Objective:To examine the effect of shikonin against streptozotocin(STZ)-induced diabetic retinopathy in rats and elucidate the underlying mechanisms.Methods:Intraperitoneal administration of STZ(65 mg/kg)was used for ...Objective:To examine the effect of shikonin against streptozotocin(STZ)-induced diabetic retinopathy in rats and elucidate the underlying mechanisms.Methods:Intraperitoneal administration of STZ(65 mg/kg)was used for the induction of diabetic retinopathy in rats.Rats received oral administration of shikonin(10,20,and 30 mg/kg).The blood glucose level,insulin,body weight,and organ weight were estimated.Advanced glycation end products(AGEs)levels in serum and lens as well as protein carbonyl content of the lens were determined.The parameters related to oxidative stress and inflammation,and the levels of nuclear factor erythroid 2-related factor 2(Nrf2),heme oxygenase-1(HO-1),intercellular adhesion molecule-1(ICAM-1),and vascular cell adhesion molecule 1(VCAM-1)were also measured.In addition,quantitative RT-PCR was performed to determine the mRNA expressions.Results:Shikonin treatment decreased glucose level and boosted insulin level,along with an increase in body weight and improved organ weight.It also lowered O2•−,ONOO−,serum and lens AGEs,and protein carbonyl content.Furthermore,shikonin treatment significantly alleviated oxidative stress and inflammation,as evidenced by reduced malonaldehyde,nitric oxide,tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),IL-6,cyclooxygenase-2,prostaglandin E2,protein carbonyl content,and nuclear factor kappa-B,and increased superoxide dismutase,glutathione,catalase,and glutathione peroxidase.Markedly decreased levels of ICAM-1 and VCAM-1,as well as heightened levels of Nrf2 and HO-1,were noticed after treatment with shikonin.Furthermore,the mRNA expressions of TNF-α,IL-1β,IL-6,ICAM-1,VCAM-1,RAGE,collagenⅣ,and fibronectin were significantly downregulated.Conclusions:Shikonin exhibits protective effects against STZ-induced diabetic retinopathy in rats via modulating the Nrf2/HO-1 and NF-κB signaling pathways.展开更多
Background:Although the buried wood of Phoebe zhennan is known as the“mummy”of the plant kingdom,there is little research on its pharmacological activity.This study endeavored to investigate the effect and mechanism...Background:Although the buried wood of Phoebe zhennan is known as the“mummy”of the plant kingdom,there is little research on its pharmacological activity.This study endeavored to investigate the effect and mechanism of buried wood of Phoebe zhennan extract(BPE)on physical fatigue mice induced by weight-loaded forced swimming.Methods:Firstly,BPE was obtained by 70%ethanol extraction and freeze-drying processes.Then,the effect of BPE on physical fatigue mice was evaluated by swimming time,rotating stick time,levels of lipid peroxidation,lactate,lactate dehydrogenase,urea nitrogen,creatine kinase and muscle glycogen.Finally,real time fluorescence quantification and western blot were used to investigate the possible mechanism of BPE.Results:BPE could significantly alleviate muscle tissue damage,prolong the exhaustion time of weight-bearing swimming and rotating stick time.Meanwhile,BPE treatment could notably reduce the accumulation of serum lactate,urea nitrogen,and activities of lactate dehydrogenase and creatine kinase,while increasing the levels of glycogen and activities of glutathione peroxidase and superoxide dismutase in muscles.Moreover,BPE treatment obviously increased HO-1,Nrf-2,AMPK,PGC-1αmRNA and protein expressions in the muscles of physical fatigue mice.Conclusion:BPE treatment could ameliorate various impairments and oxidative stress injury induced by physical fatigue via activating Nrf-2/HO-1 and AMPK/PGC-1αsignaling pathway.展开更多
