Marsdenia tenacissima extract(MTE, trade name: Xiao-Ai-Ping injection) is an extract of a single Chinese plant medicine. It has been used for the treatment of cancer in China for decades, especially for esophageal can...Marsdenia tenacissima extract(MTE, trade name: Xiao-Ai-Ping injection) is an extract of a single Chinese plant medicine. It has been used for the treatment of cancer in China for decades, especially for esophageal cancer and other cancers in the digestive tract. In the present study, the potential mechanism for MTE's activity in esophageal cancer was explored. The effects of MTE on the proliferation of human esophageal cancer cells(KYSE150 and Eca-109) were investigated by the MTT assay, the Brd U(bromodeoxyuridine) incorporation immunofluorescence assay, and flow cytometric analysis. MTE inhibited cell proliferation through inducing G0/G1 cell cycle arrest in KYSE150 and Eca-109. Western blot analysis was employed to determine protein levels in the MTE treated cells. Compared with the control cells, the expression levels of the cell cycle regulatory proteins cyclin D1/D2/D3, cyclin E1, CDK2/4/6(CDK: cyclin dependent kinase), and p-Rb were decreased significantly in the cells treated with MTE at 40 mg·m L-1. In addition, MTE had an inhibitory effect on the MAPK(mitogen-activated protein kinase) signal transduction pathway, including ERK(extracellular signal-regulated kinase), JNK(c-Jun N-terminal kinase), and p38 MAPK. Moreover, MTE showed little additional effects on the regulation of cyclin D1/D3, CDK4/6, and p-Rb when the ERK pathway was already inhibited by the specific ERK inhibitor U0126. In conclusion, these data suggest that MTE inhibits human esophageal cancer cell proliferation through regulation of cell cycle regulatory proteins and the MAPK signaling pathways, which is probably mediated by the inhibition of ERK activation.展开更多
BACKGROUND Liver fibrosis is a global health issue that lacks effective treatments.Tibetan medicine,with a long history,has accumulated rich experience in the treatment of chronic liver diseases.The saffron(Saf)and Ca...BACKGROUND Liver fibrosis is a global health issue that lacks effective treatments.Tibetan medicine,with a long history,has accumulated rich experience in the treatment of chronic liver diseases.The saffron(Saf)and Calculus bovis(Cal b)combination is among the most commonly used medicines in clinical practice in Tibetan medicine for hepatic disease.Its characteristic therapies and drug compatibility provide unique ideas for the treatment of liver fibrosis and have research value and application potential.AIM To investigate the efficacy of the Saf-Cal b therapy in treating liver fibrosis and explored its underlying mechanism.METHODS We initially established a carbon tetrachloride-induced rat liver fibrosis model to assess Saf-Cal b’s anti-fibrotic effects.Subsequently,we conducted network pharmacology analysis to identify the potential therapeutic targets and pathways of Saf-Cal b in liver fibrosis intervention.Finally,we performed in vivo validation of key regulatory targets.RESULTS Saf-Cal b combination therapy exerted superior effects in ameliorating liver fibrosis in model rats compared with Saf or Cal b monotherapy.Through network pharmacology prediction,key targets of the combination were identified.Mechanistic validation revealed that Saf-Cal b inhibited the p38 mitogen-activated protein kinases pathway,which in turn suppressed the transforming growth factor-β/small mother against decapentaplegic pathway.This sequential inhibition led to reduced activation of hepatic stellate cells,a central event in liver fibrosis progression.CONCLUSION These findings demonstrate that Saf-Cal b combination therapy is more effective than either monotherapy in alleviating liver fibrosis,with its therapeutic effect mediated through the p38 mitogen-activated protein kinases/transforming growth factor-β/small mother against decapentaplegic signaling axis,providing a potential therapeutic strategy for liver fibrosis.展开更多
