Specially shaped permanent magnet structures can satisfy the requirements of equipment with limited space or unique shapes.Thereby,these optimize the distribution of magnetic fields.However,traditional manufacturing m...Specially shaped permanent magnet structures can satisfy the requirements of equipment with limited space or unique shapes.Thereby,these optimize the distribution of magnetic fields.However,traditional manufacturing methods are limited by the mold design and insufficient material utilization.In this study,a polymer-based Nd_(2)Fe_(14)B(NdFeB)magnetic slurry was developed based on direct ink writing(DIW)3D printing technology.A rapidly volatilizable magnetic slurry was used to achieve 3D oriented controllable layering,thus realizing the direct molding fabrication of NdFeB permanent magnets with complex structures.By exploring and optimizing the 3D printing process parameters,specially shaped bonded NdFeB permanent magnet structures with high precision and shape fidelity were prepared.The test results indicated that the remnant magnetization of the printed magnets was proportional to the NdFeB content in the slurry,the coercivity closely matched that of the original powder,and the mechanical properties of the printed magnets were favorable.Building on this,a magnetically driven helical-structure robot was designed and printed to achieve stable motion in low-Reynolds-number fluids.This paper presents a new,low-cost solution for the room-temperature preparation of shape-bonded NdFeB permanent magnets.展开更多
Due to the ionic feature of the lanthanide ions,to straightly bridge two lanthanide(Ln)ions is rather challenging though this bridging mode is much beneficial to suppress the zero-field quantum tunneling of the magnet...Due to the ionic feature of the lanthanide ions,to straightly bridge two lanthanide(Ln)ions is rather challenging though this bridging mode is much beneficial to suppress the zero-field quantum tunneling of the magnetization(QTM)for single-molecule magnets(SMMs),a kind of nanosized magnetic materials for high-density information storage and magnetic resonance imaging contrast agent.Here we used an unusual terminal amino pyridine ligand which utilizes extensive supramolecular interactions to stabilize such an unusual linear bridging mode and obtained a series of such dimeric Ln(Ⅲ)complexes-{[LnL_(A)(4-NH_(2)py)_(5)]_(2)(μ-Cl)}[BPh_(4)]_(3)(For L_(A)^(-)=1-AdO^(-),1Ln;for L_(A)^(-)=~tBuO^(-),2Ln;Ln=Dy,Gd).More uniquely,the bridging chloride sits in the center of two improper rotation symmetry related Ln(Ⅲ)ions with local C_(5v)symmetry.The dimeric compounds 1Dy and 2Dy exhibit much slower low-temperature magnetic relaxation and thousands of times longer relaxation times at 2 K(τ_(2K)=2706.89 and 1437.05 s for 1Dy and 2Dy)compared to the diluted ones with the approaching magnetic property of the C_(5v)motifs(τ_(2K)=0.77 and 1.29 s for 1Dy@1Y and 2Dy@2Y).Though magnetic interactions mediated via the chloride bridge in both 1Dy and 2Dy are weak and antiferromagnetic,it is still very effective due to such a linear geometry to reduce the QTM effect in SMMs.展开更多
Commercial N52 sintered NdFeB magnets were processed by grain boundary diffusion(GBD)with Dy-Co-M(M=Cu,AI)alloys.The coercivity of magnets greatly increase to 17.62 and 18.83 kOe respectively when diffusing Dy_(58)Co_...Commercial N52 sintered NdFeB magnets were processed by grain boundary diffusion(GBD)with Dy-Co-M(M=Cu,AI)alloys.The coercivity of magnets greatly increase to 17.62 and 18.83 kOe respectively when diffusing Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)alloys,which are obviously higher than that of Dy58Co42GBD-treated magnet with 16.64 kOe,Further thermal stability studies indicate that the thermal stability of Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)GBD-treated magnets is further improved compared to the Dy58Co42GBD-treated magnet The results show that th e temperature coefficients of remanence(20-120℃)are reduced from-0.148%/℃to-0.134%/℃and-0.132%/℃by Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)GBD-treatment,respectively.Besides,the irreversible magnetic flux losses(120℃)for Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)diffusion magnets are 4.76%and 2.79%,respectively.Microstructural analyses demonstrate that the presence of Cu and Al elements reduces the excessive accumulation of Dy and Co on the surface in the diffusion magnets an d improves the diffusion depth and utilization of Dy and Co.Furthermore,the flow of Co from the triple junction phase to the thin grain boundary phase is promoted,which contributes to the uniform distribution of Co.In addition,the dynamic evolution of the magnetic domain structure during the temperature rise process was studied.This work provides insight into the preparation of high-performance and high-thermal stability magnets.展开更多
The low coercivity is the major factor inhibiting the large-scale commercial utilization of Nd-Ce-Fe-B sintered magnets.In this work,we achieved a record-high coercivity of 15.04 kOe in Ga-doped Nd-Ce-Fe-B sintered ma...The low coercivity is the major factor inhibiting the large-scale commercial utilization of Nd-Ce-Fe-B sintered magnets.In this work,we achieved a record-high coercivity of 15.04 kOe in Ga-doped Nd-Ce-Fe-B sintered magnets with 30 wt%Ce replacing Nd,demonstrating enormous potential.The Ga-doped Nd-Ce-Fe-B magnets with higher boron(HB)and lower boron(LB)content are designed.The coercivity of the HB magnet increases slightly from 10.80 to 12.26 kOe after annealing,attributed to the optimized distribution of grain boundary(GB)phases.In contrast,the coercivity of the LB magnet remarkably increases from 8.13 to 15.04 kOe after annealing.Microstructural observations indicate that the narrow GB phase in the as-sintered magnet is rich in Fe,and the strong exchange coupling of adjacent grains resulted in low coercivity.The evolution of Ga-rich phases reveals a potential formation mechanism of the RE_(6)Fe_(13)Ga phase,that is the RE-Fe amorphous phase and REGa phase in the as-sintered magnet combine to form the RE_(6)Fe_(13)Ga phase and RE-Ga amorphous phase during post-sinter annealing(RE:rare earth).Moreover,the GB phase of the annealed magnet transforms into a Fe-lean phase with a thickness of 16.4 nm.Magnetization and demagnetization behavior characterizations reveal that the exchange decoupling of adjacent grains induced by the optimized GB phases is the main reason for the remarkable coercivity enhancement,which is also validated by micromagnetic simulations.展开更多
