期刊文献+
共找到129篇文章
< 1 2 7 >
每页显示 20 50 100
Analysis of Mortars Used in Large-Scale Historic Masonry Walls: An Example from Northwestern Anatolia
1
作者 Ayşegül Ağan 《Journal of Civil Engineering and Architecture》 2025年第7期349-359,共11页
The article examines the physical,petrographic,mineralogical,and microstructural properties of mortar samples taken from a medieval structure located in northwestern Anatolia.Six mortar samples collected from the stru... The article examines the physical,petrographic,mineralogical,and microstructural properties of mortar samples taken from a medieval structure located in northwestern Anatolia.Six mortar samples collected from the structure were analyzed using advanced techniques such as acid loss,ignition loss,sieve analysis,physical analyses,polarizing and stereo microscope observations,SEM-EDS,XRD,and TGA.The mortars examined exhibit hydraulic properties.The hydraulic character of the mortars is mainly provided by brick dust and aggregates exhibiting pozzolanic activity.Acid loss and ignition loss analyses indicate that the binder-aggregate ratios vary between 1:1 and 1:3.The elemental and mineral composition of these mortars was analyzed using EDS and XRD,respectively.Analytical techniques revealed the presence of quartz,feldspar,muscovite,biotite,vaterite,and aragonite crystals.The results were supported by thermogravimetric analysis.This study provides important references for the formulation of compatible repair mortars to ensure the proper preservation of materials used in masonry walls of large-scale structures in similar geographical areas.It is intended that this study,based on the examination of mortar samples taken from the structure,will contribute to future research. 展开更多
关键词 masonry wall Historical structure building material MORTAR characterization
在线阅读 下载PDF
Life Cycle Assessment of Concrete Blocks Masonry:Processes Contribution Analysis
2
作者 Cristiane Bueno 《Journal of Civil Engineering and Architecture》 2025年第9期453-460,共8页
The purpose of this paper is to identify the processes with the highest contribution to potential environmental impacts in the life cycle of the masonry of concrete blocks by evaluating their main emissions contributi... The purpose of this paper is to identify the processes with the highest contribution to potential environmental impacts in the life cycle of the masonry of concrete blocks by evaluating their main emissions contributing to impact categories and identifying hotspots for environmental improvements.The research is based on the Life Cycle Assessment(LCA)study of non-load-bearing masonry of concrete blocks performed by the authors.The processes those have demonstrated higher contribution to environmental impacts were identified in the Life Cycle Impact Assessment(LCIA)phase and a detailed analysis was carried out on the main substances derived from these processes.The highest potential impacts in the life cycle of the concrete blocks masonry can be attributed mainly to emissions coming from the production of Portland cement,which explains the peak of impact potential on the blocks production stage,but also the significant impact potential in the use of the blocks for masonry construction,due to the use of cement mortar.The results of this LCA study are part of a major research on the comparative analysis of different typologies of non-load-bearing external walls,which aims to contribute to the creation of a life cycle database of major building systems,to be used by the environmental certification systems of buildings. 展开更多
关键词 Life cycle assessment masonry of concrete blocks contribution analysis sensitivity analysis
在线阅读 下载PDF
Evaluating aftershock-induced collapse mechanisms of the Fatih Büyük Mosque’s historic masonry minaret using digital twin simulation
3
作者 Cemile Duman Tunahan Aslan +1 位作者 Kemal Hacıefendioğlu Tekin Gültop 《Earthquake Engineering and Engineering Vibration》 2025年第4期1015-1034,共20页
This research focuses on the seismic responses of the historic masonry minarets,conducted through the creation of a digital twin model using finite element methods.The study initiated the development of a comprehensiv... This research focuses on the seismic responses of the historic masonry minarets,conducted through the creation of a digital twin model using finite element methods.The study initiated the development of a comprehensive model in the ANSYS Workbench,supplemented by operational modal analysis(OMA),to ascertain the dynamic characteristics of the minaret.The alignment of numerical and experimental frequency data was achieved using the response surface method(RSM)within ANSYS Workbench