期刊文献+
共找到11,570篇文章
< 1 2 250 >
每页显示 20 50 100
Novel multi-agent action masked deep reinforcement learning for general industrial assembly lines balancing problems
1
作者 Ali M.Ali Luca Tirel Hashim A.Hashim 《Journal of Automation and Intelligence》 2025年第4期299-311,共13页
Efficient planning of activities is essential for modern industrial assembly lines to uphold manufacturing standards,prevent project constraint violations,and achieve cost-effective operations.While exact solutions to... Efficient planning of activities is essential for modern industrial assembly lines to uphold manufacturing standards,prevent project constraint violations,and achieve cost-effective operations.While exact solutions to such challenges can be obtained through Integer Programming(IP),the dependence of the search space on input parameters often makes IP computationally infeasible for large-scale scenarios.Heuristic methods,such as Genetic Algorithms,can also be applied,but they frequently produce suboptimal solutions in extensive cases.This paper introduces a novel mathematical model of a generic industrial assembly line formulated as a Markov Decision Process(MDP),without imposing assumptions on the type of assembly line a notable distinction from most existing models.The proposed model is employed to create a virtual environment for training Deep Reinforcement Learning(DRL)agents to optimize task and resource scheduling.To enhance the efficiency of agent training,the paper proposes two innovative tools.The first is an action-masking technique,which ensures the agent selects only feasible actions,thereby reducing training time.The second is a multi-agent approach,where each workstation is managed by an individual agent,as a result,the state and action spaces were reduced.A centralized training framework with decentralized execution is adopted,offering a scalable learning architecture for optimizing industrial assembly lines.This framework allows the agents to learn offline and subsequently provide real-time solutions during operations by leveraging a neural network that maps the current factory state to the optimal action.The effectiveness of the proposed scheme is validated through numerical simulations,demonstrating significantly faster convergence to the optimal solution compared to a comparable model-based approach. 展开更多
关键词 Artificial intelligence in industrial engineering Autonomous decision making Distributed multi-agent learning Reinforcement learning
在线阅读 下载PDF
基于MAS(Multi-AgentSystem)的多机器人系统:协作多机器人学发展的一个重要方向 被引量:20
2
作者 陈忠泽 林良明 颜国正 《机器人》 EI CSCD 北大核心 2001年第4期368-373,共6页
机器人的应用方式正在由部件式单元应用向系统式应用方向发展 .这是实际应用的需要 ,也是技术发展的必然趋势 ;相关技术如计算机网络技术的发展也为它的实现提供了相应支持 .多机器人协作理论问题必然也已经成为机器人学研究的一个热点 ... 机器人的应用方式正在由部件式单元应用向系统式应用方向发展 .这是实际应用的需要 ,也是技术发展的必然趋势 ;相关技术如计算机网络技术的发展也为它的实现提供了相应支持 .多机器人协作理论问题必然也已经成为机器人学研究的一个热点 ,其中 ,分布式人工智能 ( DAI)中的多智能体 (代理 )系统 ( MAS:Multi-agentSystem)理论已引起多机器人协作理论研究者的关注 .本文即在揭示协作多机器人系统与 MAS的内在联系的基础上 ,指出基于 MAS的协作多机器人系统是协作多机器人学发展的一个重要方向 . 展开更多
关键词 多机器人系统 多智能体系系统 协作多机器人学 mas 人工智能
在线阅读 下载PDF
基于MAS的梯田非粮化农户行为决策机制与模拟
3
作者 后莉 裴婷婷 +2 位作者 陈英 谢保鹏 席瑞云 《农业资源与环境学报》 北大核心 2026年第1期104-117,共14页
为探究农户梯田非粮化行为运行逻辑,本研究选取3个典型研究区:果粮复合型(区1)、粮作撂荒混合型(区2)、苹果主导型(区3),基于多智能体系统(MAS),结合实地调研和多情景模拟,探究了甘肃陇中陇东地区农户在梯田利用决策中的行为机制。结果... 为探究农户梯田非粮化行为运行逻辑,本研究选取3个典型研究区:果粮复合型(区1)、粮作撂荒混合型(区2)、苹果主导型(区3),基于多智能体系统(MAS),结合实地调研和多情景模拟,探究了甘肃陇中陇东地区农户在梯田利用决策中的行为机制。结果表明:农户梯田利用行为决策的内在机制是以追求经济效益最大化为主要目标,由家庭资源禀赋产生更强的限制和指导作用,外部自然、社会、政策环境提供额外激励或约束的过程,其中,三个研究区内外部环境变量组合权重比值分别为:0.486∶0.514、0.575∶0.425和0.538∶0.462。陇中陇东地区农户梯田利用决策行为呈现以非粮利用为主导、粮食生产为辅的趋势,三个研究区非粮化利用最终决策值分别为0.852、0.842、0.942。研究区农户对各梯田利用方式感知度、反馈值、决策值及主要环境变量具有空间异质性。多情景模拟中,粮食生产激励政策对提高农户粮食作物决策值具有显著正向影响,非粮化市场饱和能有效抑制经济作物型非粮化,吸引劳动力回流可有效缓解撂荒现象。最后,提出针对性的农业非粮化格局优化策略,为促进农村可持续发展提供参考。 展开更多
