期刊文献+
共找到14,616篇文章
< 1 2 250 >
每页显示 20 50 100
Materiality in Environmental Information Disclosure:A Comparative Analysis of the Securities Law of the United States and China
1
作者 Huihui Wu Hasani Mohd Ali Hazlina Shaik Md Noor Alam 《Journal of Environmental & Earth Sciences》 2025年第5期215-232,共18页
The purpose of this study lies in exploring the role of materiality in environmental information disclosures under the securities laws of the United States and China,discussing the differences in the regulatory mechan... The purpose of this study lies in exploring the role of materiality in environmental information disclosures under the securities laws of the United States and China,discussing the differences in the regulatory mechanism,limits of enforcement,and challenges of seeking global harmonization.The paper does a comparative legal analysis of statutory provisions,judicial interpretations,and regulatory frameworks of the U.S.Securities and Exchange Commission(SEC)and the China Securities Regulatory Commission(CSRC).Furthermore,it provides frameworks of global sustainability reporting such as the Task Force on Climate-related Financial Disclosures(TCFD)and the Global Reporting Initiative(GRI).The findings show that U.S.securities law uses a financial materiality standard with respect to what companies must disclose to investors.On the other hand,China’s regulatory approach has a double materiality in considering not only financial impacts but also wider environmental and social factors.Although there are these distinctions,both of these jurisdictions face issues of common obstruction such as ambiguities in materiality determination,inconsistent enforcement,and fear of greenwashing.This paper asserts that the U.S.and China regulatory frameworks need to converge more to promote greater corporate transparency and ESG disclosures.Regulators can even align disclosure practices with internationally recognized standards of work to add confidence for investors,fight off misleading sustainability claims and ensure accountable reporting in pertinent environments.The study concludes that the green challenges of global markets can only be tackled by regulating cooperative actions and using standardized reporting guidelines. 展开更多
关键词 Securities Law Environmental Information Disclosure ESG materiality SEC CSRC MEE
在线阅读 下载PDF
Qualitative Perspective of Audit Materiality: Empirical Evidence in Mexico and Colombia
2
作者 Sergio Ivan Ramirez Cacho Martin Alvarez Ochoa Maricela Ramirez 《Chinese Business Review》 2012年第10期864-872,共9页
Our contribution analyzes the process of convergence with the International Standards of Audit (ISAs), particularly those that regulate the concept of materiality in Mexico and Colombia. Between other results, acros... Our contribution analyzes the process of convergence with the International Standards of Audit (ISAs), particularly those that regulate the concept of materiality in Mexico and Colombia. Between other results, across a survey, it is demonstrated why the effective use of the factors that emerge of his qualitative slope can favor the quality of the financial information that publish the audited companies, the usefulness and the comprehensibility of the report of opinion. In general, the reliability, transparency, and relevancy of the financial statements will meet potentially favored with the strict application of these major and better normative instruments. 展开更多
关键词 qualitative perspective materiality financial statements audit materiality International Federation ofAccountants (IFAC)
在线阅读 下载PDF
Is audit materiality informative?Evidence from China 被引量:1
3
作者 Lei Zhu Qianwen Zheng Yubin Li 《China Journal of Accounting Research》 2024年第3期120-137,共18页
To improve the usefulness of audit opinions,on 23 March 2021,the China Securities Regulatory Commission mandated that auditors disclose overall quantitative materiality of consolidated financial statements in special ... To improve the usefulness of audit opinions,on 23 March 2021,the China Securities Regulatory Commission mandated that auditors disclose overall quantitative materiality of consolidated financial statements in special explanations of modified audit opinions.This paper selects Chinese A-share companies issued with modified audit opinions for the period of 2020-2022 as the research sample and analyzes the assessment of materiality in audit practice and the informativeness of audit materiality.Our findings are as follows.(1)The most commonly used bases for materiality by auditors are profit and income,with considerable differences in the percentages applied to the different bases and variations even within the same base.