing techniques are applied to remove the noise contamination. The heart rate of each signal is calculated by finding the distance between R-R intervals of the signal. The QRS complex is also used to detect Atrioventricular blocks. The algorithm successfully distinguished between normal and abnormal data as well as identifying the type of disease. 展开更多
关键词 ELECTROCARDIOGRAM (ECG) CARDIOVASCULAR Disease matlab Artificial neural network Physiobank R-R interval matlab QRS Complex Atrioventricular TACHYCARDIA BRADYCARDIA
暂未订购
Neural Network Based on SET Inverter Structures: Neuro-Inspired Memory
11
作者 Bilel Hafsi Rabii Elmissaoui Adel Kalboussi 《World Journal of Nano Science and Engineering》 2014年第4期134-142,共9页
This paper presents a basic block for building large-scale single-electron neural networks. This macro block is completely composed of SET inverter circuits. We present and discuss the basic parts of this device. The ... This paper presents a basic block for building large-scale single-electron neural networks. This macro block is completely composed of SET inverter circuits. We present and discuss the basic parts of this device. The full design and simulation results were done using MATLAB and SIMON, which are a single-electron tunnel device and circuit simulator based on a Monte Carlo method. Special measures had to be taken in order to simulate this circuit correctly in SIMON and compare results with those of SPICE simulation done before. Moreover, we study part of the network as a memory cell with the idea of combining the extremely low-power properties of the SET and the compact design. 展开更多
关键词 SINGLE-ELECTRON Neuron SYNAPSE INVERTER neural network SINGLE-ELECTRON MEMORY PERCEPTRON matlab SIMON
暂未订购
The study of film tension control system based on RBF neural network and PID
12
作者 Jia Chunying Ding Zhigang Chen Yuchen 《International English Education Research》 2014年第8期82-85,共4页
In the BOPP (Biaxially Oriented Polypropylene) production line, the tension size and smooth film received change volume has a decisive effect on the rolling quality, casting machine is a complicated electromechanica... In the BOPP (Biaxially Oriented Polypropylene) production line, the tension size and smooth film received change volume has a decisive effect on the rolling quality, casting machine is a complicated electromechanical control system, tension control of casting machine are the main factors that influence the production quality. Analyzed the reason and the tension control mathematical model generation casting machine tension in the BOPP production line, for the constant tension control of casting machine, put forward a kind of improved PID control method based on RBF neural network. By the method of Jacobian information identification of RBF neural network, combined with the incremental PID algorithm to realize the self-tuning tension control parameters, control simulation and implementation of the model using Matlab software programming. The simulation results show that, the improved algorithm has better control effect than the general PID. 展开更多
关键词 Control PID algorithm Jacobian information identification RBF neural network matlab
在线阅读 下载PDF
基于BP神经网络的环境声音检测与Matlab模拟分析 被引量:1
13