关键词 梯田非粮化 农户 行为决策 多智能体系统(mas) 陇中陇东地区
在线阅读 下载PDF
Distributed optimal formation control of heterogeneous Euler–Lagrange multi-agent systems
4
作者 Mengmeng Duan Fengping Huang +2 位作者 Shanying Zhu Ziwen Yang Cailian Chen 《Journal of Automation and Intelligence》 2025年第4期282-290,共9页
In this paper,the distributed optimal formation control problem of heterogeneous Euler–Lagrange multi-agent systems with generic formation constraints and inequality constraints is investigated.Based on the primal–d... In this paper,the distributed optimal formation control problem of heterogeneous Euler–Lagrange multi-agent systems with generic formation constraints and inequality constraints is investigated.Based on the primal–dual dynamics and the adaptive control technique,a distributed optimal formation controller consists of a velocity reference signal generator and a velocity tracking controller is proposed.By using the optimality condition,the relationship between the equilibrium point of the closed-loop system and the optimal solution of the optimization problem is established.Then,by utilizing Lyapunov stability analysis,it is rigorously proved that the optimal formation is reached with the proposed controller.Lastly,simulation examples are provided to substantiate the theoretical results. 展开更多
关键词 Formation control Distributed optimization multi-agent systems
在线阅读 下载PDF
Group formation tracking for heterogeneous linear multi-agent systems under switching topologies
5
作者 Shiyu Zhou Dong Sun 《Journal of Automation and Intelligence》 2025年第2期108-114,共7页
This article investigates the time-varying output group formation tracking control(GFTC)problem for heterogeneous multi-agent systems(HMASs)under switching topologies.The objective is to design a distributed control s... This article investigates the time-varying output group formation tracking control(GFTC)problem for heterogeneous multi-agent systems(HMASs)under switching topologies.The objective is to design a distributed control strategy that enables the outputs of the followers to form the desired sub-formations and track the outputs of the leader in each subgroup.Firstly,novel distributed observers are developed to estimate the states of the leaders under switching topologies.Then,GFTC protocols are designed based on the proposed observers.It is shown that with the distributed protocol,the GFTC problem for HMASs under switching topologies is solved if the average dwell time associated with the switching topologies is larger than a fixed threshold.Finally,an example is provided to illustrate the effectiveness of the proposed control strategy. 展开更多
关键词 Formation tracking Group division Switching topologies multi-agent systems
在线阅读 下载PDF
Recent Advancement in Formation Control of Multi-Agent Systems:A Review
6
作者 Aamir Farooq Zhengrong Xiang +1 位作者 Wen-Jer Chang Muhammad Shamrooz Aslam 《Computers, Materials & Continua》 2025年第6期3623-3674,共52页
Formation control in multi-agent systems has become a critical area of interest due to its wide-ranging applications in robotics,autonomous transportation,and surveillance.While various studies have explored distribut... Formation control in multi-agent systems has become a critical area of interest due to its wide-ranging applications in robotics,autonomous transportation,and surveillance.While various studies have explored distributed cooperative control,this review focuses on the theoretical foundations and recent developments in formation control strategies.The paper categorizes and analyzes key formation types,including formation maintenance,group or cluster formation,bipartite formations,event-triggered formations,finite-time convergence,and constrained formations.A significant portion of the review addresses formation