(2)The higher the materiality amount,the poorer the audit quality.This negative correlation is mainly observed in scenarios where the audited companies engage in downward earnings management and where the competency of audit firms or auditors is relatively low.(3)Companies that disclose quantitative materiality in the special explanations of modified audit opinions have a lower earnings response coefficient than companies that do not disclose audit materiality.This research sheds light on the“black box”of the audit process and verifies the information value of audit materiality.The conclusions are of significant value to auditing standard-setters,investors and regulators. 展开更多
关键词 Audit materiality Audit Quality Auditor Competence Investors’Decision-Making
原文传递
RED,WHITE AND BLACK:METHODOLOGIES FOR UNDERSTANDING COLOR SYMBOLISM IN MESOPOTAMIAN MAGIC AND RITUAL
4
作者 Shiyanthi Thavapalan 《Journal of Ancient Civilizations》 2025年第1期1-23,113,共24页
The color cluster red,black and white occurs in the artistic,ritual and magical activities of virtually all cultures around the world,suggesting their preeminence in human symbolic thought.Among the various explanatio... The color cluster red,black and white occurs in the artistic,ritual and magical activities of virtually all cultures around the world,suggesting their preeminence in human symbolic thought.Among the various explanations that have been brought forth to account for the special status of these three colors are:1)evolutionary/ecological arguments,drawing support from vision science,perceptual philosophy and primate biology;2)cognitive arguments,which pay attention to how human beings categorize and create meaning out of perceptual experiences;3)linguistic arguments,as these are the earliest lexicalized color words in most languages;4)and diverse socio-cultural arguments.This paper will explore the manifestation of red,black and white–both in concrete terms,through the use and manipulation of materials,as well as abstract ideas–in Assyrian and Babylonian magical and ritual activities.It will highlight how meaning is created and communicated by relating colors to natural and supernatural phenomena and will further attempt to provide a methodological framework for the analysis of color symbolism. 展开更多
关键词 Akkadian color terminology color symbolism Mesopotamian magic and ritual materiality SEMIOTICS solid metaphors
在线阅读 下载PDF
两种形貌纳米Co_(3)O_(4)的表征及其对喹啉的吸附性能
5
作者 王涵 唐克 +4 位作者 洪新 房欣 秦悦 沈硕 李东娟 《石油学报(石油加工)》 北大核心 2025年第2期466-476,共11页
Co_(3)O_(4)具有吸附位点丰富、稳定性强、易回收等特点,可用于吸附脱除柴油中的碱性含氮化合物。采用水热合成法,通过改变原料配比制备了2种Co_(3)O_(4)样品(样品1和样品2);采用XRD、FT-IR、SEM、N_(2)吸附-脱附等手段对2种样品进行表... Co_(3)O_(4)具有吸附位点丰富、稳定性强、易回收等特点,可用于吸附脱除柴油中的碱性含氮化合物。采用水热合成法,通过改变原料配比制备了2种Co_(3)O_(4)样品(样品1和样品2);采用XRD、FT-IR、SEM、N_(2)吸附-脱附等手段对2种样品进行表征;同时考察吸附温度、吸附时间、吸附剂用量对Co_(3)O_(4)吸附脱除模拟柴油中喹啉的影响;利用Material Studio软件建立Co_(3)O_(4)团簇吸附喹啉分子的模型,模拟计算吸附距离、吸附能及喹啉分子尺寸。结果表明:2种Co_(3)O_(4)样品均为立方尖晶石结构,样品1为纳米颗粒堆积且无规则堆放形成的球状团簇,样品2为纳米颗粒无规则堆积形成的纳米线形,样品1和样品2的平均孔径分别为21.34和16.13 nm,比表面积分别为30.08和14.42 m^(2)/g,孔体积分别为0.19和0.07 cm^(3)/g;当模拟燃料用量15 mL时,不同吸附温度下样品1的吸附脱氮效果明显优于样品2,且样品1的最佳吸附脱氮条件为:吸附温度30℃,吸附时间40 min,吸附剂用量0.6 g。Co_(3)O_(4)中Co^(2+)吸附效果优于Co 3+,2种价态Co对于喹啉配位吸附结构的稳定性与吸附能力均优于π络合吸附,这是由于喹啉分子尺寸为0.7160 nm×0.4998 nm,可以进入到Co_(3)O_(4)孔结构中。 展开更多
关键词 Co_(3)O_(4) 模拟柴油 喹啉 吸附 脱除率 Material Studio软件
在线阅读 下载PDF
Nanoparticles for the treatment of spinal cord injury 被引量:1
6
作者 Qiwei Yang Di Lu +8 位作者 Jiuping Wu Fuming Liang Huayi Wang Junjie Yang Ganggang Zhang Chen Wang Yanlian Yang Ling Zhu Xinzhi Sun 《Neural Regeneration Research》 SCIE CAS 2025年第6期1665-1680,共16页
Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a s... Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a slow process, partly due to the difficulty of delivering drugs effectively. Nanoparticles, with their targeted delivery capabilities, biocompatibility, and enhanced bioavailability over conventional drugs, are garnering attention for spinal cord injury treatment. This review explores the current mechanisms and shortcomings of existing treatments, highlighting the benefits and progress of nanoparticle-based approaches. We detail nanoparticle delivery methods for spinal cord injury, including local and intravenous injections, oral delivery, and biomaterial-assisted implantation, alongside strategies such as drug loading and surface modification. The discussion extends to how nanoparticles aid in reducing oxidative stress, dampening inflammation, fostering neural regeneration, and promoting angiogenesis. We summarize the use of various types of nanoparticles for treating spinal cord injuries, including metallic, polymeric, protein-based, inorganic non-metallic, and lipid nanoparticles. We also discuss the challenges faced, such as biosafety, effectiveness in humans, precise dosage control, standardization of production and characterization, immune responses, and targeted delivery in vivo. Additionally, we explore future directions, such as improving biosafety, standardizing manufacturing and characterization processes, and advancing human trials. Nanoparticles have shown considerable progress in targeted delivery and enhancing treatment efficacy for spinal cord injuries, presenting significant potential for clinical use and drug development. 展开更多