OBJECTIVE:To clarify the effect of Hamayou(Oviductus Ranae) protein hydrolysate(ORPH) on depression and its exact underlying mechanism from a new perspective. METHODS:We used the Chronic Unpredictable Mild Stress(CUMS...OBJECTIVE:To clarify the effect of Hamayou(Oviductus Ranae) protein hydrolysate(ORPH) on depression and its exact underlying mechanism from a new perspective. METHODS:We used the Chronic Unpredictable Mild Stress(CUMS) method to prepare a mouse model of depression and lipopolysaccharide(LPS) to prepare a model of BV2 cellular inflammation to investigate the antidepressant effect and mechanism of action of ORPH. Behavioral changes in mice and cerebral blood flow were detected by behavioral experiments and scatter imaging. Levels of corticosterone(CORT), proinflammatory cytokines and neurotransmitter were detected by enzyme-linked immunosorbent assay. Furthermore, hematoxylin-eosin staining, Tunel staining were used to evaluate the effect of ORPH. The distribution and expression of ionized calcium bindingadaptor molecule-1(Iba-1) in mouse hippocampal tissue and BV2 cells were detected by immunofluorescence. Mitogen-activated protein kinase(MAPK) pathway related protein expression was detected by Western blot. RESULTS:ORPH improved depression-like behavior, ameliorated brain tissue damage and apoptosis, and inhibited microglia activation in brain tissue in mice. In addition, ORPH reduced expression of B-cell lymphoma-2(Bcl-2)-associated X(Bax), cysteinyl aspartate specific proteinase 3(Caspase3), cysteinyl aspartate specific proteinase 9(Caspase9), nuclear factor-kappa B(NF-κB), phosphorylation-p38(p-p38), phosphorylation-Jun Nterminal kinase(p-JNK) proteins, and increased expression of Bcl-2, inhibitory kappa B alpha(IκB-α), phosphorylation-extracellular regulated protein kinases 1/2(p-ERK1/2) proteins. On the other hand, there were fewer Iba-1-positive cells, lower expression of NF-κB, pp38, p-JNK and p-ERK1/2 proteins, and higher expression of IκB-α proteins in BV2 cells in the ORPH group. In addition, ORPH increased 5-hydroxytryptamine, norepinephrine levels and decreased CORT, interleukin-1β(IL-1β), interleukin-6(IL-6), tumor necrosis factor-α(TNF-α) levels. CONCLUSION:ORPH was able to improve depressionlike behaviors and that it took effects by promoting cerebral blood flow, inhibition of hypothalamic-pituitaryadrenal axis overactivation, improving the structural damage of hippocampal tissues, and inhibiting the inflammatory response. ORPH can reduced neuronal damage and inhibiting apoptosis by promoting the MAPK pathway.展开更多
OBJECTIVE:To confirm the therapeutic effect and mechanism of Jingui Shenqi pill(金匮肾气丸,JGSQP)on cardiorenal syndrome.METHODS:Doxorubicin was used to build heart-kidney coinjury rat model.After the modeling was com...OBJECTIVE:To confirm the therapeutic effect and mechanism of Jingui Shenqi pill(金匮肾气丸,JGSQP)on cardiorenal syndrome.METHODS:Doxorubicin was used to build heart-kidney coinjury rat model.After the modeling was completed,JGSQP gavage intervention was performed.The cardiac function of rats in each group was evaluated by ultrasound detection.Serum of rats was collected and examined for markers of heart and kidney damage.Enzyme linked immunosorbent assay detected serum inflammatory factors interleukin-1β(IL-1β),interleukin-6(IL-6),and tumor necrosis factor-α(TNF-α)expression.Quantitative real-time polymerase chain reaction(PCR)and Western blot detected the changes of related genes and proteins.RESULTS:JGSQP significantly increased left ventricular ejection fraction(EF)and left ventricular shortening fraction(FS)values,decreased the heart and kidney damage markers and fibrosis levels(P<0.05).Furthermore,it can reduce IL-1β,IL-6,and TNF-αinflammatory expression(P<0.05).Mechanistically,JGSQP significantly inhibited the expression of key genes and proteins of mitogen-activated protein kinase(MAPK)signaling pathway(P<0.05).CONCLUSIONS:Jingui Shenqi pill can exert therapeutic effects on cardiorenal syndrome by inhibiting the activation of the MAPK signaling pathway and inflammatory responses.展开更多