DesignXplorer.This process resulted in the establishment of a digital twin,accurately representing the physical minaret in a virtual environment.Blender^(■)software was then used to simulate the effects of two consecutive earthquakes in Türkiye that occurred on February 6,2023.The simulations highlighted the heightened susceptibility of the minaret,especially in its upper sections,to consecutive seismic activities,culminating in significant damage and collapse.This innovative approach,merging traditional engineering methods with a cutting-edge digital simulation,provides a profound insight into the seismic behavior of historical structures.The research underscores the importance of advanced seismic modeling for the effective preservation and resilience of architectural heritage sites against earthquake risks. 展开更多
关键词 finite element method digital twin technology operational modal analysis historical masonry minaret seismic simulation
在线阅读 下载PDF
Seismic fragility of unreinforced masonry buildings with bonded scrap tire rubber isolators under far-field and near-field earthquakes
4
作者 WANG Mingyang GAO Wenjun +1 位作者 LU Xilin SHI Weixing 《Journal of Southeast University(English Edition)》 2025年第2期127-139,共13页
To improve the seismic performance of unrein-forced masonry(URM)buildings in the Himalayan re-gions,including Western China,India,Nepal,and Paki-stan,a low-cost bonded scrap tire rubber isolator(BSTRI)is proposed,and ... To improve the seismic performance of unrein-forced masonry(URM)buildings in the Himalayan re-gions,including Western China,India,Nepal,and Paki-stan,a low-cost bonded scrap tire rubber isolator(BSTRI)is proposed,and a series of vertical compression and horizontal shear tests are conducted.Incremental dynamic analyses are conducted for five types of BSTRI-supported URM buildings subjected to 22 far-field and 28 near-field earthquake ground motions.The resulting fragility curves and probability of damage curves are presented and utilized to evaluate the damage states of these buildings.The results show that in the base-isolated(BI)URM buildings under seismic ground motion at a peak ground acceleration(PGA)of 1.102g,the probability of exceeding the collapse prevention threshold is less than 25%under far-field earthquake ground motions and 31%under near-field earthquake ground motions.Furthermore,the maximum average vulnerability index for the BI-URM buildings,which are designed to withstand rare earthquakes with 9°(PGA=0.632g),is 40.87%for far-field earthquake ground motions and 41.83%for near-field earthquake ground motions.Therefore,the adoption of BSTRIs can significantly reduce the collapse probability of URM buildings. 展开更多
关键词 unreinforced masonry(URM)buildings bonded scrap tire rubber isolator(BSTRI) seismic fragility damage evaluation far-field earthquake near-field earthquake
在线阅读 下载PDF
The contribution of steel wallposts to out-of-plane behavior of non-structural masonry walls
5
作者 Fooad Karimi Ghaleh Jough 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第1期243-262,共20页
For years,non-structural masonry walls have received little attention by code developers and professional engineers.Recently,significant efforts have been made to shed more light on out-of-plane(OOP)behavior of non-st... For years,non-structural masonry walls have received little attention by code developers and professional engineers.Recently,significant efforts have been made to shed more light on out-of-plane(OOP)behavior of non-structural masonry walls.In updated provisions of the Iranian seismic code,bed joint reinforcements(BJRs)and steel wallposts have been suggested for use.BJRs are horizontal reinforcements;steel wallposts are vertical truss-like elements intended to provide additional OOP restraints for a wall.The contribution of BJRs has previously been investigated by the authors.This study is devoted to investigating the contribution of steel wallposts to the OOP behavior of non-structural masonry walls.Using pre-validated 3D finite element(FE)models,the OOP behavior of 180 non-structural masonry walls with varying configurations and details are investigated.The OOP pressure-displacement curve,ultimate strength,the response modification factor,and the cracking pattern are among the results presented in this study.It is found that steel wallposts,especially those with higher rigidity,can improve the OOP strength of the walls.The contribution of wallposts in the case of shorter length walls and walls with an opening are more pronounced.Results also indicate that masonry walls with wallpost generally have smaller modification factors compared to similar walls without wallpost. 展开更多