关键词 ANTIOXIDANTS axon regeneration biocompatible materials drug carriers NANOPARTICLES nerve regeneration neuroinflammatory diseases NEUROPROTECTION spinal cord injury stem cells
在线阅读 下载PDF
A review of carbon-based hybrid materials for supercapacitors 被引量:1
7
作者 Theodore Azemtsop Manfo Hannu Laaksonen 《新型炭材料(中英文)》 北大核心 2025年第1期81-110,共30页
Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effecti... Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effective energy storage systems.Ad-vances in materials science have led to the develop-ment of hybrid nanomaterials,such as combining fil-amentous carbon forms with inorganic nanoparticles,to create new charge and energy transfer processes.Notable materials for electrochemical energy-stor-age applications include MXenes,2D transition met-al carbides,and nitrides,carbon black,carbon aerogels,activated carbon,carbon nanotubes,conducting polymers,carbon fibers,and nanofibers,and graphene,because of their thermal,electrical,and mechanical properties.Carbon materials mixed with conducting polymers,ceramics,metal oxides,transition metal oxides,metal hydroxides,transition metal sulfides,trans-ition metal dichalcogenide,metal sulfides,carbides,nitrides,and biomass materials have received widespread attention due to their remarkable performance,eco-friendliness,cost-effectiveness,and renewability.This article explores the development of carbon-based hybrid materials for future supercapacitors,including electric double-layer capacitors,pseudocapacitors,and hy-brid supercapacitors.It investigates the difficulties that influence structural design,manufacturing(electrospinning,hydro-thermal/solvothermal,template-assisted synthesis,electrodeposition,electrospray,3D printing)techniques and the latest car-bon-based hybrid materials research offer practical solutions for producing high-performance,next-generation supercapacitors. 展开更多
关键词 Carbon-based hybrid material Structure design Electrode material Specific capacitance SUPERCAPACITORS
在线阅读 下载PDF
Impact of pitch fraction oxidation on the structure and sodium storage properties of derived carbon materials 被引量:1
8
作者 QI Su-xia YANG Tao +6 位作者 SONG Yan ZHAO Ning LIU Jun-qing TIAN Xiao-dong WU Jin-ru LI Hui LIU Zhan-jun 《新型炭材料(中英文)》 北大核心 2025年第2期421-439,共19页
Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation ac... Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation activity were studied.Several different carbon materi-als were produced from them by oxida-tion in air(350℃,300 mL/min)fol-lowed by carbonization(1000℃ in Ar),and the effect of the cross-linked structure on their structure and sodium storage properties was investigated.The results showed that the two pitch fractions were obviously different after the air oxidation.The TS fraction with a low degree of condensation and abundant side chains had a stronger oxidation activity and thus introduced more cross-linked oxygen-containing functional groups C(O)―O which prevented carbon layer rearrangement during the carbonization.As a result,a disordered hard carbon with more defects was formed,which improved the electrochemical performance.Therefore,the carbon materials derived from TS(O-TS-1000)had an obvious disordered structure and a larger layer spacing,giving them better sodium storage perform-ance than those derived from the TI-PS fraction(O-TI-PS-1000).The specific capacity of O-TS-1000 was about 250 mAh/g at 20 mA/g,which was 1.67 times higher than that of O-TI-PS-1000(150 mAh/g). 展开更多
关键词 Pitch fractions Air oxidation Derived carbon materials Na^(+)storage
在线阅读 下载PDF
Carbon-based porous materials for performance-enhanced composite phase change materials in thermal energy storage:Materials,fabrication and applications 被引量:3
9
作者 Lei Hu Li Zhang +4 位作者 Wei Cui Qinyou An Ting Ma Qiuwang Wang Liqiang Mai 《Journal of Materials Science & Technology》 2025年第7期204-226,共23页
Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductiv... Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductivity and poor shape stability are the main drawbacks in realizing the large-scale application of PCMs.Promisingly,developing composite PCM(CPCM)based on porous supporting mate-rial provides a desirable solution to obtain performance-enhanced PCMs with improved effective thermal conductivity and shape stability.Among all the porous matrixes as supports for PCM,three-dimensional carbon-based porous supporting material has attracted considerable attention ascribing to its high ther-mal conductivity,desirable loading capacity of PCMs,and excellent chemical compatibility with various PCMs.Therefore,this work systemically reviews the CPCMs with three-dimensional carbon-based porous supporting materials.First,a concise rule for the fabrication of CPCMs is illustrated in detail.Next,the experimental and computational research of carbon nanotube-based support,graphene-based support,graphite-based support and amorphous carbon-based support are reviewed.Then,the applications of the shape-stabilized CPCMs including thermal management and thermal conversion are illustrated.Last but not least,the challenges and prospects of the CPCMs are discussed.To conclude,introducing carbon-based porous materials can solve the liquid leakage issue and essentially improve the thermal conductivity of PCMs.However,there is still a long way to further develop a desirable CPCM with higher latent heat capacity,higher thermal conductivity,and more excellent shape stability. 展开更多
关键词 Thermal energy storage Phase change material Supporting material Carbon-based material Thermal conductivity Shape-stabilized composite
原文传递
Ultrasonic vibration-assisted cutting of titanium alloys:A state-of-the-art review 被引量:3
10
作者 Ahmar KHAN Xin WANG +7 位作者 Biao ZHAO Wenfeng DING Muhammad JAMIL Aqib Mashood KHAN Syed Hammad ALI Sadam HUSSAIN Jiong ZHANG Raj DAS 《Chinese Journal of Aeronautics》 2025年第1期3-42,共40页
The remarkable ability of titanium alloys to preserve their superior physical and chemical characteristics when subjected to extreme conditions significantly enhances their importance in the aerospace,military,and med... The remarkable ability of titanium alloys to preserve their superior physical and chemical characteristics when subjected to extreme conditions significantly enhances their importance in the aerospace,military,and medical sectors.However,conventional machining of titanium alloys leads to elevated tool wear,development of surface defects,and reduced machining efficiency due to their low heat conductivity,and chemical affinity.These issues can be somewhat counteracted by integrating ultrasonic vibration in the conventional machining of titanium alloys and also enhance sustainability.This review article offers a holistic evaluation of the influence of ultrasonic vibration-assisted milling and turning on cutting forces,temperature,tool wear,and surface integrity,encompassing surface morphology,surface roughness,surface residual stress,surface hardness,and surface tribological properties during titanium alloys machining.Furthermore,it investigates the sustainability aspect that has not been previously examined.Studies on the performance of ultrasonic-assisted cutting revealed several advantages,including decreased cutting forces and cutting temperature,improved tool life,and a better-machined surface during machining.Consequently,the sustainability factor is improved due to minimized energy consumption and residual waste.In conclusion,the key challenges and future prospects in the ultrasonic-assisted cutting of titanium alloys are also discussed.This review article provides beneficial knowledge for manufactur-ers and researchers regarding ultrasonic vibration-assisted cutting of titanium alloy and will play an important role in achieving sustainability in the industry. 展开更多
关键词 Ultrasonic vibration-assisted cutting Titanium alloys Material removal mechanism MACHINABILITY SUSTAINABILITY
原文传递
Structural design in re duce d graphene oxide(RGO)metacomposites for enhanced microwave absorption in wide temperature spectrum 被引量:3
11
作者 Haoxu Si Yi Zhang +5 位作者 Yuhao Liu Zhiyang Jiang Cuiping Li Jingwei Zhang Xiaoxiao Huang Chunhong Gong 《Journal of Materials Science & Technology》 2025年第3期211-220,共10页