V-raf-leukemia viral oncogene 1(RAF1),a serine/threonine protein kinase,is well established to play a crucial role in tumorigenesis and cell development.However,the specific role of hypothalamic RAF1 in regulating ene...V-raf-leukemia viral oncogene 1(RAF1),a serine/threonine protein kinase,is well established to play a crucial role in tumorigenesis and cell development.However,the specific role of hypothalamic RAF1 in regulating energy metabolism remains unknown.In this study,we found that the expression of RAF1 was significantly increased in hypothalamic AgRP neurons of diet-induced obesity(DIO)mice.Under normal chow diet feeding,overexpression of Raf1 in AgRP neurons led to obesity in mice characterized by increased body weight,fat mass,and impaired glucose tolerance.Conversely,Raf1 knockout in AgRP neurons protected against diet-induced obesity,reducing fat mass and improving glucose tolerance.Mechanistically,Raf1 activated the MAPK signaling pathway,culminating in the phosphorylation of cAMP response element-binding protein(CREB),which enhanced transcription of Agrp and Npy.Insulin stimulation further potentiated the RAF1-MEK1/2-ERK1/2-CREB axis,highlighting RAF1's role in integrating hormonal and nutritional signals to regulate energy balance.Collectively,these findings underscore the important role of RAF1 in AgRP neurons in maintaining energy homeostasis and obesity pathogenesis,positioning it and its downstream pathways as potential therapeutic targets for innovative strategies to combat obesity and related metabolic diseases.展开更多
Background:Hepatocellular carcinoma(HCC)is one of the leading causes of cancer-related mortality worldwide.This study aimed to identify key genes involved in HCC development and elucidate their molecular mechanisms,wi...Background:Hepatocellular carcinoma(HCC)is one of the leading causes of cancer-related mortality worldwide.This study aimed to identify key genes involved in HCC development and elucidate their molecular mechanisms,with a particular focus on mitochondrial function and apoptosis.Methods:Differential expression analyses were performed across three datasets—The Cancer Genome Atlas(TCGA)-Liver Hepatocellular Carcinoma(LIHC),GSE36076,and GSE95698—to identify overlapping differentially expressed genes(DEGs).A prognostic risk model was then constructed.Cysteine/serine-rich nuclear protein 1(CSRNP1)expression levels in HCC cell lines were assessed via western blot(WB)and quantitative reverse transcription polymerase chain reaction(qRT-PCR).The effects of CSRNP1 knockdown or overexpression on cell proliferation,migration,and apoptosis were evaluated using cell counting-8(CCK-8)assays,Transwell assays,and flow cytometry.Mitochondrial ultrastructure was examined by transmission electron microscopy,and intracellular and mitochondrial reactive oxygen species(mROS)levels were measured using specific fluorescent probes.WB was used to assess activation of the c-Jun N-terminal kinase(JNK)/p38 mitogen-activated protein kinase(MAPK)pathway,and pathway dependence was examined using the ROS scavenger N-Acetylcysteine(NAC)and the JNK inhibitor SP600125.Results:A six-gene prognostic model was established,comprising downregulated genes(NR4A1 and CSRNP1)and upregulated genes(CENPQ,YAE1,FANCF,and POC5)in HCC.Functional experiments revealed that CSRNP1 knockdown promoted the proliferation of HCC cells and suppressed their apoptosis.Conversely,CSRNP1 overexpression impaired mitochondrial integrity,increased both mitochondrial and cytoplasmic ROS levels,and activated the JNK/p38 MAPK pathway.Notably,treatment with NAC or SP600125 attenuated CSRNP1-induced MAPK activation and apoptosis.Conclusion:CSRNP1 is a novel prognostic biomarker and tumor suppressor in HCC.It exerts anti-tumor effects by inducing oxidative stress and activating the JNK/p38 MAPK pathway in a ROS-dependent manner.These findings suggest that CSRNP1 may serve as a potential therapeutic target in the management of HCC.展开更多
Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine ...Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine particulate matter(PM2.5).Methods Forty eight male Wistar rats were randomly divided into six groups:blank control group(C1),water drip control group(C2),PM2.5 exposed group(P),low-dose NAC treated and PM2.5 exposed group(L),middle-dose NAC treated and PM2.5 exposed group(M),and high-dose NAC treated and PM2.5 exposed group(H).PM2.5 suspension(7.5 mg/kg)was administered tracheally once a week for four times.NAC of 125 mg/kg,250 mg/kg and 500 mg/kg was delivered intragastrically to L,M and H group respectively by gavage(10 ml/kg)for six days before PM2.5 exposure.The histopathological changes and human mucin 5 subtype AC(MUC5AC)content in lung tissue of rats were evaluated.We investigated IL-6 in serum and bronchoalveolar lavage fluid(BALF)by Enzyme-linked immunosorbent assay(ELISA),MUC5AC in lung tissue homogenate by ELISA,glutathione peroxidase(GSH-PX)in serum and BALF by spectrophotometry,and the expression of p-ERK1/2,p-JNK1/2 and p-p38 proteins by Western blot.All the measurements were analyzed and compared statistically.Results Lung tissue of rats exposed to PM2.5 showed histological destruction and increased mucus secretion of bronchial epithelial cells.Rats receiving NAC treatment showed less histological destruction and mucus secretion.Of P,L,M and H group,MUC5AC in lung tissue,IL-6 in serum and BALF were higher than controls(C1 and C2)(all P<0.05),with the highest levels found in the P group and a decreasing trend with increase of NAC dose.The activity of GSH-PX in serum and BALF of PM2.5 exposed rats(P,L,M and H)was lower than that of controls(all P<0.05),with higher activities found in NAC treated rats(L,M,and H),and an increasing trend with increase of NAC dose.The expressions of p-ERK1/2,p-JNK1/2 and p-p38 proteins in PM2.5 exposed lung tissue(P,L,M and H)was higher than controls(all P<0.05),with decreased levels and dose dependent downregulation found in NAC treated rats.Conclusion NAC can antagonize major MAPK pathway activation,lung oxidative stress and inflammatory injury induced by PM2.5 in rats.展开更多
基金financially supported by National Natural Science Foundation of China(Nos.81302794,81071841,81102853)the Study of Marsdenia tenacissima extract(MTE):Study on quality control of antitumor traditional Chinese medicine Xiao-Ai-Ping injection(No.2011ZX09201-201)
文摘Marsdenia tenacissima extract(MTE, trade name: Xiao-Ai-Ping injection) is an extract of a single Chinese plant medicine. It has been used for the treatment of cancer in China for decades, especially for esophageal cancer and other cancers in the digestive tract. In the present study, the potential mechanism for MTE's activity in esophageal cancer was explored. The effects of MTE on the proliferation of human esophageal cancer cells(KYSE150 and Eca-109) were investigated by the MTT assay, the Brd U(bromodeoxyuridine) incorporation immunofluorescence assay, and flow cytometric analysis. MTE inhibited cell proliferation through inducing G0/G1 cell cycle arrest in KYSE150 and Eca-109. Western blot analysis was employed to determine protein levels in the MTE treated cells. Compared with the control cells, the expression levels of the cell cycle regulatory proteins cyclin D1/D2/D3, cyclin E1, CDK2/4/6(CDK: cyclin dependent kinase), and p-Rb were decreased significantly in the cells treated with MTE at 40 mg·m L-1. In addition, MTE had an inhibitory effect on the MAPK(mitogen-activated protein kinase) signal transduction pathway, including ERK(extracellular signal-regulated kinase), JNK(c-Jun N-terminal kinase), and p38 MAPK. Moreover, MTE showed little additional effects on the regulation of cyclin D1/D3, CDK4/6, and p-Rb when the ERK pathway was already inhibited by the specific ERK inhibitor U0126. In conclusion, these data suggest that MTE inhibits human esophageal cancer cell proliferation through regulation of cell cycle regulatory proteins and the MAPK signaling pathways, which is probably mediated by the inhibition of ERK activation.
基金Supported by Tibetan Medicine Administration of Tibet Autonomous Region,No.JJKT2020006Key Research and Development Project of Tibet Autonomous Region,No.XZ202201ZY0019GNational Administration of Traditional Chinese Medicine High-level Key Discipline Construction Project,No.zyyzdxk-2023262.
