The Dst index has been commonly used to measure the geomagnetic effectiveness of magnetic storm events for several decades.Based on Burton’s empirical Dst model and the global magneto-hydrodynamic(MHD)simulation of E...The Dst index has been commonly used to measure the geomagnetic effectiveness of magnetic storm events for several decades.Based on Burton’s empirical Dst model and the global magneto-hydrodynamic(MHD)simulation of Earth’s magnetosphere,here we proposed a semi-empirical model to forecast the Dst index during geomagnetic storms.In this model,the ring current contribution to the Dst index is derived from Burton’s model,while the contributions from other current systems are obtained from the global MHD simulation.In order to verify the model accuracy,a number of recent magnetic storm events are tested and the simulated Dst index is compared with the observation through the correlation coefficient(CC),prediction efficiency(PE),root mean square error(RMSE)and central root mean square error(CRMSE).The results indicate that,in the context of moderate and intense geomagnetic storm events,the semi-empirical model performs well in global MHD simulations,showing relatively higher CC and PE,and lower RMSE and CRMSE compared to those from the empirical model.Compared with the physics-based ring current models,this model inherits the advantage of fast processing from the empirical model,and easy implementation in a global MHD model of Earth’s magnetosphere.Therefore,it is suitable for the Dst estimation under a context of a global MHD simulation.展开更多
In this paper, the Space Weather Modeling Framework(SWMF) is used to simulate the real-time response of the magnetosphere to a solar wind event on June 5, 1998, in which the interplanetary magnetic field shifted its d...In this paper, the Space Weather Modeling Framework(SWMF) is used to simulate the real-time response of the magnetosphere to a solar wind event on June 5, 1998, in which the interplanetary magnetic field shifted its direction from north to south.Since most current models do not take into account convective effects of the inner magnetosphere, we first study the importance of Rice Convection Model(RCM) in the global model.We then focus on the following four aspects of the magnetosphere's response: the magnetosphere's density distribution, the structure of its magnetic field lines, the area of the polar cap boundary, and the corresponding ionospheric current change.We find that(1) when the IMF changes from north to south in this event, high magnetosheath density is observed to flow downstream along the magnetopause with the solar wind; low-latitude reconnection at dayside occurs under the southward IMF, while the magnetic field lines in the tail lobe caudal, caused by the nightside high latitude reconnection, extend into the interplanetary space.Open magnetic field lines exist simultaneously at both high and low latitudes at the magnetopause;(2) the area of the polar cap is obviously increased if the IMF turns from the north to the south; this observation is highly consistent with empirical observations;(3) the ionospheric field align current in the northern hemisphere is stronger than in the southern hemisphere and also increases as the IMF changes from north to south.SWMF with the Rice Convection effect provides reliable modeling of the magnetospheric and ionospheric response to this solar wind variation.展开更多
Magnetic reconnection underlies the physical mechanism of explosive phenomena in the solar atmosphere and planetary magnetospheres, where plasma is usually collisionless. In the standard model of collisionless magneti...Magnetic reconnection underlies the physical mechanism of explosive phenomena in the solar atmosphere and planetary magnetospheres, where plasma is usually collisionless. In the standard model of collisionless magnetic reconnection,the diffusion region consists of two substructures: an electron diffusion region is embedded in an ion diffusion region,in which their scales are based on the electron and ion inertial lengths. In the ion diffusion region, ions are unfrozen in the magnetic fields while electrons are magnetized. The resulted Hall effect from the different motions between ions and electrons leads to the production of the in-plane currents, and then generates the quadrupolar structure of out-of-plane magnetic field. In the electron diffusion region, even electrons become unfrozen in the magnetic fields, and the reconnection electric field is contributed by the off-diagonal electron pressure terms in the generalized Ohm’s law. The reconnection rate is insensitive to the specific mechanism to break the frozen-in condition, and is on the order of 0.1. In recent years, the launching of Cluster, THEMIS, MMS, and other spacecraft has provided us opportunities to study collisionless magnetic reconnection in the Earth’s magnetosphere, and to verify and extend more insights on the standard model of collisionless magnetic reconnection. In this paper, we will review what we have learned beyond the standard model with the help of observations from these spacecraft as well as kinetic simulations.展开更多
A long-standing mystery in the study of Field-Aligned Currents(FACs) has been that: how the currents are generated and why they appear to be much stronger at high altitudes than in the ionosphere. Here we present two ...A long-standing mystery in the study of Field-Aligned Currents(FACs) has been that: how the currents are generated and why they appear to be much stronger at high altitudes than in the ionosphere. Here we present two events of magnetotail FACs observed by the Magnetospheric Multiscale Spacecraft(MMS) on 1 st July and 14 th July 2016, to show how the Substorm Current Wedges(SCW) were formed. The results show that particles were transferred heading towards the Earth during the expansion phase of substorms.The azimuthal flow formed clockwise(counter-clockwise) vortex-like motion, and then generated downward(upward) FACs on the tailward/poleward side of the distorted field with opposite vorticity on their Earthward/equatorward side. We also analyzed the Region 1 FACs observed by the Earth Explorer Swarm spacecraft on 1 st July 2016 and found that they were associated with FACs observed by MMS, although differing by a factor of 10. This difference suggests that either there was the closure of the currents at altitudes above 500 km or the currents were not strictly parallel to B and closed at longitudes away from where they were generated.展开更多