作者 吕柯 《集成电路应用》 2024年第12期36-37,共2页
阐述将BP神经网络应用于对环境声音的识别。通过对环境声音进行预处理,提取梅尔频率倒谱系数的帧级特征,然后送入BP神经网络分类器进行模型训练,最后用测试样本进行分类准确率检测。
关键词 多分类器 神经网络 环境声音 matlab
在线阅读 下载PDF
基于Matlab神经网络工具箱的电力负荷组合预测模型 被引量:15
14
作者 刘双 杨丽徙 +2 位作者 王志刚 贾德峰 陈根永 《电力自动化设备》 EI CSCD 北大核心 2003年第3期59-61,共3页
在电力系统负荷预测中,组合预测是一种较为有效的方法。该方法通常是采用对单个预测模型进行加权处理,要求参加组合预测的模型误差能保持稳定,但电力负荷预测结果的误差往往是非均匀性的。针对上述做法存在的问题,提出了基于人工神经网... 在电力系统负荷预测中,组合预测是一种较为有效的方法。该方法通常是采用对单个预测模型进行加权处理,要求参加组合预测的模型误差能保持稳定,但电力负荷预测结果的误差往往是非均匀性的。针对上述做法存在的问题,提出了基于人工神经网络的组合预测模型,利用人工神经网络对复杂非线性系统的拟合能力,通过网络训练自适应地调整各种预测模型的权重。同时,为了避免用常规语言建立人工神经网络负荷预测模型存在的模型结构复杂、训练时间长等缺点,利用Matlab神经网络工具箱建立组合预测模型,该模型不仅编程简单,而且收敛速度快。算例表明了该模型的实用性和有效性。 展开更多
关键词 matlab 神经网络工具箱 电力负荷 组合预测模型 负荷预测 人工神经网络 电力系统
在线阅读 下载PDF
应用MATLAB神经网络工具箱对动力煤特性的研究 被引量:8
15
作者 于敦喜 孙学信 +3 位作者 向军 胡松 李敏 李玲 《现代电力》 2001年第3期1-6,共6页
在 MATL AB环境下应用神经网络工具箱对动力煤的特性如低位发热量、着火稳燃指数、燃烬指数、综合结渣指数等进行预测 ,取得了较好的效果。与常规的研究方法相比 ,采用神经网络方法可以获得较高的精度 ,证明这是一种很好的研究方法。
关键词 matlab 煤质 特性 动力煤 神经网络工具箱
原文传递
基于MATLAB神经网络工具箱的岩爆预测模型 被引量:12
16
作者 孟陆波 李天斌 王震宇 《中国地质灾害与防治学报》 CSCD 2003年第4期81-85,共5页
文章介绍了BP人工神经网络的基本原理,针对其收敛差的缺点,发挥MATLAB神经网络工具箱的优势,分别采用VLBP和LMBP算法建立了改进后的BP神经网络。对于影响岩爆发生的关键因素,总结了专家经验,选取地下硐室围岩最大切向应力与岩石单轴抗... 文章介绍了BP人工神经网络的基本原理,针对其收敛差的缺点,发挥MATLAB神经网络工具箱的优势,分别采用VLBP和LMBP算法建立了改进后的BP神经网络。对于影响岩爆发生的关键因素,总结了专家经验,选取地下硐室围岩最大切向应力与岩石单轴抗压强度比值、岩石单轴抗压强度和抗拉强度比值和岩石冲击性倾向指数作为岩爆预测的评判指标,建立了岩爆预测的神经网络模型,并利用国内外一些岩石地下工程实例进行分析计算校验,计算结果表明,用该模型进行岩爆预测是可行有效的。 展开更多
关键词 matlab 神经网络 岩爆 预测模型 冲击性倾向指数 改进BP算法
在线阅读 下载PDF
基于MATLAB工具箱的BP神经网络年径流量预测模型研究--以塔城地区乌拉斯台河为例 被引量:24
17
作者 雷晓云 张丽霞 梁新平 《水文》 CSCD 北大核心 2008年第1期43-46,共4页
塔城地区独特的地形为西来水汽的输送提供了条件,从而形成了众多中小河流,而中低山带季节性积雪的消融又使河流呈现出春汛的特点,使得径流年内分配不均,对塔城地区水资源配置极为不利,开展径流量的预测研究,将为水资源的优化配置提供科... 塔城地区独特的地形为西来水汽的输送提供了条件,从而形成了众多中小河流,而中低山带季节性积雪的消融又使河流呈现出春汛的特点,使得径流年内分配不均,对塔城地区水资源配置极为不利,开展径流量的预测研究,将为水资源的优化配置提供科学的理论基础。文章以塔城地区乌拉斯台河为例,根据其年径流量(1966—1995年)序列的长期变化特征,利用MATLAB的神经网络工具箱提供的许多有关神经网络设计、训练以及仿真的函数,实现BP网络对年径流量的预测研究。从模型的检验来看,所建模型具有较好的适应性和预报精度,并且拟合效果较好,说明这种预测方法有一定的实用性。 展开更多
关键词 matlab工具箱 BP神经网络 年径流量 预测 中小河流域
在线阅读 下载PDF
Matlab神经网络工具箱及其在软测量建模中的应用 被引量:9
18
作者 郭庆武 张湜 林锦国 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第z1期209-212,共4页
介绍了Matlab神经网络工具箱的一些重要内容 ,包括数据预处理、训练算法比较、网络泛化能力等 .结合一个工业实例阐述了其在软测量建模中的应用 ,最后通过仿真分析了建模效果 .结果表明 。
关键词 matlab 软测量技术 神经网络对象 工具箱
在线阅读 下载PDF
基于Matlab的小波神经网络参考作物腾发量预测模型研究 被引量:7
19
作者 王堃 陈涛涛 +2 位作者 李雪 张兰芬 迟道才 《沈阳农业大学学报》 CAS CSCD 北大核心 2013年第4期457-460,共4页
参考作物腾发量是估算作物蒸发蒸腾量的关键参数,它的准确预测对提高作物需水预报精度具有重要的意义。将小波神经网络引入到参考作物腾发量的预测中,利用Matlab工具,以大连地区为例,建立小波神经网络模型和灰色新陈代谢GM(1,1)预测模型... 参考作物腾发量是估算作物蒸发蒸腾量的关键参数,它的准确预测对提高作物需水预报精度具有重要的意义。将小波神经网络引入到参考作物腾发量的预测中,利用Matlab工具,以大连地区为例,建立小波神经网络模型和灰色新陈代谢GM(1,1)预测模型,并对预测结果进行对比分析。结果表明:小波神经网络模型预测结果精度均在2级以上,与参考作物腾发量计算值绝对相对误差均值达到5.5%,准确性优于灰色新陈代谢GM(1,1)预测模型,达到较好的预测效果,为参考作物腾发量预测提供新方法。 展开更多
关键词 参考作物腾发量 小波神经网络模型 预测模型 matlab工具箱
在线阅读 下载PDF
共轭梯度BP算法在Matlab 7.0中的实现 被引量:15
20
作者 陈朝阳 行小帅 李玥 《现代电子技术》 2009年第18期125-127,共3页
应用Matlab 7.0中神经网络工具箱建立BP神经网络的最优化求解方法,采用共轭梯度法对网络的权值和阈值进行优化计算,实现网络权值和阈值的快速计算,为分析神经网络的合理结构提供了必要条件。对BP神经网络的传统梯度下降法与共轭梯度算... 应用Matlab 7.0中神经网络工具箱建立BP神经网络的最优化求解方法,采用共轭梯度法对网络的权值和阈值进行优化计算,实现网络权值和阈值的快速计算,为分析神经网络的合理结构提供了必要条件。对BP神经网络的传统梯度下降法与共轭梯度算法进行了仿真。这里通过对算法的训练速度,容错泛化能力等方面加以讨论,多方面印证共轭梯度算法的优越性,仿真结果凸显了训练速度的大幅提高,尤其对训练后网络受损情况下的泛化能力,采用线性回归的方法进行了仿真验证,同样得到满意结果,从新的角度支持了共轭梯度BP算法。 展开更多
关键词 BP神经网络 matlab 神经网络工具箱 共轭梯度
在线阅读 下载PDF
上一页 1 2 74 下一页 到第
使用帮助 返回顶部