control under constrained dynamics,presenting both modelbased and model-free approaches that consider practical limitations such as actuator bounds,communication delays,and nonholonomic constraints.Additionally,the paper discusses emerging trends,including the integration of eventdriven mechanisms and AI-enhanced coordination strategies.Comparative evaluations highlight the trade-offs among various methodologies regarding scalability,robustness,and real-world feasibility.Practical implementations are reviewed across diverse platforms,and the review identifies the current achievements and unresolved challenges in the field.The paper concludes by outlining promising research directions,such as adaptive control for dynamic environments,energy-efficient coordination,and using learning-based control under uncertainty.This review synthesizes the current state of the art and provides a road map for future investigation,making it a valuable reference for researchers and practitioners aiming to advance formation control in multi-agent systems. 展开更多
关键词 Cooperative control multi-agent systems formation control formation containment group formation bipartite formation
在线阅读 下载PDF
Defending Against Jamming and Interference for Internet of UAVs Using Cooperative Multi-Agent Reinforcement Learning with Mutual Information
7
作者 Lin Yan Wu Zhijuan +4 位作者 Peng Nuoheng Zhao Tianyu Zhang Yijin Shu Feng Li Jun 《China Communications》 2025年第5期220-237,共18页
The Internet of Unmanned Aerial Vehicles(I-UAVs)is expected to execute latency-sensitive tasks,but limited by co-channel interference and malicious jamming.In the face of unknown prior environmental knowledge,defendin... The Internet of Unmanned Aerial Vehicles(I-UAVs)is expected to execute latency-sensitive tasks,but limited by co-channel interference and malicious jamming.In the face of unknown prior environmental knowledge,defending against jamming and interference through spectrum allocation becomes challenging,especially when each UAV pair makes decisions independently.In this paper,we propose a cooperative multi-agent reinforcement learning(MARL)-based anti-jamming framework for I-UAVs,enabling UAV pairs to learn their own policies cooperatively.Specifically,we first model the problem as a modelfree multi-agent Markov decision process(MAMDP)to maximize the long-term expected system throughput.Then,for improving the exploration of the optimal policy,we resort to optimizing a MARL objective function with a mutual-information(MI)regularizer between states and actions,which can dynamically assign the probability for actions frequently used by the optimal policy.Next,through sharing their current channel selections and local learning experience(their soft Q-values),the UAV pairs can learn their own policies cooperatively relying on only preceding observed information and predicting others’actions.Our simulation results show that for both sweep jamming and Markov jamming patterns,the proposed scheme outperforms the benchmarkers in terms of throughput,convergence and stability for different numbers of jammers,channels and UAV pairs. 展开更多
关键词 anti-jamming communication internet of UAVs multi-agent reinforcement learning spectrum allocation
在线阅读 下载PDF
Observer-based prescribed-time time-varying output formation-containment control of heterogeneous multi-agent systems
8
作者 Haiyang Hu Tao Li +3 位作者 Xiaowen Zhao Yuanmei Wang Jialong Tian Zijie Jiang 《Chinese Physics B》 2025年第10期366-375,共10页