A future Chinese mission is introduced to study the coupling between magnetosphere,ionosphere and thermosphere,i.e.the Magnetosphere-Ionosphere-Thermosphere Coupling Small Satellite Constellation(MIT).The scientific o...A future Chinese mission is introduced to study the coupling between magnetosphere,ionosphere and thermosphere,i.e.the Magnetosphere-Ionosphere-Thermosphere Coupling Small Satellite Constellation(MIT).The scientific objective of the mission is to focus on the outflow ions from the ionosphere to the magnetosphere.The constellation is planning to be composed of four small satellites;each small satellite has its own orbit and crosses the polar region at nearly the same time but at different altitude.The payloads onboard include particle detectors,electromagnetic payloads,auroral imagers and neutral atom imagers.With these payloads,the mission will be able to investigate acceleration mechanism of the upflow ions at different altitudes.Currently the orbits have been determined and prototypes of some have also been completed.Competition for next phase selection is scheduled in late 2015.展开更多
Whistler mode waves are critical emissions in magnetized plasmas that usually influence the electron dynamics in a planetary magnetosphere.In this paper,we present a unique event in the Martian magnetosphere in which ...Whistler mode waves are critical emissions in magnetized plasmas that usually influence the electron dynamics in a planetary magnetosphere.In this paper,we present a unique event in the Martian magnetosphere in which enhanced whistler mode waves(~10^(−11) V^(2)/m^(2)/Hz)with frequency of 0.1 f_(ce)-0.5 f_(ce) occurred,based on MAVEN data,exactly corresponding to a significant decrease of suprathermal electron fluxes.The diffusion coefficients are calculated by using the observed electric field wave spectra.The pitch angle diffusion coefficient can approach 10^(−2) s^(−1),which is much larger,by~100 times,than the momentum diffusion coefficient,indicating that pitch angle scattering dominates the whistler-electron resonance process.The current results can successfully explain the dropout of the suprathermal electrons in this event.This study provides direct evidence for whistler-driven electron losses in the Martian magnetosphere.展开更多
We present preliminary results of a new global Magnetohydrodynamics(MHD) simulation model of the Jovian magnetosphere.The model incorporates mass loading from Jupiter's satellite Io, the planet's fast corotati...We present preliminary results of a new global Magnetohydrodynamics(MHD) simulation model of the Jovian magnetosphere.The model incorporates mass loading from Jupiter's satellite Io, the planet's fast corotation, and electrostatic coupling between its magnetosphere and ionosphere(M-I coupling). The basic configuration of the Jovian magnetosphere including the equatorial plasma flow pattern, the corotation enforcement current system, and the field aligned currents(FACs) in the ionosphere are presented under an antiparallel interplanetary magnetic field(IMF) condition. The simulation model results for equatorial density and pressure profiles are consistent with results from data-based empirical models. It is also found that there are similarities between the FACs distribution in the ionosphere and the observed aurora features, showing the potential application of the simple ionospheric model to the complicated M-I coupling. This model will help deepen our understanding of the global dynamics of the Jovian magnetosphere.展开更多
A combined action of plasma convection and pitch-angle diffusion of electrons and protons leads to the formation of plasma pressure distribution in the magnetosphere on the night side, and, as it is known, steady elec...A combined action of plasma convection and pitch-angle diffusion of electrons and protons leads to the formation of plasma pressure distribution in the magnetosphere on the night side, and, as it is known, steady electric bulk currents are connected to distribution of gas pressure. The divergence of these bulk currents brings about a spatial distribution of field-aligned currents, i.e. magnetospheric sources of ionospheric current. The projection (mapping) of the plasma pressure relief onto the ionosphere corresponds to the form and position of the auroral oval. This projection, like the real oval, executes a motion with a change of the convection electric field, and expands with an enhancement of the field. Knowing the distribution (3D) of the plasma pressure we can determine the places of MHD-compressor and MHD-generators location in the magnetosphere. Unfortunately, direct observations of plasma distribution in the magnetosphere are faced with large difficulties, because pressure must be known everywhere in the plasma sheet at high resolution, which in situ satellites have been unable to provide. Modeling of distribution of plasma pressure (on ~ 3-12 Re) is very important, because the data from multisatellite magnetospheric missions for these purposes would be a very expensive project.展开更多
Plasma density is an important factor in determining wave-particle interactions in the magnetosphere.We develop a machine-learning-based electron density(MLED)model in the inner magnetosphere using electron density da...Plasma density is an important factor in determining wave-particle interactions in the magnetosphere.We develop a machine-learning-based electron density(MLED)model in the inner magnetosphere using electron density data from Van Allen Probes between September 25,2012 and August 30,2019.This MLED model is a physics-based nonlinear network that employs fundamental physical principles to describe variations of electron density.It predicts the plasmapause location under different geomagnetic conditions,and models separately the electron densities of the plasmasphere and of the trough.We train the model using gradient descent and backpropagation algorithms,which are widely used to deal effectively with nonlinear relationships among physical quantities in space plasma environments.The model gives explicit expressions with few parameters and describes the associations of electron density with geomagnetic activity,solar cycle,and seasonal effects.Under various geomagnetic conditions,the electron densities calculated by this model agree well with empirical observations and provide a good description of plasmapause movement.This MLED model,which can be easily incorporated into previously developed radiation belt models,promises to be very helpful in modeling and improving forecasting of radiation belt electron dynamics.展开更多