BACKGROUND Right ventricular hypertrophy(RVH)occurs because of volume or pressure overload within the right ventricular(RV)system.RVH is associated with complex pathological changes,including myocardial cell injury,ap...BACKGROUND Right ventricular hypertrophy(RVH)occurs because of volume or pressure overload within the right ventricular(RV)system.RVH is associated with complex pathological changes,including myocardial cell injury,apoptosis,myocardial fibrosis,neuroendocrine disturbances,and abnormal water and liquid metabolism.Ferroptosis,a novel type of iron-dependent cell death characterized by lipid peroxide accumulation,is an important mechanism of cardiomyocyte death.However,the role of ferroptosis in RVH has rarely been studied.We hypothesize that hydrogen(H_(2)),an experimental medical gas with superior distri-bution characteristics,inhibits ferroptosis.AIM To explore the protective effect of H_(2) on RVH and the mechanism by which H_(2) regulates ferroptosis.METHODS An in vivo RVH rat model was induced by monocrotaline(MCT)in 30 male Sprague-Dawley rats.An H9C2 cell model was treated with angiotensin II to simulate pressure overload in the RV system in vitro.H_(2) was administered to rats by inhalation(2%for 3 hours daily for 21 days)and added to the cell culture medium.The Nrf2 inhibitor ML385(1μM)was used to investigate anti-ferroptotic mechanisms.RESULTS In MCT-treated rats,H_(2) inhalation decreased RVH;the RV wall thickness decreased from 3.5±0.3 mm to 2.8±0.2 mm(P<0.05)and the RV ejection fraction increased from 45±3%to 52±4%(P<0.05).In H9C2 cells,H_(2) alleviated hypertrophy.H_(2) inhibited ferroptosis by modulating the iron content,oxidative stress,and ferroptosis-related proteins,thereby restoring the Nrf2/HO-1 signaling pathway.CONCLUSION H_(2) retards RVH by inhibiting ferroptosis via Nrf2/HO-1 restoration,suggesting a new treatment strategy.展开更多
Background:Dry eye disease(DED)predominantly results from elevated tear film os-molarity,which can not only cause ocular inconvenience but may lead to visual impair-ments,severely compromising patient well-being and e...Background:Dry eye disease(DED)predominantly results from elevated tear film os-molarity,which can not only cause ocular inconvenience but may lead to visual impair-ments,severely compromising patient well-being and exerting substantial economic burdens as well.Astaxanthin(AST),a member of the xanthophylls and recognized for its robust abilities to combat inflammation and oxidation,is a common dietary sup-plement.Nonetheless,the precise molecular pathways through which AST influences DED are still poorly understood.Methods:Therapeutic targets for AST were identified using data from the GeneCards,PharmMapper,and Swiss Target Prediction databases,and STITCH datasets.Similarly,targets for dry eye disease(DED)were delineated leveraging resources such as the Therapeutic Target Database(TTD),DisGeNET,GeneCards,and OMIM databases,and DrugBank datasets.Interactions among shared targets were charted and dis-played using CytoScape 3.9.0.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted to elucidate the functions of pivotal tar-gets within the protein-protein interaction network.Molecular interactions between AST and key targets were confirmed through molecular docking using AutoDock and PyMOL.Molecular dynamics simulations were performed using GROMACS 2022.3.Viability of human corneal epithelial cells(hCEC)was assessed across varying concen-trations of AST.A mouse model of experimental DED was developed using 0.1%ben-zalkonium chloride(BAC),and the animals were administered 100 mg/kg/day of AST orally for 7 days.The efficacy of the treatments was assessed through a series of di-agnostic tests to evaluate the condition of the ocular surface after the interventions.The levels of inflammation and oxidative stress were quantitatively assessed using methods such as reverse transcription-polymerase chain reaction(RT-PCR),Western blot,and immunofluorescence staining.Results:Network pharmacology suggests that AST may alleviate DED by influenc-ing oxidation-reduction signaling pathways and reducing oxidative stress provoked by BAC.In vivo experiments demonstrated an improved overall condition in AST-administered mice in contrast to the control group.Immunofluorescence staining analyses indicated a decrease in Keap1 protein in the corneal tissues of AST-treated mice and a significant increase in Nrf2 and HO-1 protein.In vitro studies demon-strated that AST significantly enhanced cell viability and suppressed reactive oxy-gen species expression under hyperosmotic(HS)conditions,thereby protecting the human corneal epithelium.Conclusion:AST is capable of shielding mice from BAC-induced DED,decelerating the progression of DED,and mitigating oxidative stress damage under HS conditions in hCEC cells.The protective impact of AST on DED may operate through stimulating the Keap1-Nrf2/HO-1 signaling pathway.Our research findings indicate that AST may be a promising treatment for DED,offering new insights into DED treatment.展开更多