关键词 masonry wall wallpost wind post bed joint reinforcement non-structural masonry wall out-of-plane behavior
在线阅读 下载PDF
Dry Stone Masonry Ductility During an Earthquake
6
作者 Antonio Morais 《Chinese Business Review》 2017年第6期303-307,共5页
Stone structures with dry joints, that is, without mortar, have shown a surprising behavior when earthquakes occur. An example of this behavior is the perennially of the so-called Inca wall in Peru, which despite havi... Stone structures with dry joints, that is, without mortar, have shown a surprising behavior when earthquakes occur. An example of this behavior is the perennially of the so-called Inca wall in Peru, which despite having suffered several earthquakes over time has remained stable without collapsing. This article presents the research carried out on stone masonry wails with dry joint, without mortar, subject to a seismic action. In order to understand the behavior of the masonry without mortar, it designs a Grid mode/ of Finite Elements. From the results, it is concluded that these walls with a certain thickness have ductility that allows them to withstand high displacement and rotation values, thus accommodating the movement of the earth subject to an earthquake. The individual stone blocks move relative to each other through rotations and displacements, which are processed in the free joints of any mortar. The joints work as energy sinks. The free movements in the joints dissipate the energy transmitted by the earthquake, not causing in this way the rupture of the stone blocks. The goal of this article is to understand the p importance of lack of mortar in the seismic behavior of the mansonry. 展开更多
关键词 dry masonry masonry structural performance numerical models resistant parameters earthquakebehavior seismic resistance
在线阅读 下载PDF
Experimental Analysis of Mechanical Behavior of Lintels with Murfor Reinforcement in Structural Masonry
7
作者 Fabiana Rezende Gihad Mohamad +2 位作者 Eduardo Rizzatti Larissa D. Kirchhof Elizabete Y.N. Bavastri 《Journal of Civil Engineering and Architecture》 2014年第5期573-580,共8页
The main goal of this study is analysis the mechanical behavior, failure mode and deflections of masonry beams lintels when subjected to concentrated loading. Walls were built using hollow clay blocks, using horizonta... The main goal of this study is analysis the mechanical behavior, failure mode and deflections of masonry beams lintels when subjected to concentrated loading. Walls were built using hollow clay blocks, using horizontal reinforcement on bed joint, and using of Murfor steel reinforcement. The conclusions of this work was: at middle of span, the load and displacement results present a linear behavior until failure; there two regions of failure, the region "A" presents the association of crushing and the region "B" shows the shear stress between block and mortar; the visual analysis of experimental tests shows the lost of adhesion between the mortar joint and blocks. It was not observed cracks on the mid-span produced by bending; it is possible to detach that the use of plane truss in Brazil as technological alternative is feasible and makes the masonry walls execution more rational, increasing the velocity of production. 展开更多
关键词 Structural masonry clay block LINTEL Murfor reinforcement masonry.
在线阅读 下载PDF
Investigation of Bed Joint Reinforcement Influence on Mechanical Properties of Masonry under Compression
8
作者 Lukasz Drobiec 《Journal of Civil Engineering and Architecture》 2013年第10期1229-1239,共11页
The results of investigations of compressed reinforced masonry walls subjected to axial compression are presented. Tests were carried out using specimens made of clay bricks and cement-lime mortar. As reinforcement, s... The results of investigations of compressed reinforced masonry walls subjected to axial compression are presented. Tests were carried out using specimens made of clay bricks and cement-lime mortar. As reinforcement, smooth and spiral twisted longitudinal rods, two types of structural wire mesh and truss type reinforcement were used. Two percentages of bed joint reinforcement, about 0.1% and 0.05% were applied. For each type of reinforcement, three masonry walls were tested. Additionally, nine unreinforced models were also tested. The main aim of the investigations presented is to determine the effect of different types of reinforcement on the load capacity and failure. Measurement of the strains of reinforcing bars permitted the recording of the strain level at the moment of crack appearance and also at the moment of failure. 展开更多
关键词 Reinforced masonry bed joint reinforcement compressed masonry.
