Background:Platinum-based chemotherapy is the first-line treatment of non-small cell lung cancer(NSCLC);it is therefore important to discover biomarkers that can be used to predict the efficacy and toxicity of this tr...Background:Platinum-based chemotherapy is the first-line treatment of non-small cell lung cancer(NSCLC);it is therefore important to discover biomarkers that can be used to predict the efficacy and toxicity of this treatment.Four important transporter genes are expressed in the kidney,including organic cation transporter 2(OCT2),multidrug and toxin extrusion 1(MATEl),ATP-binding cassette subfamily B member 1 {ABCB1),and ATP-binding cassette subfamily C member 2(ABCC2),and genetic polymorphisms in these genes may alter the efficacy and adverse effects of platinum drugs.This study aimed to evaluate the association of genetic polymorphisms of these transporters with platinumbased chemotherapy response and toxicity in NSCLC patients.Methods:A total of 403 Chinese NSCLC patients were recruited for this study.All patients were newly diagnosed with NSCLC and received at least two cycles of platinum-based chemotherapy.The tumor response and toxicity were evaluated after two cycles of treatment,and the patients' genomic DNA was extracted.Seven single-nucleotide polymorphisms in four transporter genes were selected to investigate their associations with platinum-based chemotherapy toxicity and response.Results:OCT2 rs316019 was associated with hepatotoxicity(P = 0.026) and hematological toxicity(P = 0.039),and MATEl rs2289669 was associated with hematological toxicity induced by platinum(P = 0.016).In addition,ABCC2rs717620 was significantly associated with the platinum-based chemotherapy response(P = 0.031).ABCB1 polymorphisms were associated with neither response nor toxicity.Conclusion:OCT2 rs316019,MATEl rs2289669,and ABCC2 rs717620 might be potential clinical markers for predicting chemotherapy toxicity and response induced by platinum-based treatment in NSCLC patients.Trial registration Chinese Clinical Trial Registry展开更多
目的探讨有机阳离子转运蛋白1(OCT1)(rs622342)和多药及毒素外排转运蛋白1(MATE1)(rs2289669)基因多态性对接受二甲双胍治疗的2型糖尿病患者血糖控制指标的影响。方法采用横断面研究方法,所有确诊为2型糖尿病的参与者接受盐酸二甲双胍片...目的探讨有机阳离子转运蛋白1(OCT1)(rs622342)和多药及毒素外排转运蛋白1(MATE1)(rs2289669)基因多态性对接受二甲双胍治疗的2型糖尿病患者血糖控制指标的影响。方法采用横断面研究方法,所有确诊为2型糖尿病的参与者接受盐酸二甲双胍片1~2 g/d治疗至少3个月,记录血糖控制水平、代谢指标,并测定OCT1和MATE1基因型,使用IBM SPSS Statistics for Windows V22.0统计分析不同基因型与患者血糖控制水平、代谢指标之间的相关性。结果共纳入191名2型糖尿病的患者。MATE1(rs2289669)AA/AG基因型携带者的空腹血糖(FPG)水平显著低于GG基因型患者,高密度脂蛋白胆固醇(HDL-C)水平比GG型显著升高。Logistics回归结果发现,MATE1(rs2289669)对于FPG、身体质量指数(BMI)和HDL-C有统计学意义。交互作用模型分析发现,在FPG中,同时拥有OCT1(rs622342)AA型和MATE1(rs228966)GG型基因的患者具有明显的交互作用且为协同作用,无明显相乘作用。结论OCT1和MATE1基因多态性与接受二甲双胍治疗的2型糖尿病患者血糖控制有显著关联,在与FPG相关性方面存在协同效应,也与脂代谢和BMI有关。OCT1和MATE1基因多态性可能在二甲双胍治疗2型糖尿病患者血糖控制和代谢指标方面具有预测作用。展开更多
As a non-communicable disease,cardiovascular disorders have become the lea-ding cause of death for men and women.Of additional concern is that cardio-vascular disease is linked to chronic comorbidity disorders that in...As a non-communicable disease,cardiovascular disorders have become the lea-ding cause of death for men and women.Of additional concern is that cardio-vascular disease is linked to chronic comorbidity disorders that include nonal-coholic fatty liver disease(NAFLD).NAFLD,also termed metabolic-dysfunction-associated steatotic liver disease,is the greatest cause of liver disease throughout the world,increasing in prevalence concurrently with diabetes mellitus(DM),and can progress to nonalcoholic steatohepatitis that leads to cirrhosis and liver fi-brosis.Individuals with metabolic disorders,such as DM,are more than two times likely to experience cardiac disease,stroke,and liver disease that includes NAFLD when compared individuals without metabolic disorders.Interestingly,cardiovascular disorders and NAFLD share a common underlying cellular me-chanism for disease pathology,namely the silent mating type information regu-lation 2 homolog 1(SIRT1;Saccharomyces cerevisiae).SIRT1,a histone deacetylase,is linked to metabolic pathways through nicotinamide adenine dinucleotide and can offer cellular protection though multiple avenues,including trophic factors such as erythropoietin,stem cells,and AMP-activated protein kinase.Translating SIRT1 pathways into clinical care for cardiovascular and hepatic disease can offer significant hope for patients,but further insights into the complexity of SIRT1 pathways are necessary for effective treatment regimens.展开更多