Obtaining high magnetic properties in high Ce-content magnets is essential to expand the widespread application of low-cost magnets.In this study,high Ce-content magnets with up to 45%Ce substitution for Nd were prepa...Obtaining high magnetic properties in high Ce-content magnets is essential to expand the widespread application of low-cost magnets.In this study,high Ce-content magnets with up to 45%Ce substitution for Nd were prepared by combining the single/dual/multi-main-phase processes with the Dy-containing grain boundary diffusion process(GBDP).The effects of base magnets with different Ce distributions on GBDP were systematically investigated.Magnetic properties and micro structure analysis reveal that high-performance multi-main-phase(MMP)diffused magnets with remanence(Br)up to 12.52 kGs,coercivity up to 16.08 kOe,and maximum magnetic energy product up to 36.44 MGOe are obtained,which is attributed to the regulation of Ce by the MMP process,and the optimization of microstructure by Gd-Cu alloy.Meanwhile,the diffusion efficiency is significantly improved because of Ce being restricted to the grain core,which promotes the formation of a continuous structure at the grain boundaries,and the formation of a continuous multilayer shell grain structure with high anisotropy field,while the Br of the diffused magnet is maintained.Besides,magnetic domain analysis shows that the MMP diffused magnet effectively suppresses the nucleation of demagnetized domains and enhances the pinning effect of domain walls.The study establishes an experimental foundation for the development of sintered high Ce-content magnets showcasing superior performance.展开更多
The enhancement of coercivity in Nd-Fe-B sintered magnets modified by Pr_(58)Dy_(10)Cu_(32)alloy was investigated through scanning electron microscope(SEM)and in-situ magneto-optic Kerr effect(MOKE)microscopy.The modi...The enhancement of coercivity in Nd-Fe-B sintered magnets modified by Pr_(58)Dy_(10)Cu_(32)alloy was investigated through scanning electron microscope(SEM)and in-situ magneto-optic Kerr effect(MOKE)microscopy.The modification treatment resulted in the formation of a smooth and continuous weakly magnetic grain boundary layer and the(Nd,Pr,Dy)_(2)Fe_(14)B main phase with a high magnetocrystalline anisotropy field,leading to an increased coercivity of 23 kOe.MOKE observations revealed that the dynamic evolution of the maze domain area under an external magnetic field varied significantly between the original and modified magnets.Compared with the original magnets,the modified magnets exhibited a slower decrease in maze domain area during magnetization and a slower increase during reverse magnetization,contributing to the observed coercivity enhancement.展开更多
By developing high comprehensive performance((BH)_(max)+H_(cj)),Nd-Fe-B magnets can operate stably in high-temperature applications,greatly expanding the application scenarios of them.Unfortunately,there is a constrai...By developing high comprehensive performance((BH)_(max)+H_(cj)),Nd-Fe-B magnets can operate stably in high-temperature applications,greatly expanding the application scenarios of them.Unfortunately,there is a constraint relationship between coercivity(H_(cj))and maximum magnetic energy product((BH)_(max)),and an increase in H_(cj) always accompanies a decrease in(BH)_(max).Here,the excellent comprehensive magnetic performance of up to 86.54,namely(BH)_(max) of 42.33 MGOe and H_(cj) of 44.21 kOe,is unprecedented in the sintered Nd-Fe-B magnets.This magnet is obtained by designing a unique grain structure through micrometallurgical reactions to prepare a matrix with excellent comprehensive performance,and then by stepwise diffusion,the(BH)_(max) and H_(cj) of the magnet are simultaneously enhanced.The magnet prepared in this way has a“double-shell core”structure and Tb segregation distribution inside the core.The working temperature of the magnet in this work reached 280℃,providing a new approach for the development of high-performance Nd-Fe-B magnets.展开更多
Grain boundary diffusion technology is pivotal in the preparation of high-performance NdFeB magnets.This study investigates the factors that affect the efficiency of grain boundary diffusion,starting from the properti...Grain boundary diffusion technology is pivotal in the preparation of high-performance NdFeB magnets.This study investigates the factors that affect the efficiency of grain boundary diffusion,starting from the properties of the diffusion matrix.Through the adjustment of the sintering process,we effectively prepared magnets with varied densities that serve as the matrix for grain boundary diffusion with TbH,diffusion.The mobility characteristics of the Nd-rich phase during the densification stage are leveraged to ensure a more extensive distribution of heavy rare earth elements within the magnets.According to the experimental results,the increase in coercivity of low-density magnets after diffusion is significantly greater than that of relatively high-density magnets.The coercivity values measured are 805.32 kA/m for low-density magnets and 470.3 kA/m for high-density magnets.Additionally,grain boundary diffusion notably enhances the density of initial low-density magnets,addressing the issue of low density during the sintering stage.Before the diffusion treatment,the Nd-rich phases primarily concentrate at the triangular grain boundaries,resulting in an increased number of cavity defects in the magnets.These cavity defects contain atoms in a higher energy state,making them more prone to transition.Consequently,the diffusion activation energy at the void defects is lower than the intracrystalline diffusion activation energy,accelerating atom diffusion.The presence of larger cavities also provides more space for atom migration,thereby promoting the diffusion process.After the diffusion treatment,the proportion of bulk Nd-rich phases significantly decreases,and they infiltrate between the grains to fill the cavity defects,forming continuous fine grain boundaries.Based on these observations,the study aims to explore how to utilize this information to develop an efficient technique for grain boundary diffusion.展开更多
In this work,the effect of the Al addition amount in the TbAl coatings on the grain boundary diffusion proces s(GBDP)of Tb were systematically explored.Direct current magnetron sputtering(DCMS)method was utilized in c...In this work,the effect of the Al addition amount in the TbAl coatings on the grain boundary diffusion proces s(GBDP)of Tb were systematically explored.Direct current magnetron sputtering(DCMS)method was utilized in co-sputtering manner to synthesize the TbAl coatings with certain Tb consumption and various Al addition amount.Results show that the moderate Al addition amount significantly improves the wettability of grain boundary(GB)phases,thereby acquiring more continuous and uniform Tb-rich shells and GB phases between matrix phases,as well as deeper diffusion depth and denser microstructure.The largest increase amplitude of intrinsic coercivity(Hcj)is improved by 78.4%in TbAIdiffused magnet compared to the pure Tb-diffused magnet,while the remanence(Br)is expected to show an overall decreasing tendency accompanied with a slight increase in the decreasing process.However,when the Al addition amount is excessive,magnetic dilution effect is enhanced,and the Tbrich shells and GB phases between matrix phases become fuzzy and even invisible,which in turn deteriorates the magnetic properties of diffused magnets.展开更多