High-temperature microwave absorbing materials(MAMs)and structures are increasingly appealing due to their critical role in stealth applications under harsh environments.However,the impedance mismatch caused by increa... High-temperature microwave absorbing materials(MAMs)and structures are increasingly appealing due to their critical role in stealth applications under harsh environments.However,the impedance mismatch caused by increased conduction loss often leads to a significant decline in electromagnetic wave absorp-tion(EMWA)performance at elevated temperatures,which severely restricts their practical application.In this study,we propose a novel approach for efficient electromagnetic wave absorption across a wide temperature range using reduced graphene oxide(RGO)/epoxy resin(EP)metacomposites that integrate both electromagnetic parameters and metamaterial design concepts.Due to the discrete distribution of the units,electromagnetic waves can more easily penetrate the interior of materials,thereby exhibiting stable microwave absorption(MA)performance and impedance-matching characteristics suitable across a wide temperature range.Consequently,exceptional MA properties can be achieved within the tem-perature range from 298 to 473 K.Furthermore,by carefully controlling the structural parameters in RGO metacomposites,both the resonant frequency and effective absorption bandwidth(EAB)can be optimized based on precise manipulation of equivalent electromagnetic parameters.This study not only provides an effective approach for the rational design of MA performance but also offers novel insights into achieving super metamaterials with outstanding performance across a wide temperature spectrum. 展开更多
关键词 Microwave absorbing materials Metacomposites Equivalent electromagnetic parameters Structural parameters Wide temperature spectrum
原文传递
分子模拟软件在结构化学课程教学中的应用——NiFe水滑石电催化OER第一性原理计算
12
作者 李亚平 安赛 +2 位作者 曹爱青 李世龙 雷鸣 《大学化学》 2025年第3期160-170,共11页
在结构化学课程教学中,由于一些概念的抽象性常常让学生们感到难以理解。因此,本文构建NiFe层状双氢氧化物(NiFe-LDH)电催化析氧反应(OER)第一性原理计算实验,采用Materials Studio(MS)软件构建NiFe-LDH(100)晶面和(110)晶面的结构模型... 在结构化学课程教学中,由于一些概念的抽象性常常让学生们感到难以理解。因此,本文构建NiFe层状双氢氧化物(NiFe-LDH)电催化析氧反应(OER)第一性原理计算实验,采用Materials Studio(MS)软件构建NiFe-LDH(100)晶面和(110)晶面的结构模型,使用第一性原理计算软件VASP对其电催化析氧反应(OER)性能进行理论研究,通过VESTA软件显示差分电荷密度,并分析计算结果。设计实验采用“理论知识讲解+软件操作演示+科研案例分析”相结合的模式,不仅有利于学生加强对晶体结构、空间点群等抽象概念的理解,而且使课程教学内容变得形象具体,激发学生学习结构化学课程的兴趣。这既提升学生采用分子模拟软件解决化学中科学问题的研究水平,同时培养学生剖析化学中结构与性质关系的创新思维。 展开更多
关键词 结构化学 NiFe层状双氢氧化物 Materials Studio 第一性原理计算 差分电荷
在线阅读 下载PDF
Recent developments in MQL machining of aeronautical materials:A comparative review 被引量:2
13
作者 Syed Hammad ALI Yu YAO +7 位作者 Bangfu WU Biao ZHAO Wenfeng DING Muhammad JAMIL Ahmar KHAN Asra BAIG Qi LIU Dongdong XU 《Chinese Journal of Aeronautics》 2025年第1期43-69,共27页
Minimum quantity lubrication(MQL),as a new sustainable and eco-friendly alternative cooling/lubrication technology that addresses the limitations of dry and wet machining,utilizes a small amount of lubricant or coolan... Minimum quantity lubrication(MQL),as a new sustainable and eco-friendly alternative cooling/lubrication technology that addresses the limitations of dry and wet machining,utilizes a small amount of lubricant or coolant to reduce friction,tool wear,and heat during cutting processes.MQL technique has witnessed significant developments in recent years,such as combining MQL with other sustainable techniques to achieve optimum results,using biodegradable lubricants,and innovations in nozzle designs and delivery methods.This review presents an in-depth analysis of machining characteristics(e.g.,cutting forces,temperature,tool wear,chip morphology and surface integrity,etc.)and sustainability characteristics(e.g.,energy consumption,carbon emissions,processing time,machining cost,etc.)of conventional MQL and hybrid MQL techniques like cryogenic MQL,Ranque-Hilsch vortex tube MQL,nanofluids MQL,hybrid nanofluid MQL and ultrasonic vibration assisted MQL in machining of aeronautical materials.Subsequently,the latest research and developments are analyzed and summarized in the field of MQL,and provide a detailed comparison between each technique,considering advantages,challenges,and limitations in practical implementation.In addition,this review serves as a valuable source for researchers and engineers to optimize machining processes while minimizing environmental impact and operational costs.Ultimately,the potential future aspects of MQL for research and industrial execution are discussed. 展开更多
关键词 Aerospace materials Minimum Quantity Lubrication(MQL) CRYOGENIC NANOFLUID GRINDING MILLING Sustainability
原文传递
High-entropy materials for solid oxide cells:Synthesis,applications,and prospects 被引量:2
14
作者 Ming Xiao Zuoqing Liu +8 位作者 Haosong Di Yuesheng Bai Guangming Yang Dmitry A.Medvedev Zhixin Luo Wei Wang Wei Zhou Ran Ran Zongping Shao 《Journal of Energy Chemistry》 2025年第5期268-296,共29页