文摘Objective:To examine the effect of shikonin against streptozotocin(STZ)-induced diabetic retinopathy in rats and elucidate the underlying mechanisms.Methods:Intraperitoneal administration of STZ(65 mg/kg)was used for the induction of diabetic retinopathy in rats.Rats received oral administration of shikonin(10,20,and 30 mg/kg).The blood glucose level,insulin,body weight,and organ weight were estimated.Advanced glycation end products(AGEs)levels in serum and lens as well as protein carbonyl content of the lens were determined.The parameters related to oxidative stress and inflammation,and the levels of nuclear factor erythroid 2-related factor 2(Nrf2),heme oxygenase-1(HO-1),intercellular adhesion molecule-1(ICAM-1),and vascular cell adhesion molecule 1(VCAM-1)were also measured.In addition,quantitative RT-PCR was performed to determine the mRNA expressions.Results:Shikonin treatment decreased glucose level and boosted insulin level,along with an increase in body weight and improved organ weight.It also lowered O2•−,ONOO−,serum and lens AGEs,and protein carbonyl content.Furthermore,shikonin treatment significantly alleviated oxidative stress and inflammation,as evidenced by reduced malonaldehyde,nitric oxide,tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),IL-6,cyclooxygenase-2,prostaglandin E2,protein carbonyl content,and nuclear factor kappa-B,and increased superoxide dismutase,glutathione,catalase,and glutathione peroxidase.Markedly decreased levels of ICAM-1 and VCAM-1,as well as heightened levels of Nrf2 and HO-1,were noticed after treatment with shikonin.Furthermore,the mRNA expressions of TNF-α,IL-1β,IL-6,ICAM-1,VCAM-1,RAGE,collagenⅣ,and fibronectin were significantly downregulated.Conclusions:Shikonin exhibits protective effects against STZ-induced diabetic retinopathy in rats via modulating the Nrf2/HO-1 and NF-κB signaling pathways.
基金supported by the Scientific Research Foundation for the introduction of talent of Pingdingshan University(No.PXY-BSQD-2022040,PXY-BSQD-2023024)Henan Province Science and Technology Research Project(No.242102310313,232102310460).
文摘Background:Although the buried wood of Phoebe zhennan is known as the“mummy”of the plant kingdom,there is little research on its pharmacological activity.This study endeavored to investigate the effect and mechanism of buried wood of Phoebe zhennan extract(BPE)on physical fatigue mice induced by weight-loaded forced swimming.Methods:Firstly,BPE was obtained by 70%ethanol extraction and freeze-drying processes.Then,the effect of BPE on physical fatigue mice was evaluated by swimming time,rotating stick time,levels of lipid peroxidation,lactate,lactate dehydrogenase,urea nitrogen,creatine kinase and muscle glycogen.Finally,real time fluorescence quantification and western blot were used to investigate the possible mechanism of BPE.Results:BPE could significantly alleviate muscle tissue damage,prolong the exhaustion time of weight-bearing swimming and rotating stick time.Meanwhile,BPE treatment could notably reduce the accumulation of serum lactate,urea nitrogen,and activities of lactate dehydrogenase and creatine kinase,while increasing the levels of glycogen and activities of glutathione peroxidase and superoxide dismutase in muscles.Moreover,BPE treatment obviously increased HO-1,Nrf-2,AMPK,PGC-1αmRNA and protein expressions in the muscles of physical fatigue mice.Conclusion:BPE treatment could ameliorate various impairments and oxidative stress injury induced by physical fatigue via activating Nrf-2/HO-1 and AMPK/PGC-1αsignaling pathway.