The global increase in lifespan noted not only in developed nations,but also in large developing countries parallels an observed increase in a significant number of noncommunicable diseases,most notable neurodegenerat...The global increase in lifespan noted not only in developed nations,but also in large developing countries parallels an observed increase in a significant number of noncommunicable diseases,most notable neurodegenerative disorders.Neurodegenerative disorders present a number of challenges for treatment options that do not resolve disease progression.Furthermore,it is believed by the year 2030,the services required to treat cognitive disorders in the United States alone will exceed$2 trillion annually.Mammalian forkhead transcription factors,silent mating type information regulation 2 homolog 1(Saccharomyces cerevisiae),the mechanistic target of rapamycin,and the pathways of autophagy and apoptosis offer exciting avenues to address these challenges by focusing upon core cellular mechanisms that may significantly impact nervous system disease.These pathways are intimately linked such as through cell signaling pathways involving protein kinase B and can foster,sometimes in conjunction with trophic factors,enhanced neuronal survival,reduction in toxic intracellular accumulations,and mitochondrial stability.Feedback mechanisms among these pathways also exist that can oversee reparative processes in the nervous system.However,mammalian forkhead transcription factors,silent mating type information regulation 2 homolog 1,mechanistic target of rapamycin,and autophagy can lead to cellular demise under some scenarios that may be dependent upon the precise cellular environment,warranting future studies to effectively translate these core pathways into successful clinical treatment strategies for neurodegenerative disorders.展开更多
Objective: To demonstrate whether the expression of silent mating type information regulation 2 homolog 1 (SIRT1) affects the level of TGF-β1 and Smad3 in HEK293 cells through regulating mTOR. Methods: First, recombi...Objective: To demonstrate whether the expression of silent mating type information regulation 2 homolog 1 (SIRT1) affects the level of TGF-β1 and Smad3 in HEK293 cells through regulating mTOR. Methods: First, recombinant plasmids DNA (rSIRT1) and siRNA targeting SIRT1 were constructed which were transfected into Human Embryonic Kidney 293 cell (HEK293) cells, respectively. Then, the generation of intracellular ROS in cells was examined by flow cytometry using the oxidation-sensitive probe. Last, the expressions of TGF-β1, smad3, P53, mTOR, p-mTOR, LC3-I and LC3-II in cells were detected to observe the effect of SIRT1 on TGF-β1 Pathway by western blot analysis. Results: We demonstrated that overexpressing of SIRT1 may decrease TGF-β1 and Smad3 expression in HEK293 cells through regulating mTOR. In addition, the result is the opposite when SIRT1 was silent in HEK293 cells. Conclusions: SIRT1 is closely related to TGF-β1/Smad3 pathway that correlates with the regulation of mTOR and ROS generation and causes diabetic nephropathy. The available evidence implies that SIRT1 has great potential as a clinical target for the prevention and treatment of renal fibrosis in the development of DN.展开更多
Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and af...Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and affects all components of the central and peripheral nervous systems that can range from dementia to diabetic neuropathy.The mechanistic target of rapamycin(m TOR) is a promising agent for the development of novel regenerative strategies for the treatment of DM.m TOR and its related signaling pathways impact multiple metabolic parameters that include cellular metabolic homeostasis,insulin resistance,insulin secretion,stem cell proliferation and differentiation,pancreatic β-cell function,and programmed cell death with apoptosis and autophagy.m TOR is central element for the protein complexes m TOR Complex 1(m TORC1) and m TOR Complex 2(m TORC2) and is a critical component for a number of signaling pathways that involve phosphoinositide 3-kinase(PI 3-K),protein kinase B(Akt),AMP activated protein kinase(AMPK),silent mating type information regulation 2 homolog 1(Saccharomyces cerevisiae)(SIRT1),Wnt1 inducible signaling pathway protein 1(WISP1),and growth factors.As a result,m TOR represents an exciting target to offer new clinical avenues for the treatment of DM and the complications of this disease.Future studies directed to elucidate the delicate balance m TOR holds over cellular metabolism and the impact of its broad signaling pathways should foster the translation of these targets into effective clinical regimens for DM.展开更多