We investigated the efficiency of charge-to-spin conversion in two-dimensional Rashba altermagnets,a class of materials that combines the characteristics of both ferromagnets and antiferromagnets.Using quantum linear ...We investigated the efficiency of charge-to-spin conversion in two-dimensional Rashba altermagnets,a class of materials that combines the characteristics of both ferromagnets and antiferromagnets.Using quantum linear response theory,we quantified the longitudinal and spin Hall conductivities in this system and demonstrated a substantial enhancement in the spin Hall angle below the band crossing point through the dual effects of relativistic spin–orbit interaction and nonrelativistic altermagnetic exchange interaction.Additionally,the results showed that the skew scattering and intrinsic mechanisms arising from Fermi sea states are almost negligible in this system,in contrast to conventional ferromagnetic Rashba systems.Our findings not only elucidate the spin dynamics in Rashba altermagnets but also pave the way for developing novel strategies for manipulating charge-to-spin conversion via sophisticated control of noncollinear and collinear out-of-plane spin textures.展开更多
If you are asked what requires you to win a lottery and costs RMB 168,it may not be a car license plate,but a fridge magnet.Collecting fridge magnets has quietly become a popular culture in recent years.Many young peo...If you are asked what requires you to win a lottery and costs RMB 168,it may not be a car license plate,but a fridge magnet.Collecting fridge magnets has quietly become a popular culture in recent years.Many young people have more demand for fridge magnets than for refrigerators.The empty refrigerator covered with fridge magnets has become a trend.People with no idea how to choose souvenirs regard the fridge magnets as the best gifts,allowing this seemingly inconspicuous small product to create a billion-yuan market.展开更多
Lanthanide-based single-molecule magnets exhibit broad magnetic hysteresis,which manifests as slow magnetic relaxation in strong magnetic fields.However,the origin of the nontrivial hysteresis behaviors remains debate...Lanthanide-based single-molecule magnets exhibit broad magnetic hysteresis,which manifests as slow magnetic relaxation in strong magnetic fields.However,the origin of the nontrivial hysteresis behaviors remains debated.Here,we propose two influential mechanisms:activation of optical-phonon-mediated direct transitions within the ground-state doublet and the resonant Raman process.These discoveries,coupled with the g-factor anisotropy,account for the observed hysteresis behaviors in the regimes of fast magnetic relaxation.Our findings complement the recognized mechanisms used to interpret the magnetic hysteresis of single-molecule magnets.展开更多
In this work,a small amount of Al_(2)O_(3)powders(≤0.3 wt%)were incorporated into the Sm_(2)Co_(17)-type sin-tered magnets,obtaining both high mechanical and magnetic properties.It is found that 0.1%weight percentage...In this work,a small amount of Al_(2)O_(3)powders(≤0.3 wt%)were incorporated into the Sm_(2)Co_(17)-type sin-tered magnets,obtaining both high mechanical and magnetic properties.It is found that 0.1%weight percentage of Al_(2)O_(3)doping is enough to enhance the flexural strength by about 20%(∼180 MPa for the case of the c-axis parallel to height).Meanwhile,the(BH)max remains around 219 kJ/m^(3),and Hcj is 2052 kA/m,which is over 95%of that of the original magnets without doping.The promising improvement in flexural strength is mainly attributed to the grain size effective refinement caused by Sm_(2)O_(3)particles including newly-formed ones from the reaction of the Al_(2)O_(3)powder and Sm in the matrix.Furthermore,the grain size of the magnets decreases significantly with increasing of Al_(2)O_(3)doping up to 0.3 wt%.Espe-cially,the grain size of 0.3 wt%Al_(2)O_(3)doped magnets is refined by 37%.However,the flexural strengths(for the c-axis parallel to height and the c-axis parallel to width cases)of the magnets decrease sequen-tially and are even lower than that of the original magnet.The microstructure investigations indicate that the decrease in flexural strength may closely be correlated to the larger cell size and the incomplete cell boundaries phase.The obtained results infer that the flexural strength is susceptible to not only grain size but also the cellular structure of the magnets.展开更多
We investigate the origin of the 1/3 magnetization plateau in the S=1/2 kagome antiferromagnetic Heisenberg model using the variational Monte Carlo and exact diagonalization methods,to account for the recent experimen...We investigate the origin of the 1/3 magnetization plateau in the S=1/2 kagome antiferromagnetic Heisenberg model using the variational Monte Carlo and exact diagonalization methods,to account for the recent experimental observations in YCu_(3)(OH)_(6+x)Br_(3-x)and YCu_(3)(OD)_(6+x)Br_(3-x).We identify three degenerate valencebond-solid(VBS)states forming a√3×√3 unit cell.These states exhibit David-star patterns in the spin moment distribution with only two fractional values-1/3 and 2/3,and are related through translational transformations.While the spin correlations in these VBS states are found to be short-range,resembling a quantum spin liquid,we show that they have a vanishing topological entanglement entropy and thus are topologically trivial many-body states.Our theoretical results provide strong evidence that the 1/3 magnetization plateau observed in recent experiments arises from these√3×√3 VBS states with fractional spin moments.展开更多
BACKGROUND Magnetic compression anastomosis(MCA)offers a simple and reliable technique for inducing anastomoses at any point along the digestive tract.Evidence regarding whether the design of the MCA device influences...BACKGROUND Magnetic compression anastomosis(MCA)offers a simple and reliable technique for inducing anastomoses at any point along the digestive tract.Evidence regarding whether the design of the MCA device influences the anastomosis effect is lacking.AIM To investigate any difference in the side-to-side colonic anastomosis effect achieved with cylindrical vs circular ring magnets.METHODS We designed cylindrical and circular ring magnets suitable for side-to-side colonic anastomosis in rats.Thirty Sprague-Dawley rats were randomly divided into a cylindrical group,circular ring group,and cylindrical–circular ring group(n=10/group).Side-to-side colonic anastomosis was completed by transanal insertion of the magnets without incision of the colon.Operation time,perioperative complications,and magnet discharge time were recorded.Rats were euthanized 4 weeks postoperatively,and anastomotic specimens were obtained.The burst pressure and anastomotic diameter were measured sequentially,and anastomosis formation was observed by naked eye.Histological results were observed by light microscopy.RESULTS In all 30 rats,side-to-side colonic anastomosis was completed,for an operation success rate of 100%.No postoperative complications of bleeding and intestinal obstruction occurred,and the postoperative survival rate were 100%.The operation time,magnet discharge time,anastomotic bursting pressure,and anastomotic diameter did not differ significantly among the three designs(P>0.05).Healing was similar across the groups,with gross specimens showing good anastomotic healing and good mucosal continuity observed on histological analysis.CONCLUSION This study found no significant difference in the establishment of rat side-to-side colonic anastomosis with the use of cylindrical vs circular ring magnets.展开更多