在线阅读 下载PDF
Blast response of clay brick masonry unit walls unreinforced and reinforced with polyurea elastomer 被引量:8
9
作者 Gang Wu Chong Ji +4 位作者 Xin Wang Fu-yin Gao Chang-xiao Zhao Yu-jun Liu Gui-li Yang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第4期643-662,共20页
Clay brick masonry unit(CBMU) walls are widely used in building structures,and its damage and protection under explosion loads have been a matter of concern in the field of engineering protection.In this paper,a serie... Clay brick masonry unit(CBMU) walls are widely used in building structures,and its damage and protection under explosion loads have been a matter of concern in the field of engineering protection.In this paper,a series of full-scale experiments of the response characteristics of 24 cm CMBU walls unreinforced and reinforced with polyurea elastomer subjected to blast loading were carried out.Through setting 5.0 kg TNT charges at different stand-off distances,the damage characteristics of masonry walls at different scaled distances were obtained.The reinforcement effect of different polyurea coating thicknesses and methods on the blast resistance performance of masonry walls under single and repeated loads were also explored.Five failure grades were summarized according to the dynamic response features of masonry walls.Based on the stress wave propagation pattern in multi-media composite structures,the internal stress distribution of masonry walls were analyzed,and the division basis of the masonry walls’ failure grades was then quantified.Combined with Scanning Electron Microscope(SEM)images,the deformation characteristics of soft and hard segments of polyurea and effects of detonation products on microstructures were revealed respectively,which provides an important reference for the design and application of polyurea in the blast resistance of clay brick masonry walls. 展开更多
关键词 Clay brick masonry unit wall POLYUREA Blast loading Failure grade Reinforcement mechanism
在线阅读 下载PDF
Numerical Modeling of Response and Damage of Masonry Walls to Blast Loading 被引量:6
10
作者 DEEKS Andrew 《Transactions of Tianjin University》 EI CAS 2006年第B09期132-137,共6页
To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are govern... To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are governed by a damage variable. By using the proposed material model, damage and fragmentation of a typical masonry wall under blast loading at different scaled distances is calculated. The hazard level of the masonry wall to blast loading is evaluated by analyzing the numerical results. 展开更多
关键词 masonry blast loading FRAGMENTATION hazard level DAMAGE numerical modeling
在线阅读 下载PDF
Pseudo-dynamic tests on masonry residential buildings seismically retrofitted by precast steel reinforced concrete walls 被引量:4
11
作者 Li Wenfeng Wang Tao +2 位作者 Chen Xi Zhong Xiang Pan Peng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第3期587-597,共11页
A retrofitting technology using precast steel reinforced concrete(PSRC) panels is developed to improve the seismic performance of old masonry buildings. The PSRC panels are built up as an external PSRC wall system s... A retrofitting technology using precast steel reinforced concrete(PSRC) panels is developed to improve the seismic performance of old masonry buildings. The PSRC panels are built up as an external PSRC wall system surrounding the existing masonry building. The PSRC walls are well connected to the existing masonry building, which provides enough confinement to effectively improve the ductility, strength, and stiffenss of old masonry structures. The PSRC panels are prefabricated in a factory, significantly reducing the situ work and associated construction time. To demonstrate the feasibility and mechanical effectivenss of the proposed retrofitting system, a full-scale five-story specimen was constructed. The retrofitting process was completed within five weeks with very limited indoor operation. The specimen was then tested in the lateral direction, which could potentially suffer sigifnicant damage in a large earthquake. The technical feasibility, construction workability, and seismic performance were thoroughly demonstrated by a full-scale specimen construction and pseudo-dynamic tests. 展开更多
关键词 masonry buildings precast SRC panel seismic retrofit pseudo-dynamic test seismic performance
在线阅读 下载PDF
Shaking table tests and dynamic analyses of masonry wall buildings with frame-shear walls at lower stories 被引量:4
12
作者 Xiong Lihong David Xiong +1 位作者 Wu Ruifeng Xia Jingqian 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第3期271-283,共13页
This paper describes shaking table tests of three eight-story building models: all are masonry structures in the upper stories, with or without frame-shear walls of one- or two- stories at the bottom. The test result... This paper describes shaking table tests of three eight-story building models: all are masonry structures in the upper stories, with or without frame-shear walls of one- or two- stories at the bottom. The test results of damage characteristics and seismic responses are provided and compared. Then, nonlinear response analyses are conducted to examine the reliability of the dynamic analysis. Finally, many nonlinear response analyses are performed and it is concluded that for relatively hard sites under a certain lateral stiffness ratio (i.e., the ratio of the stiffness of the lowest upper masonry story to that of the frame- shear wall story), the masonry structure with one-story frame-shear wall at the bottom performs better than a structure built entirely of masonry, and a masonry structure with frame-shear wall of two stories performs better than with one-story frame- shear wall. In relatively soft soil conditions, all three structures have similar performane. In addition, some suggestions that could be helpful for design of masonry structures with ground story of frame-shear wall structure in seismic intensity region VII, such as the appropriate lateral stiffness ratio, shear force increase factor of the frame-shear wall story, and permissible maximum height of the building, are proposed. 展开更多