The Earth’s magnetosphere is a magnetic shield that protects Earth from high-energy particles and is subject to a series of internal processes caused by jets of the solar wind (SW) that destabilize it. These disturba...The Earth’s magnetosphere is a magnetic shield that protects Earth from high-energy particles and is subject to a series of internal processes caused by jets of the solar wind (SW) that destabilize it. These disturbances affect health as well as technology and become more extreme when SW is more accelerated. Thus, to better understand the impact of high-speed solar wind (HSSW) invasion on the dynamics of the magnetospheric system, a statistical study of HSSW populations was conducted for even (20 and 22) and odd (21 and 23) solar cycles. The regression analysis using the solar-derived fields from all solar cycles, indicates three states of the inner magnetosphere: 1) the 00:00UT-15:00UT period marked by a magnetic reconnection on the day side of the Earth closest to the Sun with the interplanetary magnetic field (IMF) facing South;2) the 15:00UT-21:00UT period where IMF changes from South to North and remains there until 21:00UT;and 3) the 21:00UT-24:00UT period where there is a reconnection on the night side with stretched field lines. Observations made at different phases of solar activity lead us to suggest that the magnetospheric electric field (E<sub>M</sub>) and the Bz component of IMF (IMF-Bz) are strongly correlated not only at a particular time scale, but at different time scales. We believe that the daily fluctuations of the electrical and magnetic effects of magnetospheric origin currents play a very important role in the dayside magnetic reconnection rate. Moreover, examination of the cycles with different parities shows important amplitudes of the solar causes for the even cycles compared to the odd solar cycles. Therefore, even solar cycles have a strong influence on our socio-economic system compared to odd cycles.展开更多
Highly turbulent environment, the solar wind is a stream of very energetic particles mainly made of protons and electrons. During its trip in the interplanetary space, this solar flow becomes more accelerated during t...Highly turbulent environment, the solar wind is a stream of very energetic particles mainly made of protons and electrons. During its trip in the interplanetary space, this solar flow becomes more accelerated during the outer minima (descending phases) of the solar cycles and can therefore influence all of humanity and its technology. These disturbances lead to socio-economic consequences requiring a precise knowledge of the climate variability. Using a statistical approach, we evaluate the response of the Earth’s magnetosphere to the High-Speed Solar Winds (HSSW) forcing during the peaks of the last five outer minima. To do so, 1UA data of solar wind and magnetic field parameters were extracted from OMNI browser. Analysis of the energetic solar plasma particles shows that strong geomagnetic field variations can occur even in the absence of large solar disturbances. While the normalized reconnection rate was estimated to be ~21% of the total variance of the magnetospheric variables, the upstream of the magnetic cavity was perturbed 80% of the time with large energies recorded. As a result, Earth’s magnetosphere becomes denser (i.e., more drag), which is a problem for spacecraft. Thus, the coupled solar wind-magnetosphere system follows scale-invariant dynamics and is in a state far from equilibrium. Our analysis provides insight into the main cause of geomagnetic storms with more than 97% of HSSW imposed in the range 300 - 850 km/s. These high-speeds lead to auroras that can disrupt electrical and communication systems.展开更多
This paper studies the effects of the solar wind on Jupiter’s magnetosphere. The solar wind parameters are characterized using the Michigan Solar Wind Model (mSWiM) solar wind data propagated to Jupiter from 1997 to ...This paper studies the effects of the solar wind on Jupiter’s magnetosphere. The solar wind parameters are characterized using the Michigan Solar Wind Model (mSWiM) solar wind data propagated to Jupiter from 1997 to 2016. This analysis covers almost solar cycles 23 and 24. Interplanetary fast shocks: Forward shocks (FS), Reverse shocks (RS), and solar wind dynamic pressure were obtained and analyzed during the apparent opposition periods. The fast forward (FS) shocks were predominant during this period. Generally, the solar wind dynamic pressure from FS and RS shocks follows the solar cycles 23 and 24.展开更多
Whistler-mode chorus waves are regarded as an important acceleration mechanism contributing to the formation of relativistic and ultra-relativistic electrons in the Jovian radiation belts. Quantitative determination o...Whistler-mode chorus waves are regarded as an important acceleration mechanism contributing to the formation of relativistic and ultra-relativistic electrons in the Jovian radiation belts. Quantitative determination of the chorus wave driven electron scattering effect in the Jovian magnetosphere requires detailed information of both ambient magnetic field and plasma density and wave spectral property, which however cannot be always readily acquired from observations of existed missions to Jupiter. We therefore perform a comprehensive analysis of the sensitivity of chorus induced electron scattering rates to ambient magnetospheric and wave parameters in the Jovian radiation belts to elaborate to which extent the diffusion coefficients depend on a number of key input parameters. It is found that quasi-linear electron scattering rates by chorus can be strongly affected by the ambient magnetic field intensity, the wave latitudinal coverage, and the peak frequency and bandwidth of the wave spectral distribution in the Jovian magnetosphere, while they only rely slightly on the background plasma density profile and the peak wave normal angle, especially when the wave emissions are confined at lower latitudes. Given the chorus wave amplitude, chorus induced electron scattering rates strongly depend on Jovian L-shell to exhibit a tendency approximately proportional to L_J^3. Our comprehensive analysis explicitly demonstrates the importance of reliable information of both the ambient magnetospheric state and wave distribution property to understanding the dynamic electron evolution in the Jovian radiation belts and therefore has implications for future mission planning to explore the extreme particle radiation environment of Jupiter and its satellites.展开更多