The combination of dual-main-phase(DMP)(Nd,Ce)-Fe-B magnets and grain boundary diffusion process(GBDP)is currently a research topic for obtaining high-cost performance materials in rare earth permanent magnet fields.T...The combination of dual-main-phase(DMP)(Nd,Ce)-Fe-B magnets and grain boundary diffusion process(GBDP)is currently a research topic for obtaining high-cost performance materials in rare earth permanent magnet fields.The novel structural features of GBDP(Nd,Ce)-Fe-B magnets give a version of different domain reversal processes from those of non-diffused magnets.In this work,the in-situ magnetic domain evolution of the DMP magnets was observed at elevated temperatures,and the temperature demagnetization and coercivity mechanism of the GBDP dual-main-phase(Nd,Ce)-Fe-B magnets are discussed.The results show that the shell composition of different types of grains in DMP magnets is similar,while the magnetic microstructure results indicate the Ce-rich grains tend to demagnetize first.Dy-rich shell with a high anisotropic field caused by GBDP leads to an increase in the nucleation field,which enhances the coercivity.It is found that much more grains exhibit single domain characteristics in the remanent state for GBDP dual-main-phase(Nd,Ce)-Fe-B magnets.In addition,the grains that undergo demagnetization first are Ce-rich or Nd-rich grains,which is different from that of non-diffused magnets.These results were not found in previous studies but can be intuitively characterized from the perspective of magnetic domains in this work,providing a new perspective and understanding of the performance improvement of magnetic materials.展开更多
As an advanced 4^(th) generation synchrotron radiation facility,the Shenzhen Innovation Light-source Facility(SILF)storage ring is based on multi-bend achromat(MBA)lattices,enabling one to two orders of magnitude redu...As an advanced 4^(th) generation synchrotron radiation facility,the Shenzhen Innovation Light-source Facility(SILF)storage ring is based on multi-bend achromat(MBA)lattices,enabling one to two orders of magnitude reduction in beam emittance compared to the 3^(rd) generation storage ring.This significantly enhance the radiation brightness and coherence.The multipole magnets of many types for SILF storage ring are under preliminary design,which require high integral field homogeneity.As a result,a dedicated pole tip optimization procedure with high efficiency is developed for quadrupole and sextupole magnets with Opera-2D^(■)python script.The procedure considers also the 3D field effect which makes the optimization more straightforward.In this paper,the design of the quadrupole and sextupole magnets for SILF storage ring is first presented,followed by a detailed description of the implemented pole shape optimization method.展开更多
Structural fine-tuning is of significant importance to enhance the magnetic anisotropy and elucidate the magneto-structural relationship for single molecule magnets(SMMs).For this purpose,two mononuclear Dy^(3+) SMMs:...Structural fine-tuning is of significant importance to enhance the magnetic anisotropy and elucidate the magneto-structural relationship for single molecule magnets(SMMs).For this purpose,two mononuclear Dy^(3+) SMMs:[Dy{HB(pz)3}2(Sal)](1) and [Dy{HB(pz)_(3)}_(2)(MeO-Sal)](2),where HB(pz)_(3)^(-)represents hydro tris(pyrazolyl)borate,Sal denotes salicyiaidehyde and MeO-Sal stands for 5-methoxysalicylaldehyde,were designed and synthesized.Single crystal X-ray diffraction tests show that the two SMMs have very similar eight-coordinated molecule structures,although the introducing of-MeO substituent on salicyiaidehyde ligand induces the changes on the molecule packing mode and the space group.Both the two SMMs have a Dy-O_(aryloxidebond) that is significantly shorter than other Dy-O/N bonds,which defines the orientation of main anisotropy axis of the ground Kramers doublets and engenders the slow relaxation of the magnetization behavior,as evidenced by the magnetic susceptibility and the ab initio calculation.Though with an electron-donating substituent on the axial Sal ligand in 2,the collective magnetic anisotropy is not enhanced and the corresponding magneto-structural relationship is discussed based on the experimental and theoretical calculation results.In addition,as neutral molecules,1 and 2 are soluble in several common organic solvents,like CH_(2)Cl_(2),CHCl_(3),THF and so on.展开更多
The microstructure of(Nd,Ce)-Fe-B sintered magnets with different diffusion depths was characterized by a magnetic force microscope,and the relationship between the magnetic properties and the local structure of grain...The microstructure of(Nd,Ce)-Fe-B sintered magnets with different diffusion depths was characterized by a magnetic force microscope,and the relationship between the magnetic properties and the local structure of grain boundary diffused magnets is discussed.The domains perpendicular to the c-axis(easy magnetization direction)show a typical maze-like pattern,while those parallel to the c-axis show the characte ristics of plate domains.The significant gradient change is shown in the concentration of Dy with the direction of diffusion from the surface to the interior.Dy diffuses along grain boundaries and(Dy,Nd)_(2)Fe_(14)B layer with a high anisotropy field formed around the grains.Through in-situ electron probe micro-analysis/magnetic force microscopy(EPMA/MFM),it is found that the average domain width decreases,and the proportion of single domain grains increases as diffusion depth increases.This is caused by both the change of concentration and distribution of Dy.The grain boundary diffusion process changes the microstructure and microchemistry inside the magnet,and these local magnetism differences can be reflected by the configuration of the magnetic domain structure.展开更多
The effect of Ti addition on microstructures and magnetic properties of B-lean(Pr,Nd)_(31.1)Fe_(67.1-x)(CoCuGa)_(1.4)Ti_(x)B_(0.9)(wt%,x=0.0,0.1,0.2,0.3,0.4)sintered magnets were investigated.The remanence Bris slight...The effect of Ti addition on microstructures and magnetic properties of B-lean(Pr,Nd)_(31.1)Fe_(67.1-x)(CoCuGa)_(1.4)Ti_(x)B_(0.9)(wt%,x=0.0,0.1,0.2,0.3,0.4)sintered magnets were investigated.The remanence Bris slightly reduced due to the deteriorated orientation degree and the diminished volume fraction of main phase caused by the existence of rod-shaped Ti-B-rich phase.However,the HcJobviously increases from1145 kA/m for x=0.0 sample to 1515 kA/m for x=0.2 sample.The results demonstrate that the increments of coercivity for x=0.2 and x=0.0 samples after post-sinter annealing(PSA)are 62.9%and 20.6%,respectively.Rod-shaped Ti-B-rich phase forms after Ti doping,which leads to the existence of6:13:1 type RE-Fe-(Cu,Ga)phase with high Fe content at triple junctions.This is beneficial to the formation of continuous thin grain boundaries with low Fe content,which can weaken the exchange coupling interaction between adjacent grains,leading to the improved coercivity.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.52375348,52175331)National Natural Science Foundation of Shandong Province(Grant Nos.ZR2022ME014,ZR2020ZD04).