关键词 masonry structure soft story seismic performance shaking table test nonlinear time history analysis
在线阅读 下载PDF
A 3-D DDA damage analysis of brick masonry buildings under the impact of boulders in mountainous areas 被引量:4
13
作者 LIU Shu-guang LI Zhu-jun +3 位作者 ZHANG Hong WU Wei ZHONG Gui-hui LOU Sha 《Journal of Mountain Science》 SCIE CSCD 2018年第3期657-671,共15页
In mountainous areas, geological disasters carrying large boulders can cause severe damage to the widely used masonry buildings due to the high impact forces. To better understand the damage of brick masonry buildings... In mountainous areas, geological disasters carrying large boulders can cause severe damage to the widely used masonry buildings due to the high impact forces. To better understand the damage of brick masonry buildings under the impact of boulders, a "block-joint" model is developed using threedimensional discontinuous deformation analysis(3-D DDA) to simulate the behaviour of the "brick-mortar" structure. The "block-joint" model is used to capture not only the large displacement and deformation of individual bricks but also the large-scale sliding and opening along the mortar between the bricks. The linear elastic constitutive model is applied to account for the non-plastic deformation behaviour of brick materials. Furthermore, the mechanical characteristics of the mortar are represented using the Mohr-Coulomb and Drucker-Prager criteria. To propose safe structural design schemes and effective reinforcement for brick masonry buildings, seven construction techniques are considered, includingdifferent grades of brick and mortar, effective shear areas and reinforced members. The proposed 3-D DDA model is used to analyse the velocity distribution and the key point displacements of the brick masonry building under the impact of boulders. The results show that upgrading the brick and mortar, increasing the wall thickness, making full use of the wall thickness, and adding a circular beam and structural column are very effective approaches for improving the impact resistance of brick masonry buildings. 展开更多
关键词 Damage analysis Brick masonry building Boulder impact Brick-mortar structure Block-joint model Discontinuous deformation analysis
原文传递
Performance of masonry enclosure walls:lessons learned from recent earthquakes 被引量:3
14
作者 Romeu Silva Vicente Hugo Rodrigues +2 位作者 Humberto Varum Aníbal Costa Jos António Raimundo Mendes da Silva 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第1期23-34,共12页
This paper discusses the issue of performance requirements and construction criteria for masonry enclosure and infill walls. Vertical building enclosures in European countries are very often constituted by non-load-be... This paper discusses the issue of performance requirements and construction criteria for masonry enclosure and infill walls. Vertical building enclosures in European countries are very often constituted by non-load-bearing masonry walls, using horizontally perforated clay bricks. These walls are generally supported and confined by a reinforced concrete frame structure of columns and beams/slabs. Since these walls are commonly considered to be nonstructural elements and their influence on the structural response is ignored, their consideration in the design of structures as well as their connection to the adjacent structural elements is frequently negligent or insufficiently detailed. As a consequence, nonstructural elements, as for wall enclosures, are relatively sensitive to drift and acceleration demands when buildings are subjected to seismic actions. Many international standards and technical documents stress the need for design acceptability criteria for nonstructural elements, however they do not specifically indicate how to prevent collapse and severe cracking, and how to enhance the overall stability in the case of moderate to high seismic loading. Furthermore, a review of appropriate measures to improve enclosure wall performance and both in-plane and out-of-plane integrity under seismic actions is addressed. 展开更多
关键词 RC structures masonry enclosure walls infill walls IN-PLANE OUT-OF-PLANE CRACKING performanceimprovement
在线阅读 下载PDF
Numerical Derivation of Strain Rate Effects on Material Properties of Masonry with Solid Clay Bricks 被引量:4
15
作者 WEI Xueying HAO Hong 《Transactions of Tianjin University》 EI CAS 2006年第B09期147-151,共5页