The Earth's magnetosphere is a region occupied by many artificial satellites, and also is a region that spacecraft must cruise during the deep-space exploration. In this sense, the Earth's magnetosphere is clo...The Earth's magnetosphere is a region occupied by many artificial satellites, and also is a region that spacecraft must cruise during the deep-space exploration. In this sense, the Earth's magnetosphere is closely related to human activity and is a candidate for us to expand our living space. Generally, the Earth's magnetosphere can preclude most energetic particles from the Sun and the interstellar space, effectively protecting human beings on the Earth from being attacked and thus making the Earth to be a habitable planet. However, in some conditions, the Earth's magnetosphere becomes dynamic and energetic, and consequently may damage the artificial satellites, threaten the astronauts' health, and disrupt the ground infrastructure, which leads to a decline in the national economy. Therefore, investigating how energy is injected into the magnetosphere, how it is transported in the magnetosphere, and how it is ultimately dissipated in the magnetosphere are the key issues in space physics. Targeting these key issues, in this paper, we review the recent progress on them. Particularly, we introduce the relevant scientific questions,models, methods, and spacecraft missions, for better building a physical link among the energy injection, transport, and dissipation in the magnetosphere, present an energy chain of the magnetosphere, reveal the relationship between such energy chain and the space weather events, and discuss the forecasting and warning methods for energetic-particle events in the magnetosphere. The magnetospheric energy chain discussed in this paper will help us reveal the mechanisms of space weather events, establish the models of space environment, and forecast the disastrous space weather events.展开更多
Interactions between very/extremely low frequency (VLF/ELF) waves and energetic electrons play a fundamental role in dynamics occurring in the inner magnetosphere. Here, we briefly discuss global properties of VLF/ELF...Interactions between very/extremely low frequency (VLF/ELF) waves and energetic electrons play a fundamental role in dynamics occurring in the inner magnetosphere. Here, we briefly discuss global properties of VLF/ELF waves, along with the variability of the electron radiation belts associated with wave-particle interactions and radial diffusion. We provide cases of electron loss and acceleration as a result of wave-particle interactions primarily due to such waves, and particularly some preliminary results of 3D evolution of phase space density from our currently developing 3D code. We comment on the existing mechanisms responsible for acceleration and loss, and identify several critical issues that need to be addressed. We review latest progress and suggest open questions for future investigation.展开更多
The magnetosphere is the outermost layer of the geospace, and the interaction of the solar wind with the magnetosphere is the key element of the space weather cause-and-effect chain process from the Sun to Earth, whic...The magnetosphere is the outermost layer of the geospace, and the interaction of the solar wind with the magnetosphere is the key element of the space weather cause-and-effect chain process from the Sun to Earth, which is one of the most challenging scientific problems in the geospace weather study. The nonlinearity, multiple component, and time-dependent nature of the geospace make it very difficult to describe the physical process in geospace using traditional analytic analysis approach. Numerical simulations, a new research tool developed in recent decades, have a deep impact on the theory and application of the geospace. MHD simulations started at the end of the 1970s, and the initial study was limited to two-dimensional (2D) cases. Due to the intrinsic three-dimensional (3D) characteristics of the geospace, 3D MHD simulations emerged in the 1980s, in an attempt to model the large-scale structures and fundamental physical processes in the magnetosphere. They started to combine with the space exploration missions in the 1990s and make comparisons with observations. Physics-based space weather forecast models started to be developed in the 21st century. Currently only a few space-power countries such as USA and Japan have developed 3D magnetospheric MHD models. With the rapid advance of space science in China, we have developed a new global MHD model, namely PPMLR-MHD, which has high order spatial accuracy and low numerical dissipation. In this review, we will briefly introduce the global 3D MHD modeling, especially the PPMLR-MHD code, and summarize our recent work based on the PPMLR-MHD model, with an emphasis on the interaction of interplanetary shocks with the magnetosphere, large-scale current systems, reconnection voltage and transpolar potential drop, and Kelvin-Helmholtz (K-H) instability at the magnetopause.展开更多
In this paper, we study the characteristic of large-scale convection electric field in the inner magnetosphere, using magnetospheric multiscale(MMS) observations between L=5 and L=8 over the period from September 1, 2...In this paper, we study the characteristic of large-scale convection electric field in the inner magnetosphere, using magnetospheric multiscale(MMS) observations between L=5 and L=8 over the period from September 1, 2015 to October 31, 2016,covering almost all magnetic local time(MLT). Observations show that the DC convection electric field generally has small variations in this region. We investigate whether the convection electric field is correlated with geomagnetic indices and solar wind parameters. It is found that, among the studied parameters, solar wind electric field, z component of interplanetary magnetic field, AE and Kp indices show good correlations with the averaged convection electric field. The results in this paper provide valuable information for understanding the role of electric field on the dynamics of the inner magnetosphere.展开更多
We propose to use the Moon as a platform to obtain a global view of Earth's magnetosphere by a Lunar-based Soft X-ray Imager(LSXI).LSXI is a wide field-of-view Soft X-ray telescope,which can obtain X-ray images of...We propose to use the Moon as a platform to obtain a global view of Earth's magnetosphere by a Lunar-based Soft X-ray Imager(LSXI).LSXI is a wide field-of-view Soft X-ray telescope,which can obtain X-ray images of Earth's magnetosphere based on the solar wind charge exchange(SWCX)X-ray emission.Global perspective is crucial to understand the overall interaction of the solar wind with magnetosphere.LSXI is capable of continuously monitoring the evolution of geospace conditions under the impact of the solar wind by simultaneous observation of the bow shock,magnetosheath,magnetopause and cusps for the first time.This proposal is answering the call for the Chinese Lunar Exploration Program Phase IV.展开更多