This paper investigates the observer-based prescribed-time time-varying output formation-containment(PT-TV-OFC)control problem for heterogeneous multi-agent systems in which the different agents have different state d... This paper investigates the observer-based prescribed-time time-varying output formation-containment(PT-TV-OFC)control problem for heterogeneous multi-agent systems in which the different agents have different state dimensions.The system comprises one tracking leader,multiple formation leaders,and followers,where two types of leaders are used to generate a reference trajectory for movement and achieve specific formation,respectively.Firstly,a prescribed-time dynamics observer is constructed for the formation leaders to estimate the tracking leader's dynamic model and state.On this basis,a prescribed-time control protocol is designed for the formation leaders to achieve time-varying output formation.Then,a prescribed-time convex hull observer is designed for the followers to estimate information regarding the convex hull formed by the formation leaders.Using the estimated convex hull information,a prescribed-time containment control protocol is designed to ensure the followers converge into the convex hull.Furthermore,using Lyapunov stability theory,the stability of systems is proved in detail,which implies that the heterogeneous multi-agent systems can achieve PT-TV-OFC control.Finally,numerical simulations validate the feasibility of the theoretical results. 展开更多
关键词 heterogeneous multi-agent systems prescribed-time control observers time-varying output formation-containment control
原文传递
Multi-Agent Reinforcement Learning for Moving Target Defense Temporal Decision-Making Approach Based on Stackelberg-FlipIt Games
9
作者 Rongbo Sun Jinlong Fei +1 位作者 Yuefei Zhu Zhongyu Guo 《Computers, Materials & Continua》 2025年第8期3765-3786,共22页
Moving Target Defense(MTD)necessitates scientifically effective decision-making methodologies for defensive technology implementation.While most MTD decision studies focus on accurately identifying optimal strategies,... Moving Target Defense(MTD)necessitates scientifically effective decision-making methodologies for defensive technology implementation.While most MTD decision studies focus on accurately identifying optimal strategies,the issue of optimal defense timing remains underexplored.Current default approaches—periodic or overly frequent MTD triggers—lead to suboptimal trade-offs among system security,performance,and cost.The timing of MTD strategy activation critically impacts both defensive efficacy and operational overhead,yet existing frameworks inadequately address this temporal dimension.To bridge this gap,this paper proposes a Stackelberg-FlipIt game model that formalizes asymmetric cyber conflicts as alternating control over attack surfaces,thereby capturing the dynamic security state evolution of MTD systems.We introduce a belief factor to quantify information asymmetry during adversarial interactions,enhancing the precision of MTD trigger timing.Leveraging this game-theoretic foundation,we employMulti-Agent Reinforcement Learning(MARL)to derive adaptive temporal strategies,optimized via a novel four-dimensional reward function that holistically balances security,performance,cost,and timing.Experimental validation using IP addressmutation against scanning attacks demonstrates stable strategy convergence and accelerated defense response,significantly improving cybersecurity affordability and effectiveness. 展开更多
关键词 Cyber security moving target defense multi-agent reinforcement learning security metrics game theory
在线阅读 下载PDF
Optimal condition analysis of target localization using multi-agents with uncertain positions
10
作者 Yi Hou Ning Hao +2 位作者 Fenghua He Chen Xie Yu Yao 《Control Theory and Technology》 2025年第1期131-144,共14页
