期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
改进分层合作A*的无人机交通管理中路径规划
1
作者 陈明 何宁 +2 位作者 宏晨 肖明明 景竑元 《计算机工程与应用》 北大核心 2025年第6期361-368,共8页
针对无人机交通管理中飞行前冲突探测与解脱问题,表示为一种新的多智能体路径规划扩展模型,提出一种连续时间分层合作A*(continuous-time hierarchical cooperative A*,CHCA*)算法。面向连续时间,智能体在度量空间中的位置之间以最大速... 针对无人机交通管理中飞行前冲突探测与解脱问题,表示为一种新的多智能体路径规划扩展模型,提出一种连续时间分层合作A*(continuous-time hierarchical cooperative A*,CHCA*)算法。面向连续时间,智能体在度量空间中的位置之间以最大速度持续移动;考虑智能体的大小形状,以空间是否覆盖判定智能体冲突;优化搜索启发值计算。实验表明,CHCA*单次路径规划成功率高于CCBS,适合大规模智能体路径规划求解;在日本仙台2030无人机空运预测模型上仿真实验表明,对于一天内32887个随机请求,CHCA*算法规划成功率可达96%。 展开更多
关键词 多智能体路径规划(MAPF) 无人机交通管理(UTM) 改进分层合作A*算法 冲突探测 冲突解脱 连续时间
在线阅读 下载PDF
多智能体多任务路径规划的仿真分析
2
作者 凌姿瑀 陈钇行 +1 位作者 徐安 余佳欣 《电子制作》 2025年第10期61-64,共4页
在自动化仓储系统中应用广泛的多智能体多任务路径规划问题属于MAPF问题,该问题已被证明为NP-难问题,传统方法难以对其进行高效求解。为解决这一难题,本文提出了一种融合CBS冲突搜索和蚁群算法的解决方法。首先,在不考虑冲突的情况下,... 在自动化仓储系统中应用广泛的多智能体多任务路径规划问题属于MAPF问题,该问题已被证明为NP-难问题,传统方法难以对其进行高效求解。为解决这一难题,本文提出了一种融合CBS冲突搜索和蚁群算法的解决方法。首先,在不考虑冲突的情况下,使用蚁群算法依据时空A*算法求得的不同路径所需时间初步分配任务,再通过CBS冲突搜索算法进行包含冲突的多智能体路径规划。经过实验仿真分析,结果表明研究提出的方法能够高效解决多智能体多任务路径规划问题。 展开更多
关键词 MAPF问题 CBS冲突搜索算法 时空A*算法 蚁群算法
在线阅读 下载PDF
延伸期过程预报预测技术及应用 被引量:12
3
作者 陈伯民 梁萍 +4 位作者 信飞 周坤 李震坤 孙国武 董广涛 《气象科技进展》 2017年第6期82-91,共10页
对自主研发的低频图方法和低频波方法、延伸期过程预测客观检验指标(Zs和Cs评分)、月内重要过程与趋势预测系统(MAPFS 2.1)及其推广应用情况做了介绍。对近4年(2013—2016年)上海地区汛期延伸期强降水过程业务预测和近2年(2015—2016年... 对自主研发的低频图方法和低频波方法、延伸期过程预测客观检验指标(Zs和Cs评分)、月内重要过程与趋势预测系统(MAPFS 2.1)及其推广应用情况做了介绍。对近4年(2013—2016年)上海地区汛期延伸期强降水过程业务预测和近2年(2015—2016年)冬季延伸期强降温过程业务预测进行了客观检验。结果显示,汛期强降水过程、冬半年强降温过程(强冷空气过程)预测准确率分别为67.3%和43.2%,Zs/Cs评分分别为0.153/0.130、0.139/0.09。低频图方法对各年汛期最强降水过程均给出了较好的预测,说明预测方法具有一定的预测潜力。基于MJO(Madden-Julian Oscillation)活动的上海汛期逐候降水趋势预测方法2年(2014—2015年)的预测结果Ps评分平均达到58分,为汛期延伸期强降水过程预测和入梅、出梅延伸期预测提供了较有价值的预测背景信息。 展开更多
关键词 延伸期过程预测 低频图预测方法 低频波预测方法 延伸期过程预测客观检验指标 mapfs系统
在线阅读 下载PDF
A greedy path planning algorithm based on pre-path-planning and real-time-conflict for multiple automated guided vehicles in large-scale outdoor scenarios 被引量:2
4
作者 王腾达 WU Wenjun +2 位作者 YANG Feng SUN Teng GAO Qiang 《High Technology Letters》 EI CAS 2023年第3期279-287,共9页
With the wide application of automated guided vehicles(AGVs) in large scale outdoor scenarios with complex terrain,the collaborative work of a large number of AGVs becomes the main trend.The effective multi-agent path... With the wide application of automated guided vehicles(AGVs) in large scale outdoor scenarios with complex terrain,the collaborative work of a large number of AGVs becomes the main trend.The effective multi-agent path finding(MAPF) algorithm is urgently needed to ensure the efficiency and realizability of the whole system. The complex terrain of outdoor scenarios is fully considered by using different values of passage cost to quantify different terrain types. The objective of the MAPF problem is to minimize the cost of passage while the Manhattan distance of paths and the time of passage are also evaluated for a comprehensive comparison. The pre-path-planning and real-time-conflict based greedy(PRG) algorithm is proposed as the solution. Simulation is conducted and the proposed PRG algorithm is compared with waiting-stop A^(*) and conflict based search(CBS) algorithms. Results show that the PRG algorithm outperforms the waiting-stop A^(*) algorithm in all three performance indicators,and it is more applicable than the CBS algorithm when a large number of AGVs are working collaboratively with frequent collisions. 展开更多