文摘BACKGROUND Right ventricular hypertrophy(RVH)occurs because of volume or pressure overload within the right ventricular(RV)system.RVH is associated with complex pathological changes,including myocardial cell injury,apoptosis,myocardial fibrosis,neuroendocrine disturbances,and abnormal water and liquid metabolism.Ferroptosis,a novel type of iron-dependent cell death characterized by lipid peroxide accumulation,is an important mechanism of cardiomyocyte death.However,the role of ferroptosis in RVH has rarely been studied.We hypothesize that hydrogen(H_(2)),an experimental medical gas with superior distri-bution characteristics,inhibits ferroptosis.AIM To explore the protective effect of H_(2) on RVH and the mechanism by which H_(2) regulates ferroptosis.METHODS An in vivo RVH rat model was induced by monocrotaline(MCT)in 30 male Sprague-Dawley rats.An H9C2 cell model was treated with angiotensin II to simulate pressure overload in the RV system in vitro.H_(2) was administered to rats by inhalation(2%for 3 hours daily for 21 days)and added to the cell culture medium.The Nrf2 inhibitor ML385(1μM)was used to investigate anti-ferroptotic mechanisms.RESULTS In MCT-treated rats,H_(2) inhalation decreased RVH;the RV wall thickness decreased from 3.5±0.3 mm to 2.8±0.2 mm(P<0.05)and the RV ejection fraction increased from 45±3%to 52±4%(P<0.05).In H9C2 cells,H_(2) alleviated hypertrophy.H_(2) inhibited ferroptosis by modulating the iron content,oxidative stress,and ferroptosis-related proteins,thereby restoring the Nrf2/HO-1 signaling pathway.CONCLUSION H_(2) retards RVH by inhibiting ferroptosis via Nrf2/HO-1 restoration,suggesting a new treatment strategy.
基金supported by grants from the Beijing Municipal Public Welfare Development and Reform Pilot Project for Medical Research Institutes(PWD&RPP-MRI,JYY2023-6)the R&D Program of Beijing Municipal Education Commission(KZ20231002543).
文摘Background:Dry eye disease(DED)predominantly results from elevated tear film os-molarity,which can not only cause ocular inconvenience but may lead to visual impair-ments,severely compromising patient well-being and exerting substantial economic burdens as well.Astaxanthin(AST),a member of the xanthophylls and recognized for its robust abilities to combat inflammation and oxidation,is a common dietary sup-plement.Nonetheless,the precise molecular pathways through which AST influences DED are still poorly understood.Methods:Therapeutic targets for AST were identified using data from the GeneCards,PharmMapper,and Swiss Target Prediction databases,and STITCH datasets.Similarly,targets for dry eye disease(DED)were delineated leveraging resources such as the Therapeutic Target Database(TTD),DisGeNET,GeneCards,and OMIM databases,and DrugBank datasets.Interactions among shared targets were charted and dis-played using CytoScape 3.9.0.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted to elucidate the functions of pivotal tar-gets within the protein-protein interaction network.Molecular interactions between AST and key targets were confirmed through molecular docking using AutoDock and PyMOL.Molecular dynamics simulations were performed using GROMACS 2022.3.Viability of human corneal epithelial cells(hCEC)was assessed across varying concen-trations of AST.A mouse model of experimental DED was developed using 0.1%ben-zalkonium chloride(BAC),and the animals were administered 100 mg/kg/day of AST orally for 7 days.The efficacy of the treatments was assessed through a series of di-agnostic tests to evaluate the condition of the ocular surface after the interventions.The levels of inflammation and oxidative stress were quantitatively assessed using methods such as reverse transcription-polymerase chain reaction(RT-PCR),Western blot,and immunofluorescence staining.Results:Network pharmacology suggests that AST may alleviate DED by influenc-ing oxidation-reduction signaling pathways and reducing oxidative stress provoked by BAC.In vivo experiments demonstrated an improved overall condition in AST-administered mice in contrast to the control group.Immunofluorescence staining analyses indicated a decrease in Keap1 protein in the corneal tissues of AST-treated mice and a significant increase in Nrf2 and HO-1 protein.In vitro studies demon-strated that AST significantly enhanced cell viability and suppressed reactive oxy-gen species expression under hyperosmotic(HS)conditions,thereby protecting the human corneal epithelium.Conclusion:AST is capable of shielding mice from BAC-induced DED,decelerating the progression of DED,and mitigating oxidative stress damage under HS conditions in hCEC cells.The protective impact of AST on DED may operate through stimulating the Keap1-Nrf2/HO-1 signaling pathway.Our research findings indicate that AST may be a promising treatment for DED,offering new insights into DED treatment.