文摘Specially shaped permanent magnet structures can satisfy the requirements of equipment with limited space or unique shapes.Thereby,these optimize the distribution of magnetic fields.However,traditional manufacturing methods are limited by the mold design and insufficient material utilization.In this study,a polymer-based Nd_(2)Fe_(14)B(NdFeB)magnetic slurry was developed based on direct ink writing(DIW)3D printing technology.A rapidly volatilizable magnetic slurry was used to achieve 3D oriented controllable layering,thus realizing the direct molding fabrication of NdFeB permanent magnets with complex structures.By exploring and optimizing the 3D printing process parameters,specially shaped bonded NdFeB permanent magnet structures with high precision and shape fidelity were prepared.The test results indicated that the remnant magnetization of the printed magnets was proportional to the NdFeB content in the slurry,the coercivity closely matched that of the original powder,and the mechanical properties of the printed magnets were favorable.Building on this,a magnetically driven helical-structure robot was designed and printed to achieve stable motion in low-Reynolds-number fluids.This paper presents a new,low-cost solution for the room-temperature preparation of shape-bonded NdFeB permanent magnets.
基金supported by the National Natural Science Foundation of China(No.22375157)the State Key Laboratory of Electrical Insulation and Power Equipment(No.EIPE23405)+2 种基金the Fundamental Research Funds for Central Universities(No.xtr052023002)the Special Support Plan of Shaanxi Province for Young Top-notch Talentthe Medical-Engineering Cross Project of the First Affiliated Hospital of XJTU(No.QYJC02)。
文摘Due to the ionic feature of the lanthanide ions,to straightly bridge two lanthanide(Ln)ions is rather challenging though this bridging mode is much beneficial to suppress the zero-field quantum tunneling of the magnetization(QTM)for single-molecule magnets(SMMs),a kind of nanosized magnetic materials for high-density information storage and magnetic resonance imaging contrast agent.Here we used an unusual terminal amino pyridine ligand which utilizes extensive supramolecular interactions to stabilize such an unusual linear bridging mode and obtained a series of such dimeric Ln(Ⅲ)complexes-{[LnL_(A)(4-NH_(2)py)_(5)]_(2)(μ-Cl)}[BPh_(4)]_(3)(For L_(A)^(-)=1-AdO^(-),1Ln;for L_(A)^(-)=~tBuO^(-),2Ln;Ln=Dy,Gd).More uniquely,the bridging chloride sits in the center of two improper rotation symmetry related Ln(Ⅲ)ions with local C_(5v)symmetry.The dimeric compounds 1Dy and 2Dy exhibit much slower low-temperature magnetic relaxation and thousands of times longer relaxation times at 2 K(τ_(2K)=2706.89 and 1437.05 s for 1Dy and 2Dy)compared to the diluted ones with the approaching magnetic property of the C_(5v)motifs(τ_(2K)=0.77 and 1.29 s for 1Dy@1Y and 2Dy@2Y).Though magnetic interactions mediated via the chloride bridge in both 1Dy and 2Dy are weak and antiferromagnetic,it is still very effective due to such a linear geometry to reduce the QTM effect in SMMs.
基金Project supported by the National Key R&D Program of China(2022YFB3505003,2021YFB3502802)the Natural Science Foundation of Zhejiang Province(LQ23E010001)+3 种基金"Pioneer"and"Leading Goose"R&D program of Zhejiang(2022C01020)Key Research and Development Program of Ningbo City(2023Z093)Kunpeng Plan of Zhejiang ProvinceNingbo Top Talent Program。
文摘Commercial N52 sintered NdFeB magnets were processed by grain boundary diffusion(GBD)with Dy-Co-M(M=Cu,AI)alloys.The coercivity of magnets greatly increase to 17.62 and 18.83 kOe respectively when diffusing Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)alloys,which are obviously higher than that of Dy58Co42GBD-treated magnet with 16.64 kOe,Further thermal stability studies indicate that the thermal stability of Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)GBD-treated magnets is further improved compared to the Dy58Co42GBD-treated magnet The results show that th e temperature coefficients of remanence(20-120℃)are reduced from-0.148%/℃to-0.134%/℃and-0.132%/℃by Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)GBD-treatment,respectively.Besides,the irreversible magnetic flux losses(120℃)for Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)diffusion magnets are 4.76%and 2.79%,respectively.Microstructural analyses demonstrate that the presence of Cu and Al elements reduces the excessive accumulation of Dy and Co on the surface in the diffusion magnets an d improves the diffusion depth and utilization of Dy and Co.Furthermore,the flow of Co from the triple junction phase to the thin grain boundary phase is promoted,which contributes to the uniform distribution of Co.In addition,the dynamic evolution of the magnetic domain structure during the temperature rise process was studied.This work provides insight into the preparation of high-performance and high-thermal stability magnets.
基金supported by the National Natural Science Foundation of China(Nos.52261037,52088101)the Key research project of Jiangxi Province(No.20203ABC28W006)the Double-Thousand Plan of Jiangxi Province(No.jxsq2023101057).
文摘The low coercivity is the major factor inhibiting the large-scale commercial utilization of Nd-Ce-Fe-B sintered magnets.In this work,we achieved a record-high coercivity of 15.04 kOe in Ga-doped Nd-Ce-Fe-B sintered magnets with 30 wt%Ce replacing Nd,demonstrating enormous potential.The Ga-doped Nd-Ce-Fe-B magnets with higher boron(HB)and lower boron(LB)content are designed.The coercivity of the HB magnet increases slightly from 10.80 to 12.26 kOe after annealing,attributed to the optimized distribution of grain boundary(GB)phases.In contrast,the coercivity of the LB magnet remarkably increases from 8.13 to 15.04 kOe after annealing.Microstructural observations indicate that the narrow GB phase in the as-sintered magnet is rich in Fe,and the strong exchange coupling of adjacent grains resulted in low coercivity.The evolution of Ga-rich phases reveals a potential formation mechanism of the RE_(6)Fe_(13)Ga phase,that is the RE-Fe amorphous phase and REGa phase in the as-sintered magnet combine to form the RE_(6)Fe_(13)Ga phase and RE-Ga amorphous phase during post-sinter annealing(RE:rare earth).Moreover,the GB phase of the annealed magnet transforms into a Fe-lean phase with a thickness of 16.4 nm.Magnetization and demagnetization behavior characterizations reveal that the exchange decoupling of adjacent grains induced by the optimized GB phases is the main reason for the remarkable coercivity enhancement,which is also validated by micromagnetic simulations.