During the interval 06:14―07:30 UT on August 24, 2005, since the Earth’s magneto- pause was suddenly compressed by the persistent high-speed solar wind stream with the southward component of the interplanetary magne...During the interval 06:14―07:30 UT on August 24, 2005, since the Earth’s magneto- pause was suddenly compressed by the persistent high-speed solar wind stream with the southward component of the interplanetary magnetic field (IMF), the magnetopause moved inward for about 3.1 RE. Meanwhile, TC-1 satellite shifted from northern plasma sheet to the northern lobe/mantle region, although it kept inward flying during the interval 06:00―07:30UT. The shift of TC-1 from the plasma sheet to the lobe/mantle is caused by the simultaneous inward displacements of the plasma sheet and near-Earth lobe/mantle region, and their inward movement velocity is larger than the inward motion velocity of TC-1. The joint inward dis-placements of the magnetopause, the lobe/mantle region and the plasma sheet indicate that the whole magnetosphere shrinks inward due to the magnetospheric compression by the high-speed solar wind stream, and the magnetospheric ions are attached to the magnetic field lines (i.e. ‘frozen’ in magnetic field) and move inward in the shrinking process of magnetosphere. The large shrinkage of magne-tosphere indicates that the near-Earth magnetotail compression caused by the strong solar wind dynamic pressure is much larger than its thickening caused by the southward component of the IMF, and the locations of magnetospheric regions with different plasmas vary remarkably with the variation of the solar wind dynamic pressure.展开更多
Based on the magnetospheric kinetic theory, a model is developed to specify the flux of energetic electrons in the inner and middle magnetosphere. Under the assumption of adiabatic motion and isotropic particle distri...Based on the magnetospheric kinetic theory, a model is developed to specify the flux of energetic electrons in the inner and middle magnetosphere. Under the assumption of adiabatic motion and isotropic particle distribution maintained by pitch-angle scattering, the model calculates the electron flux by following bounce-averaged electric field, gradient, and curvature drift in the time dependent electric and magnetic field, meanwhile it counts the electron loss caused by pitch angle scattering. Using the model, the clectron flux distribution during a magnetic storm was calculated and compared with the observation data from the geosynchronous orbit. It is shown that the model can successfully reproduce most of the major electron flux enhancements observed at the geosynchronous orbit and generally tracks the satellite data well. The rms errors of the modeled logarithm of flux are between 0.5-1.0.展开更多
基金supported by NNSFC grants 42150101,42188105,42304189National Key R&D program of China No.2021YFA-0718600the Pandeng Program of National Space Science Center,Chinese Academy of Sciences.
文摘The Dst index has been commonly used to measure the geomagnetic effectiveness of magnetic storm events for several decades.Based on Burton’s empirical Dst model and the global magneto-hydrodynamic(MHD)simulation of Earth’s magnetosphere,here we proposed a semi-empirical model to forecast the Dst index during geomagnetic storms.In this model,the ring current contribution to the Dst index is derived from Burton’s model,while the contributions from other current systems are obtained from the global MHD simulation.In order to verify the model accuracy,a number of recent magnetic storm events are tested and the simulated Dst index is compared with the observation through the correlation coefficient(CC),prediction efficiency(PE),root mean square error(RMSE)and central root mean square error(CRMSE).The results indicate that,in the context of moderate and intense geomagnetic storm events,the semi-empirical model performs well in global MHD simulations,showing relatively higher CC and PE,and lower RMSE and CRMSE compared to those from the empirical model.Compared with the physics-based ring current models,this model inherits the advantage of fast processing from the empirical model,and easy implementation in a global MHD model of Earth’s magnetosphere.Therefore,it is suitable for the Dst estimation under a context of a global MHD simulation.
基金supported in part by the National Natural Science Foundation of China (grant 41574158, U 1631107, 41604141)the Jiangsu Shuangchuang Program, and the Natural Science Foundation of Jiangsu Province (Youth Fund: No.BK20160952, BK20140993)
文摘In this paper, the Space Weather Modeling Framework(SWMF) is used to simulate the real-time response of the magnetosphere to a solar wind event on June 5, 1998, in which the interplanetary magnetic field shifted its direction from north to south.Since most current models do not take into account convective effects of the inner magnetosphere, we first study the importance of Rice Convection Model(RCM) in the global model.We then focus on the following four aspects of the magnetosphere's response: the magnetosphere's density distribution, the structure of its magnetic field lines, the area of the polar cap boundary, and the corresponding ionospheric current change.We find that(1) when the IMF changes from north to south in this event, high magnetosheath density is observed to flow downstream along the magnetopause with the solar wind; low-latitude reconnection at dayside occurs under the southward IMF, while the magnetic field lines in the tail lobe caudal, caused by the nightside high latitude reconnection, extend into the interplanetary space.Open magnetic field lines exist simultaneously at both high and low latitudes at the magnetopause;(2) the area of the polar cap is obviously increased if the IMF turns from the north to the south; this observation is highly consistent with empirical observations;(3) the ionospheric field align current in the northern hemisphere is stronger than in the southern hemisphere and also increases as the IMF changes from north to south.SWMF with the Rice Convection effect provides reliable modeling of the magnetospheric and ionospheric response to this solar wind variation.