As global energy demand increases and environmental standards tighten,the development of efficient,eco-friendly energy conversion and storage technologies becomes crucial.Solid oxide cells(SOCs)show great promise beca... As global energy demand increases and environmental standards tighten,the development of efficient,eco-friendly energy conversion and storage technologies becomes crucial.Solid oxide cells(SOCs)show great promise because of their high energy conversion efficiency and wide range of applications.Highentropy materials(HEMs),a novel class of materials comprising several principal elements,have attracted significant interest within the materials science and energy sectors.Their distinctive structural features and adaptable functional properties offer immense potential for innovation across various applications.This review systematically covers the basic concepts,crystal structures,element selection,and major synthesis strategies of HEMs,and explores in detail the specific applications of these materials in SOCs,including its potential as air electrodes,fuel electrodes,electrolytes,and interconnects(including barrier coatings).By analyzing existing studies,this review reveals the significant advantages of HEMs in enhancing the performance,anti-poisoning,and stability of SOCs;highlights the key areas and challenges for future research;and looks into possible future directions. 展开更多
关键词 Solid oxide cells High-entropy materials Air electrodes Fuel electrodes Electrolytes Interconnects
在线阅读 下载PDF
Adjustable corrosion and mechanical properties of Mg-Zn-Ca-Ni alloys for fracturing materials 被引量:2
15
作者 Dawei Wang Xiangshuang Jiang +7 位作者 Changxin Chen Xun Zhang Zhong-Zheng Jin Fuyong Cao Jia-Ning Zhu Cheng Wang Yinlong Ma Min Zha 《Journal of Magnesium and Alloys》 2025年第6期2618-2635,共18页
Two sets of alloys,Mg-Zn-Ca-xNi(0≤x≤5),have been developed with tunable corrosion and mechanical properties,optimized for fracturing materials.High-zinc artificial aged(T6)Mg-12Zn-0.5Ca-x Ni(0≤x≤5)series,featuring... Two sets of alloys,Mg-Zn-Ca-xNi(0≤x≤5),have been developed with tunable corrosion and mechanical properties,optimized for fracturing materials.High-zinc artificial aged(T6)Mg-12Zn-0.5Ca-x Ni(0≤x≤5)series,featuring a straightforward preparation method and the potential for manufacturing large-scale components,exhibit notable corrosion rates up to 29 mg cm^(-2)h^(-1)at 25℃ and 643 mg cm^(-2)h^(-1)at 93℃.The high corrosion rate is primary due to the Ni–containing second phases,which intensify the galvanic corrosion that overwhelms their corrosion barrier effect.Low-zinc rolled Mg-1.5Zn-0.2Ca-x Ni(0≤x≤5)series,characterizing excellent deformability with an elongation to failure of~26%,present accelerated corrosion rates up to 34 mg cm^(-2)h^(-1)at 25℃ and 942 mg cm^(-2)h^(-1)at 93℃.The elimination of corrosion barrier effect via deformation contributes to the further increase of corrosion rate compared to the T6 series.Additionally,Mg-Zn-Ca-xNi(0≤x≤5)alloys exhibit tunable ultimate tensile strengths ranging from~190 to~237 MPa,depending on their specific composition.The adjustable corrosion rate and mechanical properties render the Mg-Zn-Ca-x Ni(0≤x≤5)alloys suitable for fracturing materials. 展开更多
关键词 Mg-Zn-Ca alloy Fracturing material Galvanic corrosion Corrosion barrier
在线阅读 下载PDF
Machine learning approaches for predicting impact sensitivity and detonation performances of energetic materials 被引量:2
16
作者 Wei-Hong Liu Qi-Jun Liu +1 位作者 Fu-Sheng Liu Zheng-Tang Liu 《Journal of Energy Chemistry》 2025年第3期161-171,共11页
Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials.Exploring the underlying factors that affect impact sensitivity and detonation performances as well as ... Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials.Exploring the underlying factors that affect impact sensitivity and detonation performances as well as exploring how to obtain materials with desired properties remains a long-term challenge.Machine learning with its ability to solve complex tasks and perform robust data processing can reveal the relationship between performance and descriptive indicators,potentially accelerating the development process of energetic materials.In this background,impact sensitivity,detonation performances,and 28 physicochemical parameters for 222 energetic materials from density functional theory calculations and published literature were sorted out.Four machine learning algorithms were employed to predict various properties of energetic materials,including impact sensitivity,detonation velocity,detonation pressure,and Gurney energy.Analysis of Pearson coefficients and feature importance showed that