文摘BACKGROUND Liver fibrosis is a global health issue that lacks effective treatments.Tibetan medicine,with a long history,has accumulated rich experience in the treatment of chronic liver diseases.The saffron(Saf)and Calculus bovis(Cal b)combination is among the most commonly used medicines in clinical practice in Tibetan medicine for hepatic disease.Its characteristic therapies and drug compatibility provide unique ideas for the treatment of liver fibrosis and have research value and application potential.AIM To investigate the efficacy of the Saf-Cal b therapy in treating liver fibrosis and explored its underlying mechanism.METHODS We initially established a carbon tetrachloride-induced rat liver fibrosis model to assess Saf-Cal b’s anti-fibrotic effects.Subsequently,we conducted network pharmacology analysis to identify the potential therapeutic targets and pathways of Saf-Cal b in liver fibrosis intervention.Finally,we performed in vivo validation of key regulatory targets.RESULTS Saf-Cal b combination therapy exerted superior effects in ameliorating liver fibrosis in model rats compared with Saf or Cal b monotherapy.Through network pharmacology prediction,key targets of the combination were identified.Mechanistic validation revealed that Saf-Cal b inhibited the p38 mitogen-activated protein kinases pathway,which in turn suppressed the transforming growth factor-β/small mother against decapentaplegic pathway.This sequential inhibition led to reduced activation of hepatic stellate cells,a central event in liver fibrosis progression.CONCLUSION These findings demonstrate that Saf-Cal b combination therapy is more effective than either monotherapy in alleviating liver fibrosis,with its therapeutic effect mediated through the p38 mitogen-activated protein kinases/transforming growth factor-β/small mother against decapentaplegic signaling axis,providing a potential therapeutic strategy for liver fibrosis.
基金Science and Technology Development Project of Jilin Province:Preparation and Evaluation of an Animal Model of Liverdepression Type Depression (20220505038ZP)Exploring the Material Basis and Action Pathway of the Antipyretic Effect of Baihu Tang based on Histologic Techniques (20240602036RC)。
文摘OBJECTIVE:To clarify the effect of Hamayou(Oviductus Ranae) protein hydrolysate(ORPH) on depression and its exact underlying mechanism from a new perspective. METHODS:We used the Chronic Unpredictable Mild Stress(CUMS) method to prepare a mouse model of depression and lipopolysaccharide(LPS) to prepare a model of BV2 cellular inflammation to investigate the antidepressant effect and mechanism of action of ORPH. Behavioral changes in mice and cerebral blood flow were detected by behavioral experiments and scatter imaging. Levels of corticosterone(CORT), proinflammatory cytokines and neurotransmitter were detected by enzyme-linked immunosorbent assay. Furthermore, hematoxylin-eosin staining, Tunel staining were used to evaluate the effect of ORPH. The distribution and expression of ionized calcium bindingadaptor molecule-1(Iba-1) in mouse hippocampal tissue and BV2 cells were detected by immunofluorescence. Mitogen-activated protein kinase(MAPK) pathway related protein expression was detected by Western blot. RESULTS:ORPH improved depression-like behavior, ameliorated brain tissue damage and apoptosis, and inhibited microglia activation in brain tissue in mice. In addition, ORPH reduced expression of B-cell lymphoma-2(Bcl-2)-associated X(Bax), cysteinyl aspartate specific proteinase 3(Caspase3), cysteinyl aspartate specific proteinase 9(Caspase9), nuclear factor-kappa B(NF-κB), phosphorylation-p38(p-p38), phosphorylation-Jun Nterminal kinase(p-JNK) proteins, and increased expression of Bcl-2, inhibitory kappa B alpha(IκB-α), phosphorylation-extracellular regulated protein kinases 1/2(p-ERK1/2) proteins. On the other hand, there were fewer Iba-1-positive cells, lower expression of NF-κB, pp38, p-JNK and p-ERK1/2 proteins, and higher expression of IκB-α proteins in BV2 cells in the ORPH group. In addition, ORPH increased 5-hydroxytryptamine, norepinephrine levels and decreased CORT, interleukin-1β(IL-1β), interleukin-6(IL-6), tumor necrosis factor-α(TNF-α) levels. CONCLUSION:ORPH was able to improve depressionlike behaviors and that it took effects by promoting cerebral blood flow, inhibition of hypothalamic-pituitaryadrenal axis overactivation, improving the structural damage of hippocampal tissues, and inhibiting the inflammatory response. ORPH can reduced neuronal damage and inhibiting apoptosis by promoting the MAPK pathway.