基金Project supported by the National Key Research and Development Program of China(2021YFB3502803)The"Pioneer"and"Leading Goose"R&D program of Zhejiang(2022C01020)+3 种基金Science and Technology Program of Zhejiang Province(2024C01145)The Key Research and Development Program of Ningbo City(2023Z093)Kunpeng Plan of Zhejiang ProvinceNingbo Top Talent Program。
文摘Obtaining high magnetic properties in high Ce-content magnets is essential to expand the widespread application of low-cost magnets.In this study,high Ce-content magnets with up to 45%Ce substitution for Nd were prepared by combining the single/dual/multi-main-phase processes with the Dy-containing grain boundary diffusion process(GBDP).The effects of base magnets with different Ce distributions on GBDP were systematically investigated.Magnetic properties and micro structure analysis reveal that high-performance multi-main-phase(MMP)diffused magnets with remanence(Br)up to 12.52 kGs,coercivity up to 16.08 kOe,and maximum magnetic energy product up to 36.44 MGOe are obtained,which is attributed to the regulation of Ce by the MMP process,and the optimization of microstructure by Gd-Cu alloy.Meanwhile,the diffusion efficiency is significantly improved because of Ce being restricted to the grain core,which promotes the formation of a continuous structure at the grain boundaries,and the formation of a continuous multilayer shell grain structure with high anisotropy field,while the Br of the diffused magnet is maintained.Besides,magnetic domain analysis shows that the MMP diffused magnet effectively suppresses the nucleation of demagnetized domains and enhances the pinning effect of domain walls.The study establishes an experimental foundation for the development of sintered high Ce-content magnets showcasing superior performance.
基金supported by the National Key Research and Development Program of China(Grant Nos.2021YFB3500300,2023YFB3507000,and 2023XYJG0001-01-03)the National Natural Science Foundation of China(Grant No.52171167)Inner Mongolia Northern Rare Earth Advanced Materials Technology Innovation Co.,Ltd.Project(Grant No.CXZX-B-202304-0004).
文摘The enhancement of coercivity in Nd-Fe-B sintered magnets modified by Pr_(58)Dy_(10)Cu_(32)alloy was investigated through scanning electron microscope(SEM)and in-situ magneto-optic Kerr effect(MOKE)microscopy.The modification treatment resulted in the formation of a smooth and continuous weakly magnetic grain boundary layer and the(Nd,Pr,Dy)_(2)Fe_(14)B main phase with a high magnetocrystalline anisotropy field,leading to an increased coercivity of 23 kOe.MOKE observations revealed that the dynamic evolution of the maze domain area under an external magnetic field varied significantly between the original and modified magnets.Compared with the original magnets,the modified magnets exhibited a slower decrease in maze domain area during magnetization and a slower increase during reverse magnetization,contributing to the observed coercivity enhancement.
基金supported by the National Key Research and Development Program of China(No.2021YFB3502802)Zhejiang Provincial Department of Science and Technology of China(No.2022C01020)+3 种基金the Key Research and Development Program of Ningbo City(No.2023Z093)Ningbo Natural Science Foundation(No.2023J344)the Natural Science Foundation of Zhejiang Province(No.LQ23E010001)Ningbo Young Science and Technology Innovation Leading Talents(No.2023QL040).
文摘By developing high comprehensive performance((BH)_(max)+H_(cj)),Nd-Fe-B magnets can operate stably in high-temperature applications,greatly expanding the application scenarios of them.Unfortunately,there is a constraint relationship between coercivity(H_(cj))and maximum magnetic energy product((BH)_(max)),and an increase in H_(cj) always accompanies a decrease in(BH)_(max).Here,the excellent comprehensive magnetic performance of up to 86.54,namely(BH)_(max) of 42.33 MGOe and H_(cj) of 44.21 kOe,is unprecedented in the sintered Nd-Fe-B magnets.This magnet is obtained by designing a unique grain structure through micrometallurgical reactions to prepare a matrix with excellent comprehensive performance,and then by stepwise diffusion,the(BH)_(max) and H_(cj) of the magnet are simultaneously enhanced.The magnet prepared in this way has a“double-shell core”structure and Tb segregation distribution inside the core.The working temperature of the magnet in this work reached 280℃,providing a new approach for the development of high-performance Nd-Fe-B magnets.
基金Project supported by the National Natural Science Foundation of China(52361033)National Key Research and Development Program(2022YFB3505400)+3 种基金Ministry of Industry and Information Technology Heavy Rare Earth Special Use of Sintered NdFeB Project(TC220H06J)Academic and Technical Leaders in Major Disciplines in Jiangxi Province(2022BCJ23007)Jiangxi Province Science and Technology Cooperation Key Project(20212BDH80007)Jiangxi Graduate Student Innovation Special Fund Project(YC2023-B213)。
文摘Grain boundary diffusion technology is pivotal in the preparation of high-performance NdFeB magnets.This study investigates the factors that affect the efficiency of grain boundary diffusion,starting from the properties of the diffusion matrix.Through the adjustment of the sintering process,we effectively prepared magnets with varied densities that serve as the matrix for grain boundary diffusion with TbH,diffusion.The mobility characteristics of the Nd-rich phase during the densification stage are leveraged to ensure a more extensive distribution of heavy rare earth elements within the magnets.According to the experimental results,the increase in coercivity of low-density magnets after diffusion is significantly greater than that of relatively high-density magnets.The coercivity values measured are 805.32 kA/m for low-density magnets and 470.3 kA/m for high-density magnets.Additionally,grain boundary diffusion notably enhances the density of initial low-density magnets,addressing the issue of low density during the sintering stage.Before the diffusion treatment,the Nd-rich phases primarily concentrate at the triangular grain boundaries,resulting in an increased number of cavity defects in the magnets.These cavity defects contain atoms in a higher energy state,making them more prone to transition.Consequently,the diffusion activation energy at the void defects is lower than the intracrystalline diffusion activation energy,accelerating atom diffusion.The presence of larger cavities also provides more space for atom migration,thereby promoting the diffusion process.After the diffusion treatment,the proportion of bulk Nd-rich phases significantly decreases,and they infiltrate between the grains to fill the cavity defects,forming continuous fine grain boundaries.Based on these observations,the study aims to explore how to utilize this information to develop an efficient technique for grain boundary diffusion.
基金Project supported by National Key Research and Development Program of China(2021YFB3500100)National Natural Science Foundation of China(52301068)。
文摘In this work,the effect of the Al addition amount in the TbAl coatings on the grain boundary diffusion proces s(GBDP)of Tb were systematically explored.Direct current magnetron sputtering(DCMS)method was utilized in co-sputtering manner to synthesize the TbAl coatings with certain Tb consumption and various Al addition amount.Results show that the moderate Al addition amount significantly improves the wettability of grain boundary(GB)phases,thereby acquiring more continuous and uniform Tb-rich shells and GB phases between matrix phases,as well as deeper diffusion depth and denser microstructure.The largest increase amplitude of intrinsic coercivity(Hcj)is improved by 78.4%in TbAIdiffused magnet compared to the pure Tb-diffused magnet,while the remanence(Br)is expected to show an overall decreasing tendency accompanied with a slight increase in the decreasing process.However,when the Al addition amount is excessive,magnetic dilution effect is enhanced,and the Tbrich shells and GB phases between matrix phases become fuzzy and even invisible,which in turn deteriorates the magnetic properties of diffused magnets.