基金supported by the National High-tech R&D Program of China(863 Program)(2012AA02A517)National Natural Science Foundation of China(81173129,81202595,81373490,81273595)
文摘Background:Platinum-based chemotherapy is the first-line treatment of non-small cell lung cancer(NSCLC);it is therefore important to discover biomarkers that can be used to predict the efficacy and toxicity of this treatment.Four important transporter genes are expressed in the kidney,including organic cation transporter 2(OCT2),multidrug and toxin extrusion 1(MATEl),ATP-binding cassette subfamily B member 1 {ABCB1),and ATP-binding cassette subfamily C member 2(ABCC2),and genetic polymorphisms in these genes may alter the efficacy and adverse effects of platinum drugs.This study aimed to evaluate the association of genetic polymorphisms of these transporters with platinumbased chemotherapy response and toxicity in NSCLC patients.Methods:A total of 403 Chinese NSCLC patients were recruited for this study.All patients were newly diagnosed with NSCLC and received at least two cycles of platinum-based chemotherapy.The tumor response and toxicity were evaluated after two cycles of treatment,and the patients' genomic DNA was extracted.Seven single-nucleotide polymorphisms in four transporter genes were selected to investigate their associations with platinum-based chemotherapy toxicity and response.Results:OCT2 rs316019 was associated with hepatotoxicity(P = 0.026) and hematological toxicity(P = 0.039),and MATEl rs2289669 was associated with hematological toxicity induced by platinum(P = 0.016).In addition,ABCC2rs717620 was significantly associated with the platinum-based chemotherapy response(P = 0.031).ABCB1 polymorphisms were associated with neither response nor toxicity.Conclusion:OCT2 rs316019,MATEl rs2289669,and ABCC2 rs717620 might be potential clinical markers for predicting chemotherapy toxicity and response induced by platinum-based treatment in NSCLC patients.Trial registration Chinese Clinical Trial Registry
文摘目的探讨有机阳离子转运蛋白1(OCT1)(rs622342)和多药及毒素外排转运蛋白1(MATE1)(rs2289669)基因多态性对接受二甲双胍治疗的2型糖尿病患者血糖控制指标的影响。方法采用横断面研究方法,所有确诊为2型糖尿病的参与者接受盐酸二甲双胍片1~2 g/d治疗至少3个月,记录血糖控制水平、代谢指标,并测定OCT1和MATE1基因型,使用IBM SPSS Statistics for Windows V22.0统计分析不同基因型与患者血糖控制水平、代谢指标之间的相关性。结果共纳入191名2型糖尿病的患者。MATE1(rs2289669)AA/AG基因型携带者的空腹血糖(FPG)水平显著低于GG基因型患者,高密度脂蛋白胆固醇(HDL-C)水平比GG型显著升高。Logistics回归结果发现,MATE1(rs2289669)对于FPG、身体质量指数(BMI)和HDL-C有统计学意义。交互作用模型分析发现,在FPG中,同时拥有OCT1(rs622342)AA型和MATE1(rs228966)GG型基因的患者具有明显的交互作用且为协同作用,无明显相乘作用。结论OCT1和MATE1基因多态性与接受二甲双胍治疗的2型糖尿病患者血糖控制有显著关联,在与FPG相关性方面存在协同效应,也与脂代谢和BMI有关。OCT1和MATE1基因多态性可能在二甲双胍治疗2型糖尿病患者血糖控制和代谢指标方面具有预测作用。
基金Supported by American Diabetes AssociationAmerican Heart Association+4 种基金NIH NIEHSNIH NIANIH NINDSNS053956NIH ARRA.
文摘As a non-communicable disease,cardiovascular disorders have become the lea-ding cause of death for men and women.Of additional concern is that cardio-vascular disease is linked to chronic comorbidity disorders that include nonal-coholic fatty liver disease(NAFLD).NAFLD,also termed metabolic-dysfunction-associated steatotic liver disease,is the greatest cause of liver disease throughout the world,increasing in prevalence concurrently with diabetes mellitus(DM),and can progress to nonalcoholic steatohepatitis that leads to cirrhosis and liver fi-brosis.Individuals with metabolic disorders,such as DM,are more than two times likely to experience cardiac disease,stroke,and liver disease that includes NAFLD when compared individuals without metabolic disorders.Interestingly,cardiovascular disorders and NAFLD share a common underlying cellular me-chanism for disease pathology,namely the silent mating type information regu-lation 2 homolog 1(SIRT1;Saccharomyces cerevisiae).SIRT1,a histone deacetylase,is linked to metabolic pathways through nicotinamide adenine dinucleotide and can offer cellular protection though multiple avenues,including trophic factors such as erythropoietin,stem cells,and AMP-activated protein kinase.Translating SIRT1 pathways into clinical care for cardiovascular and hepatic disease can offer significant hope for patients,but further insights into the complexity of SIRT1 pathways are necessary for effective treatment regimens.