the heat of explosion,oxygen balance,decomposition products,and HOMO energy levels have a strong correlation with the impact sensitivity of energetic materials.Oxygen balance,decomposition products,and density have a strong correlation with detonation performances.Utilizing impact sensitivity of 2,3,4-trinitrotoluene and the detonation performances of 2,4,6-trinitrobenzene-1,3,5-triamine as the benchmark,the analysis of feature importance rankings and statistical data revealed the optimal range of key features balancing impact sensitivity and detonation performances:oxygen balance values should be between-40%and-30%,density should range from 1.66 to 1.72 g/cm^(3),HOMO energy levels should be between-6.34 and-6.31 eV,and lipophilicity should be between-1.0 and 0.1,4.49 and 5.59.These findings not only offer important insights into the impact sensitivity and detonation performances of energetic materials,but also provide a theoretical guidance paradigm for the design and development of new energetic materials with optimal detonation performances and reduced sensitivity. 展开更多
关键词 Energetic materials Machine learning Impact sensitivity Detonation performances Feature descriptors Balancing strategy
在线阅读 下载PDF
Regulating the“core-shell”microstructure of hard carbon through sodium hydroxide activation for achieving high-capacity SIBs anode 被引量:3
17
作者 Haihua Wang Huizhu Niu +6 位作者 Kewei Shu Liyu Sun Yu Wang Yifan Du Yun Han Cunguo Yang Yong-Mook Kang 《Journal of Materials Science & Technology》 2025年第6期161-170,共10页
Pore structure engineering has been acknowledged as suitable approach to creating active sites and en-hancing ion transport capabilities of hard carbon anodes.However,conventional porous carbon materials exhibit high ... Pore structure engineering has been acknowledged as suitable approach to creating active sites and en-hancing ion transport capabilities of hard carbon anodes.However,conventional porous carbon materials exhibit high BET and surface defects.Additionally,the sodium storage mechanism predominantly occurs in the slope region.This contradicts practical application requirements because the capacity of the plateau region is crucial for determining the actual capacity of batteries.In our work,we prepared a novel“core-shell”carbon framework(CNA1200).Introducingclosedporesand carboxylgroupsinto coal-basedcarbon materials to enhance its sodium storage performance.The closed pore structure dominates in the“core”structure,which is attributed to the timely removal of sodium hydroxide(NaOH)to prevent further for-mation of active carbon structure.The presence of closed pores is beneficial for increasing sodium ion storage in the low-voltage plateau region.And the“shell”structure originates from coal tar pitch,it not only uniformly connects hard carbon particles together to improve cycling stability,but is also rich in carboxyl groups to enhance the reversible sodium storage performance in slope region.CNA1200 has ex-cellent electrochemical performance,it exhibits a specific capacity of 335.2 mAh g^(−1)at a current density of 20 mA g^(−1)with ICE=51.53%.In addition,CNA1200 has outstanding cycling stability with a capac-ity retention of 91.8%even when cycling over 200 times.When CNA1200 is used as anode paired with Na_(3)V_(2)(PO_(4))_(3)cathode,it demonstrates a capacity of 109.54 mAh g^(−1)at 0.1 C and capacity retention of 94.64%at 0.5 C.This work provides valuable methods for regulating the structure of sodium-ion battery(SIBs)anode and enhances the potential for commercialization. 展开更多
关键词 Hard carbon plateau region NaOH controlled etching-thermal annealing Closed pore structure Carboxyl groups Coal-based carbon materials
原文传递
Carbon dioxide reduction through mineral carbonation by steel slag 被引量:2
18
作者 Yongpeng Zhang Yimei Ying +4 位作者 Lei Xing Guoxiong Zhan Yanli Deng Zhen Chen Junhua Li 《Journal of Environmental Sciences》 2025年第6期664-684,共21页
Carbon dioxide (CO_(2)) mineralization technology has attracted significant attention, due tothe synergistic terminal treatment of CO_(2) and industrial waste. The combined CO_(2) mineralizationprocess with steel ente... Carbon dioxide (CO_(2)) mineralization technology has attracted significant attention, due tothe synergistic terminal treatment of CO_(2) and industrial waste. The combined CO_(2) mineralizationprocess with steel enterprises is a promising route to simultaneously address CO_(2)emissions and SS treatment. Recently, a serial of the relevant work focus on a single type ofsteel slag (SS), and the understanding of CO_(2) absorption by mineralization of various SS isvery lacking.Meanwhile, it