基金supported by the National Key R&D Program(Grant No.2022YFA1402204)the National Natural Science Foundation of China(Grant No.52471020)。
文摘We investigated the efficiency of charge-to-spin conversion in two-dimensional Rashba altermagnets,a class of materials that combines the characteristics of both ferromagnets and antiferromagnets.Using quantum linear response theory,we quantified the longitudinal and spin Hall conductivities in this system and demonstrated a substantial enhancement in the spin Hall angle below the band crossing point through the dual effects of relativistic spin–orbit interaction and nonrelativistic altermagnetic exchange interaction.Additionally,the results showed that the skew scattering and intrinsic mechanisms arising from Fermi sea states are almost negligible in this system,in contrast to conventional ferromagnetic Rashba systems.Our findings not only elucidate the spin dynamics in Rashba altermagnets but also pave the way for developing novel strategies for manipulating charge-to-spin conversion via sophisticated control of noncollinear and collinear out-of-plane spin textures.
文摘If you are asked what requires you to win a lottery and costs RMB 168,it may not be a car license plate,but a fridge magnet.Collecting fridge magnets has quietly become a popular culture in recent years.Many young people have more demand for fridge magnets than for refrigerators.The empty refrigerator covered with fridge magnets has become a trend.People with no idea how to choose souvenirs regard the fridge magnets as the best gifts,allowing this seemingly inconspicuous small product to create a billion-yuan market.
基金the support from the Sichuan Normal Universitysupport from the National Natural Science Foundation of China(Grant No.22375157)+1 种基金support from the National Natural Science Foundation of China(Grant Nos.12474122,52171188,51771127,and 52111530143)the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province(Grant No.2021ZYD0025)。
文摘Lanthanide-based single-molecule magnets exhibit broad magnetic hysteresis,which manifests as slow magnetic relaxation in strong magnetic fields.However,the origin of the nontrivial hysteresis behaviors remains debated.Here,we propose two influential mechanisms:activation of optical-phonon-mediated direct transitions within the ground-state doublet and the resonant Raman process.These discoveries,coupled with the g-factor anisotropy,account for the observed hysteresis behaviors in the regimes of fast magnetic relaxation.Our findings complement the recognized mechanisms used to interpret the magnetic hysteresis of single-molecule magnets.
基金supported by the National Key Research and Development Program of China(Nos.2021YFB3503100,2022YFB3505303,2021YFB3501500)the Major Projects in the Inner Mongolia Autonomous Region of China.
文摘In this work,a small amount of Al_(2)O_(3)powders(≤0.3 wt%)were incorporated into the Sm_(2)Co_(17)-type sin-tered magnets,obtaining both high mechanical and magnetic properties.It is found that 0.1%weight percentage of Al_(2)O_(3)doping is enough to enhance the flexural strength by about 20%(∼180 MPa for the case of the c-axis parallel to height).Meanwhile,the(BH)max remains around 219 kJ/m^(3),and Hcj is 2052 kA/m,which is over 95%of that of the original magnets without doping.The promising improvement in flexural strength is mainly attributed to the grain size effective refinement caused by Sm_(2)O_(3)particles including newly-formed ones from the reaction of the Al_(2)O_(3)powder and Sm in the matrix.Furthermore,the grain size of the magnets decreases significantly with increasing of Al_(2)O_(3)doping up to 0.3 wt%.Espe-cially,the grain size of 0.3 wt%Al_(2)O_(3)doped magnets is refined by 37%.However,the flexural strengths(for the c-axis parallel to height and the c-axis parallel to width cases)of the magnets decrease sequen-tially and are even lower than that of the original magnet.The microstructure investigations indicate that the decrease in flexural strength may closely be correlated to the larger cell size and the incomplete cell boundaries phase.The obtained results infer that the flexural strength is susceptible to not only grain size but also the cellular structure of the magnets.
基金supported by the National Key Projects for Research and Development of China(Grant Nos.2021YFA1400400 and 2024YFA1408104)the National Natural Science Foundation of China(Grant Nos.12434005,12374137,and 92165205).
文摘We investigate the origin of the 1/3 magnetization plateau in the S=1/2 kagome antiferromagnetic Heisenberg model using the variational Monte Carlo and exact diagonalization methods,to account for the recent experimental observations in YCu_(3)(OH)_(6+x)Br_(3-x)and YCu_(3)(OD)_(6+x)Br_(3-x).We identify three degenerate valencebond-solid(VBS)states forming a√3×√3 unit cell.These states exhibit David-star patterns in the spin moment distribution with only two fractional values-1/3 and 2/3,and are related through translational transformations.While the spin correlations in these VBS states are found to be short-range,resembling a quantum spin liquid,we show that they have a vanishing topological entanglement entropy and thus are topologically trivial many-body states.Our theoretical results provide strong evidence that the 1/3 magnetization plateau observed in recent experiments arises from these√3×√3 VBS states with fractional spin moments.
基金Supported by the Key Research and Development Program of Shaanxi,No.2024SF-YBXM-447the Institutional Foundation of The First Affiliated Hospital of Xi’an Jiaotong University,No.2022MS-07the Fundamental Research Funds for the Central Universities,No.xzy022023068.
文摘BACKGROUND Magnetic compression anastomosis(MCA)offers a simple and reliable technique for inducing anastomoses at any point along the digestive tract.Evidence regarding whether the design of the MCA device influences the anastomosis effect is lacking.AIM To investigate any difference in the side-to-side colonic anastomosis effect achieved with cylindrical vs circular ring magnets.METHODS We designed cylindrical and circular ring magnets suitable for side-to-side colonic anastomosis in rats.Thirty Sprague-Dawley rats were randomly divided into a cylindrical group,circular ring group,and cylindrical–circular ring group(n=10/group).Side-to-side colonic anastomosis was completed by transanal insertion of the magnets without incision of the colon.Operation time,perioperative complications,and magnet discharge time were recorded.Rats were euthanized 4 weeks postoperatively,and anastomotic specimens were obtained.The burst pressure and anastomotic diameter were measured sequentially,and anastomosis formation was observed by naked eye.Histological results were observed by light microscopy.RESULTS In all 30 rats,side-to-side colonic anastomosis was completed,for an operation success rate of 100%.No postoperative complications of bleeding and intestinal obstruction occurred,and the postoperative survival rate were 100%.The operation time,magnet discharge time,anastomotic bursting pressure,and anastomotic diameter did not differ significantly among the three designs(P>0.05).Healing was similar across the groups,with gross specimens showing good anastomotic healing and good mucosal continuity observed on histological analysis.CONCLUSION This study found no significant difference in the establishment of rat side-to-side colonic anastomosis with the use of cylindrical vs circular ring magnets.