This paper delves into the problem of optimal placement conditions for a group of agents collaboratively localizing a target using range-only or bearing-only measurements.The challenge in this study stems from the unc... This paper delves into the problem of optimal placement conditions for a group of agents collaboratively localizing a target using range-only or bearing-only measurements.The challenge in this study stems from the uncertainty associated with the positions of the agents,which may experience drift or disturbances during the target localization process.Initially,we derive the Cramer-Rao lower bound(CRLB)of the target position as the primary analytical metric.Subsequently,we establish the necessary and sufficient conditions for the optimal placement of agents.Based on these conditions,we analyze the maximal allowable agent position error for an expected mean squared error(MSE),providing valuable guidance for the selection of agent positioning sensors.The analytical findings are further validated through simulation experiments. 展开更多
关键词 Cramer-Rao lower bound(CRLB) Target localization Uncertain sensor position multi-agent systems
原文传递
Formation-containment control for nonholonomic multi-agent systems with a desired trajectory constraint
11
作者 GU Xueqiang LU Lina +1 位作者 XIANG Fengtao ZHANG Wanpeng 《Journal of Systems Engineering and Electronics》 2025年第1期256-268,共13页
This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired traje... This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired trajectory. Input the fixed time-varying formation template to the leader and start executing, this process also needs to track the desired trajectory, and the follower needs to converge to the convex hull that the leader crosses. Firstly, the dynamic models of nonholonomic systems are linearized to second-order dynamics. Then, based on the desired trajectory and formation template, the FC control protocols are proposed. Sufficient conditions to achieve FC are introduced and an algorithm is proposed to resolve the control parameters by solving an algebraic Riccati equation. The system is demonstrated to achieve FC, with the average position and velocity of the leaders converging asymptotically to the desired trajectory. Finally, the theoretical achievements are verified in simulations by a multi-agent system composed of virtual human individuals. 展开更多
关键词 multi-agent systems nonholonomic dynamics formation-containment(FC)control desired trajectory constrains
在线阅读 下载PDF
Adaptive multi-agent reinforcement learning for dynamic pricing and distributed energy management in virtual power plant networks
12
作者 Jian-Dong Yao Wen-Bin Hao +3 位作者 Zhi-Gao Meng Bo Xie Jian-Hua Chen Jia-Qi Wei 《Journal of Electronic Science and Technology》 2025年第1期35-59,共25页
This paper presents a novel approach to dynamic pricing and distributed energy management in virtual power plant(VPP)networks using multi-agent reinforcement learning(MARL).As the energy landscape evolves towards grea... This paper presents a novel approach to dynamic pricing and distributed energy management in virtual power plant(VPP)networks using multi-agent reinforcement learning(MARL).As the energy landscape evolves towards greater decentralization and renewable integration,traditional optimization methods struggle to address the inherent complexities and uncertainties.Our proposed MARL framework enables adaptive,decentralized decision-making for both the distribution system operator and individual VPPs,optimizing economic efficiency while maintaining grid stability.We formulate the problem as a Markov decision process and develop a custom MARL algorithm that leverages actor-critic architectures and experience replay.Extensive simulations across diverse scenarios demonstrate that our approach consistently outperforms baseline methods,including Stackelberg game models and model predictive control,achieving an 18.73%reduction in costs and a 22.46%increase in VPP profits.The MARL framework shows particular strength in scenarios with high renewable energy penetration,where it improves system performance by 11.95%compared with traditional methods.Furthermore,our approach demonstrates superior adaptability to unexpected events and mis-predictions,highlighting its potential for real-world implementation. 展开更多