In this paper, numerical method is used als. A typical unit of masonry is selected to serve merical model of RVE is established with detailed to study the strain rate effect on masonry materias a representative volume... In this paper, numerical method is used als. A typical unit of masonry is selected to serve merical model of RVE is established with detailed to study the strain rate effect on masonry materias a representative volume element (RVE). Nudistinctive modeling of brick and mortar with their respective dynamic material properties obtained from laboratory tests. The behavior of brick and mortar are characterized by a dynamic damage model that accounts for rate-sensitive and pressuredependent properties of masonry materials. Dynamic loads of different loading rates are applied to RVE. The equivalent homogenized uniaxial compressive strength, threshold strain and elastic modulus in three directions of the masonry are derived from the simulated responses of the RVE. The strain rate effect on the masonry material with clay brick and mortar, such as the dynamic increase factor (DIF) of the ultimate strength and elastic modulus as a function of strain rate are derived from the numerical results. 展开更多
关键词 masonry structure strain rate effects dynamic increase factor (DIF) elastic modulus ultimate strength
在线阅读 下载PDF
Experimental studies on behavior of fully grouted reinforced-concrete masonry shear walls 被引量:3
16
作者 Zhao Yan Wang Fenglai 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第4期743-757,共15页
An experimental study is conducted on fully grouted reinforced masonry shear walls (RMSWs) made from concrete blocks with a new configuration. Ten RMSWs are tested under reversed cyclic lateral load to investigate the... An experimental study is conducted on fully grouted reinforced masonry shear walls (RMSWs) made from concrete blocks with a new configuration. Ten RMSWs are tested under reversed cyclic lateral load to investigate the influence of different reinforcements and applied axial stress values on their seismic behavior. The results show that flexural strength increases with the applied axial stress, and shear strength dominated by diagonal cracking increases with both the amount of horizontal reinforcement and applied axial stress. Yield displacement, ductility, and energy dissipation capability can be improved substantially by increasing the amount of horizontal reinforcement. The critical parameters for the walls are derived from the experiment: displacement ductility values corresponding to 15% strength degradation of the walls reach up to 2.6 and 4.5 in the shear and flexure failure modes, respectively; stiffness values of flexure- and shear-dominated walls rapidly degrade to 17%–19% and 48%–57% of initial stiffness at 0.50 D<sub>max</sub> (displacement at peak load). The experiment suggests that RMSWs could be assigned a higher damping ratio (~14%) for collapse prevention design and a lower damping value (~7%) for a fully operational limit state or serviceability limit state. 展开更多
关键词 reinforced-concrete masonry shear wall shear strength DUCTILITY stiffness degradation energy dissipation equivalent viscous damping ratio
在线阅读 下载PDF
Development of seismic fragility curves for low-rise masonry infilled reinforced concrete buildings by a coefficient-based method 被引量:3
17
作者 Ray Kai Leung Su Chien-Liang Lee 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第2期319-332,共14页
This study presents a seismic fragility analysis and ultimate spectral displacement assessment of regular low-rise masonry infilled (MI) reinforced concrete (RC) buildings using a coefficient-based method. The coe... This study presents a seismic fragility analysis and ultimate spectral displacement assessment of regular low-rise masonry infilled (MI) reinforced concrete (RC) buildings using a coefficient-based method. The coefficient-based method does not require a complicated finite element analysis; instead, it is a simplifed procedure for assessing the spectral acceleration and displacement of buildings subjected to earthquakes. A regression analysis was first performed to obtain the best-fitting equations for the inter-story drift ratio (IDR) and period shift factor of low-rise MI RC buildings in response to the peak ground acceleration of earthquakes using published results obtained from shaking table tests. Both spectral acceleration- and spectral displacement-based fragility curves under various damage states (in terms of IDR) were then constructed using the coefficient-based method. Finally, the spectral displacements of low-rise MI RC buildings at the ultimate (or near- collapse) state obtained from this paper and the literature were compared. The simulation results indicate that the fragility curves obtained from this study and other previous work correspond well. Furthermore, most of the spectral displacements of low-rise MI RC buildings at the ultimate state from the literature fall within the bounded spectral displacements predicted by the coefficient-based method. 展开更多
关键词 SEISMIC fragility analysis masonry spectral displacement
在线阅读 下载PDF
Numerical simulation on the seismic performance of retrofitted masonry walls based on the combined finite-discrete element method 被引量:3
18
作者 Wu Biye Dai Junwu +2 位作者 Jin Huan Bai Wen Chen Bowen 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期777-805,共29页