基金supported by American Diabetes AssociationAmerican Heart Association+3 种基金National Institutes of Health-National Institute of Environmental Health SciencesNational Institutes of Health-National Institute on AgingNational Institutes of Health-National Institute of Neurological DisordersNational Institutes of Health-American Recovery and Reinvestment(to KM)。
文摘The global increase in lifespan noted not only in developed nations,but also in large developing countries parallels an observed increase in a significant number of noncommunicable diseases,most notable neurodegenerative disorders.Neurodegenerative disorders present a number of challenges for treatment options that do not resolve disease progression.Furthermore,it is believed by the year 2030,the services required to treat cognitive disorders in the United States alone will exceed$2 trillion annually.Mammalian forkhead transcription factors,silent mating type information regulation 2 homolog 1(Saccharomyces cerevisiae),the mechanistic target of rapamycin,and the pathways of autophagy and apoptosis offer exciting avenues to address these challenges by focusing upon core cellular mechanisms that may significantly impact nervous system disease.These pathways are intimately linked such as through cell signaling pathways involving protein kinase B and can foster,sometimes in conjunction with trophic factors,enhanced neuronal survival,reduction in toxic intracellular accumulations,and mitochondrial stability.Feedback mechanisms among these pathways also exist that can oversee reparative processes in the nervous system.However,mammalian forkhead transcription factors,silent mating type information regulation 2 homolog 1,mechanistic target of rapamycin,and autophagy can lead to cellular demise under some scenarios that may be dependent upon the precise cellular environment,warranting future studies to effectively translate these core pathways into successful clinical treatment strategies for neurodegenerative disorders.
文摘Objective: To demonstrate whether the expression of silent mating type information regulation 2 homolog 1 (SIRT1) affects the level of TGF-β1 and Smad3 in HEK293 cells through regulating mTOR. Methods: First, recombinant plasmids DNA (rSIRT1) and siRNA targeting SIRT1 were constructed which were transfected into Human Embryonic Kidney 293 cell (HEK293) cells, respectively. Then, the generation of intracellular ROS in cells was examined by flow cytometry using the oxidation-sensitive probe. Last, the expressions of TGF-β1, smad3, P53, mTOR, p-mTOR, LC3-I and LC3-II in cells were detected to observe the effect of SIRT1 on TGF-β1 Pathway by western blot analysis. Results: We demonstrated that overexpressing of SIRT1 may decrease TGF-β1 and Smad3 expression in HEK293 cells through regulating mTOR. In addition, the result is the opposite when SIRT1 was silent in HEK293 cells. Conclusions: SIRT1 is closely related to TGF-β1/Smad3 pathway that correlates with the regulation of mTOR and ROS generation and causes diabetic nephropathy. The available evidence implies that SIRT1 has great potential as a clinical target for the prevention and treatment of renal fibrosis in the development of DN.
基金supported by American Diabetes Association,American Heart Association,NIH NIEHS,NIH NIA,NIH NINDS,and NIH ARRA
文摘Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and affects all components of the central and peripheral nervous systems that can range from dementia to diabetic neuropathy.The mechanistic target of rapamycin(m TOR) is a promising agent for the development of novel regenerative strategies for the treatment of DM.m TOR and its related signaling pathways impact multiple metabolic parameters that include cellular metabolic homeostasis,insulin resistance,insulin secretion,stem cell proliferation and differentiation,pancreatic β-cell function,and programmed cell death with apoptosis and autophagy.m TOR is central element for the protein complexes m TOR Complex 1(m TORC1) and m TOR Complex 2(m TORC2) and is a critical component for a number of signaling pathways that involve phosphoinositide 3-kinase(PI 3-K),protein kinase B(Akt),AMP activated protein kinase(AMPK),silent mating type information regulation 2 homolog 1(Saccharomyces cerevisiae)(SIRT1),Wnt1 inducible signaling pathway protein 1(WISP1),and growth factors.As a result,m TOR represents an exciting target to offer new clinical avenues for the treatment of DM and the complications of this disease.Future studies directed to elucidate the delicate balance m TOR holds over cellular metabolism and the impact of its broad signaling pathways should foster the translation of these targets into effective clinical regimens for DM.