关键词 Distributed energy management Dynamic pricing multi-agent reinforcement learning Renewable energy integration Virtual power plants
在线阅读 下载PDF
Computational Design of Interval Type-2 Fuzzy Control for Formation and Containment of Multi-Agent Systems with Collision Avoidance Capability
13
作者 Yann-Horng Lin Wen-Jer Chang +2 位作者 Yi-Chen Lee Muhammad Shamrooz Aslam Cheung-Chieh Ku 《Computer Modeling in Engineering & Sciences》 2025年第8期2231-2262,共32页
An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and coll... An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and collision avoidance.However,inherent nonlinearities and uncertainties present in practical control systems contribute to the challenge of achieving precise control performance.Based on the IT-2 Takagi-Sugeno Fuzzy Model(T-SFM),the fuzzy control approach can offer a more effective solution for NMASs facing uncertainties.Unlike existing control methods for NMASs,the Formation and Containment(F-and-C)control problem with collision avoidance capability under uncertainties based on the IT-2 T-SFM is discussed for the first time.Moreover,an IT-2 fuzzy tracking control approach is proposed to solve the formation task for leaders in NMASs without requiring communication.This control scheme makes the design process of the IT-2 fuzzy Formation Controller(FC)more straightforward and effective.According to the communication interaction protocol,the IT-2 Containment Controller(CC)design approach is proposed for followers to ensure convergence into the region defined by the leaders.Leveraging the IT-2 T-SFM representation,the analysis methods developed for linear Multi-Agent Systems(MASs)are successfully extended to perform containment analysis without requiring the additional assumptions imposed in existing research.Notably,the IT-2 fuzzy tracking controller can also be applied in collision avoidance situations to track the desired trajectories calculated by the avoidance algorithm under the Artificial Potential Field(APF).Benefiting from the combination of vortex and source APFs,the leaders can properly adjust the system dynamics to prevent potential collision risk.Integrating the fuzzy theory and APFs avoidance algorithm,an IT-2 fuzzy controller design approach is proposed to achieve the F-and-C purposewhile ensuring collision avoidance capability.Finally,amulti-ship simulation is conducted to validate the feasibility and effectiveness of the designed IT-2 fuzzy controller. 展开更多
关键词 Interval type-2 Takagi-Sugeno fuzzy model multi-agent systems formation and containment control fuzzy collision avoidance artificial potential field
在线阅读 下载PDF
MARCS:A Mobile Crowdsensing Framework Based on Data Shapley Value Enabled Multi-Agent Deep Reinforcement Learning
14
作者 Yiqin Wang Yufeng Wang +1 位作者 Jianhua Ma Qun Jin 《Computers, Materials & Continua》 2025年第3期4431-4449,共19页