Due to the long construction life,improper design methods,brittle material properties and poor construction techniques,most existing masonry structures do not perform well during earthquakes.The retrofitting method us... Due to the long construction life,improper design methods,brittle material properties and poor construction techniques,most existing masonry structures do not perform well during earthquakes.The retrofitting method using an external steel-meshed mortar layer is widely used to retrofit existing masonry buildings.Assessing the seismic performance of masonry walls reinforced by an external steel-meshed mortar layer reasonably and effectively is a difficult subject in the research field of masonry structures.Based on the combined finite-discrete elements method,the numerical models of retrofitted brick walls with four different masonry mortar strengths by an external mortar layer are established.The shear strength of mortar and the contact between the retrofitted mortar layer and the brick blocks are discussed in detail.The failure patterns and load-displacement curves of the retrofitted brick walls were obtained by applying low cycle reciprocating loads to the numerical model,and the bearing capacity and the failure mechanism of the retrofitted walls were obtained by comparing the failure patterns,ultimate bearing capacity,deformability and other aspects with the tests.This study provides a basis for improving the seismic strengthening design method of masonry structures and helps to better assess the seismic performance of masonry structures after retrofitting. 展开更多
关键词 masonry wall external steel-meshed mortar layer combined finite-discrete element method hysteretic curve ultimate bearing capacity
在线阅读 下载PDF
Seismic fragility reduction of an unreinforced masonry school building through retrofit using ferrocement overlay 被引量:2
19
作者 Sachin B Kadam Yogendra Singh Li Bing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第2期397-412,共16页
The Himalayan region is one of the major seismic areas in the world.However,similar to many other seismically active locations,there are substantial numbers of unreinforced masonry(URM)buildings;the majority of which ... The Himalayan region is one of the major seismic areas in the world.However,similar to many other seismically active locations,there are substantial numbers of unreinforced masonry(URM)buildings;the majority of which have not been designed for seismic loads.Past seismic events have shown that such buildings are highly vulnerable to earthquakes.Retrofitting of these URM buildings is an important concern in earthquake mitigation programs.Most government school buildings in rural areas of northern India are constructed of unreinforced masonry.These school buildings are socially important structures and serve as a crucial resource for rehabilitation during any disaster.The effectiveness of ferrocement(FC)to create a URM-FC composite is described in this study by estimating the performance and fragility of a URM school building before and after a retrofit.Analytical models,based on the equivalent frame method,are developed and used for nonlinear static analysis to estimate the enhancement in capacity.The capacity enhancement due to retrofitting is presented in terms of the maximum PGA sustained and damage probabilities at the expected level of earthquake hazard. 展开更多
关键词 unreinforced masonry school building PUSHOVER analysis seismic FRAGILITY
在线阅读 下载PDF
Experimental and numerical investigation on penetration of clay masonry by small high-speed projectile 被引量:2
20
作者 Cheng-zong Wang Ai-jun Chen +3 位作者 Zi-qing Li Chao-an Gong Shu Wang Wen-min Yan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1514-1530,共17页
This study investigates a kind of masonry consisting of clay-fired brick(f_(c)=10 MPa;r=1:38 g/cm^(3))and mortar(f_(c)=10 MPa;r=1:8 g/cm^(3)).Clay-fired brick masonry connotes a traditional construction material of ol... This study investigates a kind of masonry consisting of clay-fired brick(f_(c)=10 MPa;r=1:38 g/cm^(3))and mortar(f_(c)=10 MPa;r=1:8 g/cm^(3)).Clay-fired brick masonry connotes a traditional construction material of old architecture and public buildings.We carried out penetration experiments in which four clay-fired brick walls employing two different patterns were subjected to impact from small high-speed projectile,i.e.12.7 mm armor-piercing explosive incendiary projectile and material tests in which the static and dynamic compressive strengths of clay-fired brick and mortar were determined by quasi-static and SHPB(Split Hopkinson Pressure Bar)tests.The experimental data include hit and exit velocities,damage configuration of clay brick masonry and mechanical properties of material at low and high strain rates,though which influence of thickness and bonding patterns of wall on kinetic loss of bullet,the damage patterns of masonry observed experimentally and dynamic increase of material strengths are analyzed.To keep minimum boundary inconsistency with reality,full 3D detailed finite element model consisting of two different material is established.Sharing common nodes and employing automatic tiebreak contact are combined to reduce computational time usage of large-scale model.For description of clay-fired brick and mortar RiedeleHiermaiereThoma(RHT)material model is employed.Material parameter set is derived based on experimental data,available literature and engineering assumptions.The numerical simulations study the mesh resolution dependency of material model,reproduce the crucial phenomena of masonry in experiment acceptably and offer more time-resolved insight into motion of bullet in the process of penetration.The feasibility of means of constructing finite element model and applying RHT model to the masonry herein and analogous constructions is explored through numerical investigation. 展开更多
关键词 Clay-fired brick Penetration of masonry RHT model Impact High strain rate
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部