基金supported by the National Key Research and Development Program of China(Nos.2021YFB3503003,2021YFB3503100,and 2022YFB3505401).
文摘The combination of dual-main-phase(DMP)(Nd,Ce)-Fe-B magnets and grain boundary diffusion process(GBDP)is currently a research topic for obtaining high-cost performance materials in rare earth permanent magnet fields.The novel structural features of GBDP(Nd,Ce)-Fe-B magnets give a version of different domain reversal processes from those of non-diffused magnets.In this work,the in-situ magnetic domain evolution of the DMP magnets was observed at elevated temperatures,and the temperature demagnetization and coercivity mechanism of the GBDP dual-main-phase(Nd,Ce)-Fe-B magnets are discussed.The results show that the shell composition of different types of grains in DMP magnets is similar,while the magnetic microstructure results indicate the Ce-rich grains tend to demagnetize first.Dy-rich shell with a high anisotropic field caused by GBDP leads to an increase in the nucleation field,which enhances the coercivity.It is found that much more grains exhibit single domain characteristics in the remanent state for GBDP dual-main-phase(Nd,Ce)-Fe-B magnets.In addition,the grains that undergo demagnetization first are Ce-rich or Nd-rich grains,which is different from that of non-diffused magnets.These results were not found in previous studies but can be intuitively characterized from the perspective of magnetic domains in this work,providing a new perspective and understanding of the performance improvement of magnetic materials.
文摘As an advanced 4^(th) generation synchrotron radiation facility,the Shenzhen Innovation Light-source Facility(SILF)storage ring is based on multi-bend achromat(MBA)lattices,enabling one to two orders of magnitude reduction in beam emittance compared to the 3^(rd) generation storage ring.This significantly enhance the radiation brightness and coherence.The multipole magnets of many types for SILF storage ring are under preliminary design,which require high integral field homogeneity.As a result,a dedicated pole tip optimization procedure with high efficiency is developed for quadrupole and sextupole magnets with Opera-2D^(■)python script.The procedure considers also the 3D field effect which makes the optimization more straightforward.In this paper,the design of the quadrupole and sextupole magnets for SILF storage ring is first presented,followed by a detailed description of the implemented pole shape optimization method.
基金Project supported by the Nature Science Foundation of Shaanxi Province (2023-JC-YB-137)National Natural Science Foundation of China (21901200)。
文摘Structural fine-tuning is of significant importance to enhance the magnetic anisotropy and elucidate the magneto-structural relationship for single molecule magnets(SMMs).For this purpose,two mononuclear Dy^(3+) SMMs:[Dy{HB(pz)3}2(Sal)](1) and [Dy{HB(pz)_(3)}_(2)(MeO-Sal)](2),where HB(pz)_(3)^(-)represents hydro tris(pyrazolyl)borate,Sal denotes salicyiaidehyde and MeO-Sal stands for 5-methoxysalicylaldehyde,were designed and synthesized.Single crystal X-ray diffraction tests show that the two SMMs have very similar eight-coordinated molecule structures,although the introducing of-MeO substituent on salicyiaidehyde ligand induces the changes on the molecule packing mode and the space group.Both the two SMMs have a Dy-O_(aryloxidebond) that is significantly shorter than other Dy-O/N bonds,which defines the orientation of main anisotropy axis of the ground Kramers doublets and engenders the slow relaxation of the magnetization behavior,as evidenced by the magnetic susceptibility and the ab initio calculation.Though with an electron-donating substituent on the axial Sal ligand in 2,the collective magnetic anisotropy is not enhanced and the corresponding magneto-structural relationship is discussed based on the experimental and theoretical calculation results.In addition,as neutral molecules,1 and 2 are soluble in several common organic solvents,like CH_(2)Cl_(2),CHCl_(3),THF and so on.
基金Project supported by the National Key Research and Development Program of China(2021YFB3503003,2021YFB3503100,2022YFB3505401)。
文摘The microstructure of(Nd,Ce)-Fe-B sintered magnets with different diffusion depths was characterized by a magnetic force microscope,and the relationship between the magnetic properties and the local structure of grain boundary diffused magnets is discussed.The domains perpendicular to the c-axis(easy magnetization direction)show a typical maze-like pattern,while those parallel to the c-axis show the characte ristics of plate domains.The significant gradient change is shown in the concentration of Dy with the direction of diffusion from the surface to the interior.Dy diffuses along grain boundaries and(Dy,Nd)_(2)Fe_(14)B layer with a high anisotropy field formed around the grains.Through in-situ electron probe micro-analysis/magnetic force microscopy(EPMA/MFM),it is found that the average domain width decreases,and the proportion of single domain grains increases as diffusion depth increases.This is caused by both the change of concentration and distribution of Dy.The grain boundary diffusion process changes the microstructure and microchemistry inside the magnet,and these local magnetism differences can be reflected by the configuration of the magnetic domain structure.
基金supported by the National Natural Science Foundation of China(52061015,52371188)Young Talents Program of Jiangxi Provincial Major Discipline Academic and Technical Leaders Training Program(20212BCJ23008)+2 种基金Jiangxi Provincial Natural Science Foundation(20212BAB214018)Technology Program of Fujian Province(2021T3063)Jiangxi Province Key Laboratory of Magnetic Metallic Materials and Devices(2024SSY05061)。
文摘The effect of Ti addition on microstructures and magnetic properties of B-lean(Pr,Nd)_(31.1)Fe_(67.1-x)(CoCuGa)_(1.4)Ti_(x)B_(0.9)(wt%,x=0.0,0.1,0.2,0.3,0.4)sintered magnets were investigated.The remanence Bris slightly reduced due to the deteriorated orientation degree and the diminished volume fraction of main phase caused by the existence of rod-shaped Ti-B-rich phase.However,the HcJobviously increases from1145 kA/m for x=0.0 sample to 1515 kA/m for x=0.2 sample.The results demonstrate that the increments of coercivity for x=0.2 and x=0.0 samples after post-sinter annealing(PSA)are 62.9%and 20.6%,respectively.Rod-shaped Ti-B-rich phase forms after Ti doping,which leads to the existence of6:13:1 type RE-Fe-(Cu,Ga)phase with high Fe content at triple junctions.This is beneficial to the formation of continuous thin grain boundaries with low Fe content,which can weaken the exchange coupling interaction between adjacent grains,leading to the improved coercivity.