is urgent requirement for systematic summary and discussion onhow to make full use of the mineralized products produced after the mineralization of CO_(2)in SS. This review aims to investigate the progress of CO_(2) mineralization using SS, includingthe potential applications of mineralization products, as well as the environmental impactand risk assessment ofmineralization product applications. Currently, the application of SSmineralization products is primarily focused on their use as construction materials with loweconomic value. With usage of the mineralization products for ecological restoration (e.g.sandy soil remediation) was treated as an advanced route, but still remaining challenge infunctional materials preparation, and its technical economy and possible hazards need tobe further explored by long-term experimental tests. 展开更多
关键词 CO_(2)mineralization Steel slag Building materials Soil improvement Environmental risk
原文传递
Mini review:Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries 被引量:2
19
作者 Lingjiang Kou Yong Wang +5 位作者 Jiajia Song Taotao Ai Wenhu Li Mohammad Yeganeh Ghotbi Panya Wattanapaphawong Koji Kajiyoshi 《Chinese Chemical Letters》 2025年第1期214-224,共11页
As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability... As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density.This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs,including hydrogen evolution reaction,phase transformation and dissolution phenomena.To address these challenges,we propose a range of advanced strategies aimed at improving the stability of cathode materials.These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions.Additionally,we emphasize the importance of designing antioxidant electrolytes,with a focus on understanding and optimizing electrolyte decomposition mechanisms.The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs.By integrating these cutting-edge approaches,this review anticipates substantial advancements in the stability of high-voltage cathode materials,paving the way for the broader application and development of AZIBs in energy storage. 展开更多
关键词 Aqueous zinc ion battery High-voltage cathode materials Stability enhancement Failure mechanisms Electrolyte optimization
原文传递
Degradation mechanism,direct regeneration and upcycling of ternary cathode material for retired lithium-ion power batteries 被引量:2
20
作者 Juan Wang Dongqi Li +6 位作者 Weihao Zeng Xingye Chen Yixin Zhang Shaojie Zhang Zhongpeng Li Changhao Li Shichun Mu 《Journal of Energy Chemistry》 2025年第3期534-554,共21页
With the approaching of large-scale retirement of power lithium-ion batteries(LIBs),their urgent handling is required for environmental protection and resource reutilization.However,at present,substantial spent power ... With the approaching of large-scale retirement of power lithium-ion batteries(LIBs),their urgent handling is required for environmental protection and resource reutilization.However,at present,substantial spent power batteries,especially for those high recovery value cathode materials,have not been greenly,sustainably,and efficiently recycled.Compared to the traditional recovery method for cathode materials with high energy consumption and severe secondary pollution,the direct repair regeneration,as a new type of short-process and efficient treatment methods,has attracted widespread attention.However,it still faces challenges in homogenization repair,electrochemical performance decline,and scaling-up production.To promote the direct regeneration technology development of failed NCM materials,herein we deeply discuss the failure mechanism of nickel-cobalt-manganese(NCM)ternary cathode materials,including element loss,Li/Ni mixing,phase transformation,structural defects,oxygen release,and surface degradation and reconstruction.Based on this,the detailed analysis and summary of the direct regeneration method embracing solid-phase sintering,eutectic salt assistance,solvothermal synthesis,sol-gel process,spray drying,and redox mediation are provided.Further,the upcycling strategy for regeneration materials,such as single-crystallization and high-nickelization,structural regulation,ion doping,and surface engineering,are discussed in deep.Finally,the challenges faced by the direct regeneration and corresponding countermeasures are pointed out.Undoubtedly,this review provides valuable guidance for the efficient and high-value recovery of failed cathode materials. 展开更多
关键词 Spent NCM materials Retired lithium-ion power battery Degradation mechanism Direct regeneration Upcycling strategy
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部