基金Project supported by the National Natural Science Foundation of China(Grant No.42174181)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB 41000000)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDJ-SSW-DQC010)。
文摘Magnetic reconnection underlies the physical mechanism of explosive phenomena in the solar atmosphere and planetary magnetospheres, where plasma is usually collisionless. In the standard model of collisionless magnetic reconnection,the diffusion region consists of two substructures: an electron diffusion region is embedded in an ion diffusion region,in which their scales are based on the electron and ion inertial lengths. In the ion diffusion region, ions are unfrozen in the magnetic fields while electrons are magnetized. The resulted Hall effect from the different motions between ions and electrons leads to the production of the in-plane currents, and then generates the quadrupolar structure of out-of-plane magnetic field. In the electron diffusion region, even electrons become unfrozen in the magnetic fields, and the reconnection electric field is contributed by the off-diagonal electron pressure terms in the generalized Ohm’s law. The reconnection rate is insensitive to the specific mechanism to break the frozen-in condition, and is on the order of 0.1. In recent years, the launching of Cluster, THEMIS, MMS, and other spacecraft has provided us opportunities to study collisionless magnetic reconnection in the Earth’s magnetosphere, and to verify and extend more insights on the standard model of collisionless magnetic reconnection. In this paper, we will review what we have learned beyond the standard model with the help of observations from these spacecraft as well as kinetic simulations.
基金Supported by National Natural Science Foundation of China(41874190,41231066)
文摘A long-standing mystery in the study of Field-Aligned Currents(FACs) has been that: how the currents are generated and why they appear to be much stronger at high altitudes than in the ionosphere. Here we present two events of magnetotail FACs observed by the Magnetospheric Multiscale Spacecraft(MMS) on 1 st July and 14 th July 2016, to show how the Substorm Current Wedges(SCW) were formed. The results show that particles were transferred heading towards the Earth during the expansion phase of substorms.The azimuthal flow formed clockwise(counter-clockwise) vortex-like motion, and then generated downward(upward) FACs on the tailward/poleward side of the distorted field with opposite vorticity on their Earthward/equatorward side. We also analyzed the Region 1 FACs observed by the Earth Explorer Swarm spacecraft on 1 st July 2016 and found that they were associated with FACs observed by MMS, although differing by a factor of 10. This difference suggests that either there was the closure of the currents at altitudes above 500 km or the currents were not strictly parallel to B and closed at longitudes away from where they were generated.
基金Supported by the Strategic Priority Research Program on Space Science(XDA04060201)of Chinese Academy of Sciencesthe Chinese Academy of Sciences"Hundred Talented Program"(Y32135A47S)+2 种基金the Chinese National Science Foundation(411774149)the Specialized Research Fund for State Key laboratory of Chinathe Chinese Academy of Sciences Visiting Fellowship for Researchers from Developing Countries
文摘A future Chinese mission is introduced to study the coupling between magnetosphere,ionosphere and thermosphere,i.e.the Magnetosphere-Ionosphere-Thermosphere Coupling Small Satellite Constellation(MIT).The scientific objective of the mission is to focus on the outflow ions from the ionosphere to the magnetosphere.The constellation is planning to be composed of four small satellites;each small satellite has its own orbit and crosses the polar region at nearly the same time but at different altitude.The payloads onboard include particle detectors,electromagnetic payloads,auroral imagers and neutral atom imagers.With these payloads,the mission will be able to investigate acceleration mechanism of the upflow ions at different altitudes.Currently the orbits have been determined and prototypes of some have also been completed.Competition for next phase selection is scheduled in late 2015.
基金the National Natural Science Foundation of China grants 42230209, 42241136, 42374199, 42204171, 42274212the Natural Science Foundation of Hunan province Grant 2021JJ20010, 2023JJ20038
文摘Whistler mode waves are critical emissions in magnetized plasmas that usually influence the electron dynamics in a planetary magnetosphere.In this paper,we present a unique event in the Martian magnetosphere in which enhanced whistler mode waves(~10^(−11) V^(2)/m^(2)/Hz)with frequency of 0.1 f_(ce)-0.5 f_(ce) occurred,based on MAVEN data,exactly corresponding to a significant decrease of suprathermal electron fluxes.The diffusion coefficients are calculated by using the observed electric field wave spectra.The pitch angle diffusion coefficient can approach 10^(−2) s^(−1),which is much larger,by~100 times,than the momentum diffusion coefficient,indicating that pitch angle scattering dominates the whistler-electron resonance process.The current results can successfully explain the dropout of the suprathermal electrons in this event.This study provides direct evidence for whistler-driven electron losses in the Martian magnetosphere.
基金supported by grants from Chinese Academy of Sciences (QYZDJ-SSW-JSC028, XDA15052500)NNSFC grants (41731070, 41574159, 41674146)in part by the Specialized Research Fund for State Key Laboratories of China
文摘We present preliminary results of a new global Magnetohydrodynamics(MHD) simulation model of the Jovian magnetosphere.The model incorporates mass loading from Jupiter's satellite Io, the planet's fast corotation, and electrostatic coupling between its magnetosphere and ionosphere(M-I coupling). The basic configuration of the Jovian magnetosphere including the equatorial plasma flow pattern, the corotation enforcement current system, and the field aligned currents(FACs) in the ionosphere are presented under an antiparallel interplanetary magnetic field(IMF) condition. The simulation model results for equatorial density and pressure profiles are consistent with results from data-based empirical models. It is also found that there are similarities between the FACs distribution in the ionosphere and the observed aurora features, showing the potential application of the simple ionospheric model to the complicated M-I coupling. This model will help deepen our understanding of the global dynamics of the Jovian magnetosphere.