关键词 automated guided vehicle(AGV) multi-agent path finding(MAPF) complex terrain greedy algorithm
在线阅读 下载PDF
An Improved Bounded Conflict-Based Search for Multi-AGV Pathfinding in Automated Container Terminals
5
作者 Xinci Zhou Jin Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2705-2727,共23页
As the number of automated guided vehicles(AGVs)within automated container terminals(ACT)continues to rise,conflicts have becomemore frequent.Addressing point and edge conflicts ofAGVs,amulti-AGVconflict-free path pla... As the number of automated guided vehicles(AGVs)within automated container terminals(ACT)continues to rise,conflicts have becomemore frequent.Addressing point and edge conflicts ofAGVs,amulti-AGVconflict-free path planning model has been formulated to minimize the total path length of AGVs between shore bridges and yards.For larger terminalmaps and complex environments,the grid method is employed to model AGVs’road networks.An improved bounded conflict-based search(IBCBS)algorithmtailored to ACT is proposed,leveraging the binary tree principle to resolve conflicts and employing focal search to expand the search range.Comparative experiments involving 60 AGVs indicate a reduction in computing time by 37.397%to 64.06%while maintaining the over cost within 1.019%.Numerical experiments validate the proposed algorithm’s efficacy in enhancing efficiency and ensuring solution quality. 展开更多
关键词 Automated terminals multi-AGV multi-agent path finding(MAPF) conflict based search(CBS) AGV path planning
在线阅读 下载PDF
GPU-accelerated Conflict-based Search for Multi-agent Embodied Intelligence
6
作者 Mingkai Tang Ren Xin +3 位作者 Chao Fang Yuanhang Li Hongji Liu Jin Wu 《Machine Intelligence Research》 2025年第4期641-654,共14页
Embodied intelligence applications,such as autonomous robotics and smart transportation systems,require efficient coordination of multiple agents in dynamic environments.A critical challenge in this domain is the mult... Embodied intelligence applications,such as autonomous robotics and smart transportation systems,require efficient coordination of multiple agents in dynamic environments.A critical challenge in this domain is the multi-agent pathfinding(MAPF)problem,which ensures that agents can navigate conflict-free while optimizing their paths.Conflict-based search(CBS)is a well-established two-level solver for the MAPF problem.However,as the scale of the problem expands,the computation time becomes a significant challenge for the implementation of CBS.Previous optimizations have mainly focused on reducing the number of nodes explored by the high-level or low-level solver.This paper takes a different perspective by proposing a parallel version of CBS,namely GPU-accelerated conflict-based search(GACBS),which significantly exploits the parallel computing capabilities of GPU.GACBS employs a task coordination framework to enable collaboration between the high-level and low-level solvers with lightweight synchronous operations.Moreover,GACBS leverages a parallel low-level solver,called GATSA,to efficiently find the shortest path for a single agent under constraints.Experimental results show that the proposed GACBS significantly outperforms CPU-based CBS,with the maximum speedup ratio reaching over 46. 展开更多
关键词 Conflict-based search(CBS) GPU parallel computing multi-agent pathfinding(MAPF) multi-agent system planning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部