基金Supported by Shanghai Putuo District Health System Science and Technology Innovation Project:Study on the Effect and Mechanism of Jinkui Shenqi Pills on Renal Water Metabolism via provirus integration site for moloney murine leukemia virus 3/aquaporin 2 Regulation (No. PTKWS202104)Chengdu University of Traditional Chinese Medicine "Xinglin Scholar" Discipline Talent Research Enhancement Plan:Based on provirus integration site for moloney murine leukemia virus 3 to Explore the Molecular Mechanism of Jingui Shenqi pill in Regulating Water Metabolism in Renal Tubular Cells (No. YYZX2022165)the Clinical Advantage Discipline of Health System of Putuo District in Shanghai (2019ysxk01)
文摘OBJECTIVE:To confirm the therapeutic effect and mechanism of Jingui Shenqi pill(金匮肾气丸,JGSQP)on cardiorenal syndrome.METHODS:Doxorubicin was used to build heart-kidney coinjury rat model.After the modeling was completed,JGSQP gavage intervention was performed.The cardiac function of rats in each group was evaluated by ultrasound detection.Serum of rats was collected and examined for markers of heart and kidney damage.Enzyme linked immunosorbent assay detected serum inflammatory factors interleukin-1β(IL-1β),interleukin-6(IL-6),and tumor necrosis factor-α(TNF-α)expression.Quantitative real-time polymerase chain reaction(PCR)and Western blot detected the changes of related genes and proteins.RESULTS:JGSQP significantly increased left ventricular ejection fraction(EF)and left ventricular shortening fraction(FS)values,decreased the heart and kidney damage markers and fibrosis levels(P<0.05).Furthermore,it can reduce IL-1β,IL-6,and TNF-αinflammatory expression(P<0.05).Mechanistically,JGSQP significantly inhibited the expression of key genes and proteins of mitogen-activated protein kinase(MAPK)signaling pathway(P<0.05).CONCLUSIONS:Jingui Shenqi pill can exert therapeutic effects on cardiorenal syndrome by inhibiting the activation of the MAPK signaling pathway and inflammatory responses.
基金support from various sources,including the National Natural Science Foundation of China(Grant Nos.81570774,82070872,92049118,and 82370854)the Junior Thousand Talents Program of China,and the Nanjing Medical University Startup Fund(All awarded to J.L.)support provided by Jiangsu Province's Innovation Personal as well as Innovative and Entrepreneurial Team of Jiangsu Province(Grant No.JSSCTD2021)(All awarded to J.L.).
文摘V-raf-leukemia viral oncogene 1(RAF1),a serine/threonine protein kinase,is well established to play a crucial role in tumorigenesis and cell development.However,the specific role of hypothalamic RAF1 in regulating energy metabolism remains unknown.In this study,we found that the expression of RAF1 was significantly increased in hypothalamic AgRP neurons of diet-induced obesity(DIO)mice.Under normal chow diet feeding,overexpression of Raf1 in AgRP neurons led to obesity in mice characterized by increased body weight,fat mass,and impaired glucose tolerance.Conversely,Raf1 knockout in AgRP neurons protected against diet-induced obesity,reducing fat mass and improving glucose tolerance.Mechanistically,Raf1 activated the MAPK signaling pathway,culminating in the phosphorylation of cAMP response element-binding protein(CREB),which enhanced transcription of Agrp and Npy.Insulin stimulation further potentiated the RAF1-MEK1/2-ERK1/2-CREB axis,highlighting RAF1's role in integrating hormonal and nutritional signals to regulate energy balance.Collectively,these findings underscore the important role of RAF1 in AgRP neurons in maintaining energy homeostasis and obesity pathogenesis,positioning it and its downstream pathways as potential therapeutic targets for innovative strategies to combat obesity and related metabolic diseases.
基金funded by Shanghai Yangpu District Science and Technology Commission(Grant No.YPQ202303(Xuejing Lin))Shanghai Yangpu Hospital Foundation(Grant No.Se1202420(Wenchao Wang)and Ye1202423(Juan Huang)).