文摘A combined action of plasma convection and pitch-angle diffusion of electrons and protons leads to the formation of plasma pressure distribution in the magnetosphere on the night side, and, as it is known, steady electric bulk currents are connected to distribution of gas pressure. The divergence of these bulk currents brings about a spatial distribution of field-aligned currents, i.e. magnetospheric sources of ionospheric current. The projection (mapping) of the plasma pressure relief onto the ionosphere corresponds to the form and position of the auroral oval. This projection, like the real oval, executes a motion with a change of the convection electric field, and expands with an enhancement of the field. Knowing the distribution (3D) of the plasma pressure we can determine the places of MHD-compressor and MHD-generators location in the magnetosphere. Unfortunately, direct observations of plasma distribution in the magnetosphere are faced with large difficulties, because pressure must be known everywhere in the plasma sheet at high resolution, which in situ satellites have been unable to provide. Modeling of distribution of plasma pressure (on ~ 3-12 Re) is very important, because the data from multisatellite magnetospheric missions for these purposes would be a very expensive project.
基金This work is supported by the National Natural Science Foundation of China grants 42074198,41774194,41974212 and 42004141Natural Science Foundation of Hunan Province 2021JJ20010+1 种基金Science and Technology Innovation Program of Hunan Province 2021RC3098Foundation of Education Bureau of Hunan Province for Distinguished Young Scientists 20B004.
文摘Plasma density is an important factor in determining wave-particle interactions in the magnetosphere.We develop a machine-learning-based electron density(MLED)model in the inner magnetosphere using electron density data from Van Allen Probes between September 25,2012 and August 30,2019.This MLED model is a physics-based nonlinear network that employs fundamental physical principles to describe variations of electron density.It predicts the plasmapause location under different geomagnetic conditions,and models separately the electron densities of the plasmasphere and of the trough.We train the model using gradient descent and backpropagation algorithms,which are widely used to deal effectively with nonlinear relationships among physical quantities in space plasma environments.The model gives explicit expressions with few parameters and describes the associations of electron density with geomagnetic activity,solar cycle,and seasonal effects.Under various geomagnetic conditions,the electron densities calculated by this model agree well with empirical observations and provide a good description of plasmapause movement.This MLED model,which can be easily incorporated into previously developed radiation belt models,promises to be very helpful in modeling and improving forecasting of radiation belt electron dynamics.
文摘The Earth’s magnetosphere is a magnetic shield that protects Earth from high-energy particles and is subject to a series of internal processes caused by jets of the solar wind (SW) that destabilize it. These disturbances affect health as well as technology and become more extreme when SW is more accelerated. Thus, to better understand the impact of high-speed solar wind (HSSW) invasion on the dynamics of the magnetospheric system, a statistical study of HSSW populations was conducted for even (20 and 22) and odd (21 and 23) solar cycles. The regression analysis using the solar-derived fields from all solar cycles, indicates three states of the inner magnetosphere: 1) the 00:00UT-15:00UT period marked by a magnetic reconnection on the day side of the Earth closest to the Sun with the interplanetary magnetic field (IMF) facing South;2) the 15:00UT-21:00UT period where IMF changes from South to North and remains there until 21:00UT;and 3) the 21:00UT-24:00UT period where there is a reconnection on the night side with stretched field lines. Observations made at different phases of solar activity lead us to suggest that the magnetospheric electric field (E<sub>M</sub>) and the Bz component of IMF (IMF-Bz) are strongly correlated not only at a particular time scale, but at different time scales. We believe that the daily fluctuations of the electrical and magnetic effects of magnetospheric origin currents play a very important role in the dayside magnetic reconnection rate. Moreover, examination of the cycles with different parities shows important amplitudes of the solar causes for the even cycles compared to the odd solar cycles. Therefore, even solar cycles have a strong influence on our socio-economic system compared to odd cycles.
文摘Highly turbulent environment, the solar wind is a stream of very energetic particles mainly made of protons and electrons. During its trip in the interplanetary space, this solar flow becomes more accelerated during the outer minima (descending phases) of the solar cycles and can therefore influence all of humanity and its technology. These disturbances lead to socio-economic consequences requiring a precise knowledge of the climate variability. Using a statistical approach, we evaluate the response of the Earth’s magnetosphere to the High-Speed Solar Winds (HSSW) forcing during the peaks of the last five outer minima. To do so, 1UA data of solar wind and magnetic field parameters were extracted from OMNI browser. Analysis of the energetic solar plasma particles shows that strong geomagnetic field variations can occur even in the absence of large solar disturbances. While the normalized reconnection rate was estimated to be ~21% of the total variance of the magnetospheric variables, the upstream of the magnetic cavity was perturbed 80% of the time with large energies recorded. As a result, Earth’s magnetosphere becomes denser (i.e., more drag), which is a problem for spacecraft. Thus, the coupled solar wind-magnetosphere system follows scale-invariant dynamics and is in a state far from equilibrium. Our analysis provides insight into the main cause of geomagnetic storms with more than 97% of HSSW imposed in the range 300 - 850 km/s. These high-speeds lead to auroras that can disrupt electrical and communication systems.