Opportunistic mobile crowdsensing(MCS)non-intrusively exploits human mobility trajectories,and the participants’smart devices as sensors have become promising paradigms for various urban data acquisition tasks.Howeve... Opportunistic mobile crowdsensing(MCS)non-intrusively exploits human mobility trajectories,and the participants’smart devices as sensors have become promising paradigms for various urban data acquisition tasks.However,in practice,opportunistic MCS has several challenges from both the perspectives of MCS participants and the data platform.On the one hand,participants face uncertainties in conducting MCS tasks,including their mobility and implicit interactions among participants,and participants’economic returns given by the MCS data platform are determined by not only their own actions but also other participants’strategic actions.On the other hand,the platform can only observe the participants’uploaded sensing data that depends on the unknown effort/action exerted by participants to the platform,while,for optimizing its overall objective,the platform needs to properly reward certain participants for incentivizing them to provide high-quality data.To address the challenge of balancing individual incentives and platform objectives in MCS,this paper proposes MARCS,an online sensing policy based on multi-agent deep reinforcement learning(MADRL)with centralized training and decentralized execution(CTDE).Specifically,the interactions between MCS participants and the data platform are modeled as a partially observable Markov game,where participants,acting as agents,use DRL-based policies to make decisions based on local observations,such as task trajectories and platform payments.To align individual and platform goals effectively,the platform leverages Shapley value to estimate the contribution of each participant’s sensed data,using these estimates as immediate rewards to guide agent training.The experimental results on real mobility trajectory datasets indicate that the revenue of MARCS reaches almost 35%,53%,and 100%higher than DDPG,Actor-Critic,and model predictive control(MPC)respectively on the participant side and similar results on the platform side,which show superior performance compared to baselines. 展开更多
关键词 Mobile crowdsensing online data acquisition data Shapley value multi-agent deep reinforcement learning centralized training and decentralized execution(CTDE)
在线阅读 下载PDF
Application of a Multi-Agent System (MAS) to Rational Credit Rating
15
作者 YU Fan QIN Zheng LI Shi-ning 《International Journal of Plant Engineering and Management》 2006年第4期234-241,共8页
A Multi-Agent System ( MAS ) is a promising approach to build complex system. This paper introduces the research of the Inner-Enterprise Credit Rating MAS ( IECRMAS). To raise the rating accuracy, we not only cons... A Multi-Agent System ( MAS ) is a promising approach to build complex system. This paper introduces the research of the Inner-Enterprise Credit Rating MAS ( IECRMAS). To raise the rating accuracy, we not only consider the rating-target's information, but also focus on the evaluators' feature information and propose the rational rating-group formation algorithm based on an anti-bias measurement of the group. We also propose the rational rating individual, which consists of the evaluator and the assistant rating agent. A rational group formation protocol is designed to coordinate autonomous agents to perform the rating job. 展开更多
关键词 multi-agent system rational group formation credit rating
在线阅读 下载PDF
MULTI-AGENT BASED DISTRIBUTED MANUFACTURING EXECUTION SYSTEM MODEL 被引量:1
16
作者 杨浩 朱剑英 周娜 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第1期16-22,共7页
A multi-agent based manufacturing execution system (MES) model is presented. It is open, modula-rized, distributed, configurable, integratable and maintainable. By analyzing the MES domain in manufacturing systems, th... A multi-agent based manufacturing execution system (MES) model is presented. It is open, modula-rized, distributed, configurable, integratable and maintainable. By analyzing the MES domain in manufacturing systems, this paper proposes a multi-agent based MES model and analyzes the partitioned functions of MES in the model using unified modeling language (UML) diagrams, and establishes the ongoing implemented MES architecture. This MES can be facilely integrated with the enterprise resource planning (ERP), the floor control system (FCS), and the other manufacturing applications. 展开更多