文摘Background:Hepatocellular carcinoma(HCC)is one of the leading causes of cancer-related mortality worldwide.This study aimed to identify key genes involved in HCC development and elucidate their molecular mechanisms,with a particular focus on mitochondrial function and apoptosis.Methods:Differential expression analyses were performed across three datasets—The Cancer Genome Atlas(TCGA)-Liver Hepatocellular Carcinoma(LIHC),GSE36076,and GSE95698—to identify overlapping differentially expressed genes(DEGs).A prognostic risk model was then constructed.Cysteine/serine-rich nuclear protein 1(CSRNP1)expression levels in HCC cell lines were assessed via western blot(WB)and quantitative reverse transcription polymerase chain reaction(qRT-PCR).The effects of CSRNP1 knockdown or overexpression on cell proliferation,migration,and apoptosis were evaluated using cell counting-8(CCK-8)assays,Transwell assays,and flow cytometry.Mitochondrial ultrastructure was examined by transmission electron microscopy,and intracellular and mitochondrial reactive oxygen species(mROS)levels were measured using specific fluorescent probes.WB was used to assess activation of the c-Jun N-terminal kinase(JNK)/p38 mitogen-activated protein kinase(MAPK)pathway,and pathway dependence was examined using the ROS scavenger N-Acetylcysteine(NAC)and the JNK inhibitor SP600125.Results:A six-gene prognostic model was established,comprising downregulated genes(NR4A1 and CSRNP1)and upregulated genes(CENPQ,YAE1,FANCF,and POC5)in HCC.Functional experiments revealed that CSRNP1 knockdown promoted the proliferation of HCC cells and suppressed their apoptosis.Conversely,CSRNP1 overexpression impaired mitochondrial integrity,increased both mitochondrial and cytoplasmic ROS levels,and activated the JNK/p38 MAPK pathway.Notably,treatment with NAC or SP600125 attenuated CSRNP1-induced MAPK activation and apoptosis.Conclusion:CSRNP1 is a novel prognostic biomarker and tumor suppressor in HCC.It exerts anti-tumor effects by inducing oxidative stress and activating the JNK/p38 MAPK pathway in a ROS-dependent manner.These findings suggest that CSRNP1 may serve as a potential therapeutic target in the management of HCC.
文摘Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine particulate matter(PM2.5).Methods Forty eight male Wistar rats were randomly divided into six groups:blank control group(C1),water drip control group(C2),PM2.5 exposed group(P),low-dose NAC treated and PM2.5 exposed group(L),middle-dose NAC treated and PM2.5 exposed group(M),and high-dose NAC treated and PM2.5 exposed group(H).PM2.5 suspension(7.5 mg/kg)was administered tracheally once a week for four times.NAC of 125 mg/kg,250 mg/kg and 500 mg/kg was delivered intragastrically to L,M and H group respectively by gavage(10 ml/kg)for six days before PM2.5 exposure.The histopathological changes and human mucin 5 subtype AC(MUC5AC)content in lung tissue of rats were evaluated.We investigated IL-6 in serum and bronchoalveolar lavage fluid(BALF)by Enzyme-linked immunosorbent assay(ELISA),MUC5AC in lung tissue homogenate by ELISA,glutathione peroxidase(GSH-PX)in serum and BALF by spectrophotometry,and the expression of p-ERK1/2,p-JNK1/2 and p-p38 proteins by Western blot.All the measurements were analyzed and compared statistically.Results Lung tissue of rats exposed to PM2.5 showed histological destruction and increased mucus secretion of bronchial epithelial cells.Rats receiving NAC treatment showed less histological destruction and mucus secretion.Of P,L,M and H group,MUC5AC in lung tissue,IL-6 in serum and BALF were higher than controls(C1 and C2)(all P<0.05),with the highest levels found in the P group and a decreasing trend with increase of NAC dose.The activity of GSH-PX in serum and BALF of PM2.5 exposed rats(P,L,M and H)was lower than that of controls(all P<0.05),with higher activities found in NAC treated rats(L,M,and H),and an increasing trend with increase of NAC dose.The expressions of p-ERK1/2,p-JNK1/2 and p-p38 proteins in PM2.5 exposed lung tissue(P,L,M and H)was higher than controls(all P<0.05),with decreased levels and dose dependent downregulation found in NAC treated rats.Conclusion NAC can antagonize major MAPK pathway activation,lung oxidative stress and inflammatory injury induced by PM2.5 in rats.