关键词 MES mas UML ERP modeling INTEGRATION
在线阅读 下载PDF
急性肺栓塞患者外周血循环ACE2和Mas表达及其对内皮损伤的影响
17
作者 许东明 刘昶 +1 位作者 周杰 肖红丽 《西部医学》 2025年第1期48-53,共6页
目的探究急性肺栓塞(APE)患者治疗前后外周血循环内皮细胞(CECs)凋亡数量及ACE2、Mas蛋白表达变化。方法收集2023年1月—2023年10月本院急诊科接收的APE患者82例,根据疾病严重程度将其分为中高危组42例、低危组40例,另选取40例于本院体... 目的探究急性肺栓塞(APE)患者治疗前后外周血循环内皮细胞(CECs)凋亡数量及ACE2、Mas蛋白表达变化。方法收集2023年1月—2023年10月本院急诊科接收的APE患者82例,根据疾病严重程度将其分为中高危组42例、低危组40例,另选取40例于本院体检的健康受试者为对照组。取APE患者入院时、出院时及健康受试者外周血。流式细胞术分析APE患者及健康受试者CECs数量、凋亡水平。Western blotting检测CECs内凋亡蛋白Bax、Bcl2、caspase 3/9水平变化及蛋白ACE2、Mas表达变化。结果入院时中高危组、低危组患者入院时外周血CECs数量及凋亡率均显著高于对照组,且中高危组CECs数量及凋亡率均显著高于低危组水平(P<0.05)。出院时中高危组及低危组患者CECs数量及凋亡率均显著低于入院时水平(P<0.05)。入院时中高危组、低危组患者CECs中Bax/Bcl2蛋白比值、切割caspase 3/9蛋白水平显著高于对照组,且中高危组这些指标水平显著高于低危组,同时出院时中高危组、低危组患者CECs上述指标水平显著低于入院时水平(P<0.05)。进一步发现入院时中高危组、低危组CECs中ACE2、Mas水平显著低于对照组,且中高危组上述指标水平显著低于低危组(P<0.05)。结论APE患者外周血CECs数量及凋亡率显著增加,治疗后CECs数量及凋亡率减少,提示CECs可能与APE发病及预后相关,同时ACE2-Mas轴可能参与调控CECs凋亡。 展开更多
关键词 急性肺栓塞 循环内皮细胞 凋亡 血管紧张素转化酶2 mas
暂未订购
“大数据、大模型、大计算”全新范式与舆情精准研判:理论和Multi-Agent实证两个向度的探索 被引量:1
18
作者 丁晓蔚 戚庆燕 刘梓航 《传媒观察》 2025年第2期28-42,共15页
本文探讨了“大数据、大模型、大计算”全新范式在舆情精准研判中的相关理论和应用实证。理论部分论述了该范式的概念和所涉关系,分析了其与Multi-Agent多智能体系统之间的联系。实证部分基于此范式在舆情研判中的应用案例,提出Multi-Ag... 本文探讨了“大数据、大模型、大计算”全新范式在舆情精准研判中的相关理论和应用实证。理论部分论述了该范式的概念和所涉关系,分析了其与Multi-Agent多智能体系统之间的联系。实证部分基于此范式在舆情研判中的应用案例,提出Multi-Agent多智能体协作驱动的舆情分析框架,构建全新的舆情研判流程,能有效应对动态变化的舆情环境。采用Multi-Agent对热点事件是否上热搜进行预测和检验,并与传统大模型和BERT模型进行对比分析。研究表明:Multi-Agent在应对涉及公众情感共鸣和社会性广泛事件时具有显著优势,能通过多角度的综合评估提升预测精度和鲁棒性。通过实证研究验证了Multi-Agent在舆情监测中的重要价值,为未来舆情精准研判提供了新的技术路径。 展开更多
关键词 “大数据、大模型、大计算”全新范式 multi-agent多智能体系统 舆情精准研判
原文传递
耐力运动通过激活Mas/PKA/CREB/UCP2信号通路减轻大鼠脑缺血/再灌注损伤
19
作者 吴会生 吴华勋 +2 位作者 代文龙 程俊 郭培培 《中国药理学通报》 北大核心 2025年第6期1079-1085,共7页
目的观察耐力运动(endurance exercise,EE)对脑缺血/再灌注损伤(cerebral ischemia/reperfusion injury,CI/RI)大鼠的影响,并探讨其与Mas信号通路的关系。方法将成年的雄性SD大鼠72只随机分为4组(n=18):假手术组(Sham组)、脑缺血模型组(... 目的观察耐力运动(endurance exercise,EE)对脑缺血/再灌注损伤(cerebral ischemia/reperfusion injury,CI/RI)大鼠的影响,并探讨其与Mas信号通路的关系。方法将成年的雄性SD大鼠72只随机分为4组(n=18):假手术组(Sham组)、脑缺血模型组(Model组)、EE组(E组)和Mas受体拮抗剂A779预处理组(A组)。采用大脑中动脉阻断法建立CI/RI模型。E组和A组大鼠在模型制备前均规律跑步4周,A组还在模型制备前30 min注射A779。再灌注3 d后,通过神经功能缺陷评分(NDS)和Morris水迷宫评价大鼠认知功能。静脉注射伊文思蓝(EB)1 h后处死大鼠,取脑组织,测脑梗死体积、EB含量、ROS含量和海马CA1区的坏死率,Western blot检测大鼠的Mas信号通路相关蛋白表达。结果与Model组比较,E组的学习记忆及神经功能损伤明显减轻(P<0.05),脑梗死体积和缺血侧海马CA1区神经坏死程度均明显降低(P<0.05),ROS含量和脑组织EB含量均明显下降(P<0.05),Mas/PKA/CREB/UCP2信号通路相关蛋白表达明显增强(P<0.05);而Mas受体拮抗剂A779明显抑制上述效应(P<0.05)。结论EE可能是通过激活CI/RI大鼠的Mas/PKA/CREB/UCP2信号通路来抑制氧化应激程度,进而减轻大鼠CI/RI。 展开更多
关键词 耐力运动 鸢尾素 脑缺血 再灌注损伤 氧化应激 mas信号通路
暂未订购
武威汉简瘀方对Ang Ⅱ诱导损伤的肾小球足细胞ACE2/Ang(1-7)/Mas受体轴的影响
20
作者 寇雨顺 黎永祥 +3 位作者 李梦瑶 王鸿 沈路凡 伊琳 《时珍国医国药》 北大核心 2025年第8期1422-1427,共6页
目的研究武威汉简瘀方对经AngⅡ诱导损伤的肾小球足细胞(MPC)中ACE2/Ang(1-7)/Mas受体轴表达的影响,探讨武威汉简瘀方对高血压肾损伤的保护作用机制。方法将8周龄雌性SD大鼠30只随机分为模型组、缬沙坦组和武威汉简瘀方组,每组10只,灌胃... 目的研究武威汉简瘀方对经AngⅡ诱导损伤的肾小球足细胞(MPC)中ACE2/Ang(1-7)/Mas受体轴表达的影响,探讨武威汉简瘀方对高血压肾损伤的保护作用机制。方法将8周龄雌性SD大鼠30只随机分为模型组、缬沙坦组和武威汉简瘀方组,每组10只,灌胃1周后腹主动脉采血,离心收取血清并过滤,置于-80℃储存。将含药血清调整为低、中、高剂量,与模型组和缬沙坦组血清分别干预AngⅡ诱导损伤的肾小球足细胞模型。应用CCK-8法检测武威汉简瘀方对MPC增殖的影响;通过ELISA法检测Ang(1-7)表达;qRT-PCR检测ACE2和Mas表达;Western blot检测ACE2蛋白表达。结果CCK-8结果显示:缬沙坦组和瘀方低、中、高剂量组细胞活性均显著高于模型组(P<0.05)。ELISA结果显示:与模型组相比,缬沙坦组和低、中、高剂量组Ang(1-7)表达量均上调(P<0.05)。qRT-PCR结果显示:与模型组相比,缬沙坦组和中药方低、中、高剂量组ACE2和Mas表达量均上调(P<0.05)。Western blot结果显示:与模型组相比,缬沙坦组和中药方低、中、高剂量组ACE2蛋白表达量均上调(P<0.05)。结论武威汉简瘀方可能是通过调节ACE2/Ang(1-7)/Mas信号通路实现对肾功能的保护作用且有一定程度的浓度依赖性。 展开更多
关键词 武威汉简瘀方 高血压肾损伤 高血压 ACE2/Ang(1-7)/mas
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部