文摘This paper studies the effects of the solar wind on Jupiter’s magnetosphere. The solar wind parameters are characterized using the Michigan Solar Wind Model (mSWiM) solar wind data propagated to Jupiter from 1997 to 2016. This analysis covers almost solar cycles 23 and 24. Interplanetary fast shocks: Forward shocks (FS), Reverse shocks (RS), and solar wind dynamic pressure were obtained and analyzed during the apparent opposition periods. The fast forward (FS) shocks were predominant during this period. Generally, the solar wind dynamic pressure from FS and RS shocks follows the solar cycles 23 and 24.
基金supported by the NSFC grants (41674163) and (41474141)by Lunar and Planetary Science Laboratory, Macao University of Science and Technology-Partner Laboratory of Key Laboratory of Lunar and Deep Space Exploration, Chinese Academy of Sciences (FDCT No. 039/2013/A2)by the Hubei Province Natural Science Excellent Youth Foundation (2016CFA044)
文摘Whistler-mode chorus waves are regarded as an important acceleration mechanism contributing to the formation of relativistic and ultra-relativistic electrons in the Jovian radiation belts. Quantitative determination of the chorus wave driven electron scattering effect in the Jovian magnetosphere requires detailed information of both ambient magnetic field and plasma density and wave spectral property, which however cannot be always readily acquired from observations of existed missions to Jupiter. We therefore perform a comprehensive analysis of the sensitivity of chorus induced electron scattering rates to ambient magnetospheric and wave parameters in the Jovian radiation belts to elaborate to which extent the diffusion coefficients depend on a number of key input parameters. It is found that quasi-linear electron scattering rates by chorus can be strongly affected by the ambient magnetic field intensity, the wave latitudinal coverage, and the peak frequency and bandwidth of the wave spectral distribution in the Jovian magnetosphere, while they only rely slightly on the background plasma density profile and the peak wave normal angle, especially when the wave emissions are confined at lower latitudes. Given the chorus wave amplitude, chorus induced electron scattering rates strongly depend on Jovian L-shell to exhibit a tendency approximately proportional to L_J^3. Our comprehensive analysis explicitly demonstrates the importance of reliable information of both the ambient magnetospheric state and wave distribution property to understanding the dynamic electron evolution in the Jovian radiation belts and therefore has implications for future mission planning to explore the extreme particle radiation environment of Jupiter and its satellites.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42125403 & 41821003)the Fundamental Research Funds for the Central Universities。
文摘The Earth's magnetosphere is a region occupied by many artificial satellites, and also is a region that spacecraft must cruise during the deep-space exploration. In this sense, the Earth's magnetosphere is closely related to human activity and is a candidate for us to expand our living space. Generally, the Earth's magnetosphere can preclude most energetic particles from the Sun and the interstellar space, effectively protecting human beings on the Earth from being attacked and thus making the Earth to be a habitable planet. However, in some conditions, the Earth's magnetosphere becomes dynamic and energetic, and consequently may damage the artificial satellites, threaten the astronauts' health, and disrupt the ground infrastructure, which leads to a decline in the national economy. Therefore, investigating how energy is injected into the magnetosphere, how it is transported in the magnetosphere, and how it is ultimately dissipated in the magnetosphere are the key issues in space physics. Targeting these key issues, in this paper, we review the recent progress on them. Particularly, we introduce the relevant scientific questions,models, methods, and spacecraft missions, for better building a physical link among the energy injection, transport, and dissipation in the magnetosphere, present an energy chain of the magnetosphere, reveal the relationship between such energy chain and the space weather events, and discuss the forecasting and warning methods for energetic-particle events in the magnetosphere. The magnetospheric energy chain discussed in this paper will help us reveal the mechanisms of space weather events, establish the models of space environment, and forecast the disastrous space weather events.
基金supported by National Natural Science Foundation of China (Grant Nos. 40874076, 40774079, 40925014, 40774078, 40831061)Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY200806024)the Construct Program of the Key Discipline in Changsha University of Science and Technology,and the Specialized Research Fund for State Key Laboratories for Space Weather
文摘Interactions between very/extremely low frequency (VLF/ELF) waves and energetic electrons play a fundamental role in dynamics occurring in the inner magnetosphere. Here, we briefly discuss global properties of VLF/ELF waves, along with the variability of the electron radiation belts associated with wave-particle interactions and radial diffusion. We provide cases of electron loss and acceleration as a result of wave-particle interactions primarily due to such waves, and particularly some preliminary results of 3D evolution of phase space density from our currently developing 3D code. We comment on the existing mechanisms responsible for acceleration and loss, and identify several critical issues that need to be addressed. We review latest progress and suggest open questions for future investigation.
基金supported by the National Basic Research Program of China (Grant No.2012CB825602)National Natural Science Foundation of China (Grant Nos.41204118 & 41231067)in part by the Specialized Research Fund for State Key Laboratories of China
文摘The magnetosphere is the outermost layer of the geospace, and the interaction of the solar wind with the magnetosphere is the key element of the space weather cause-and-effect chain process from the Sun to Earth, which is one of the most challenging scientific problems in the geospace weather study. The nonlinearity, multiple component, and time-dependent nature of the geospace make it very difficult to describe the physical process in geospace using traditional analytic analysis approach. Numerical simulations, a new research tool developed in recent decades, have a deep impact on the theory and application of the geospace. MHD simulations started at the end of the 1970s, and the initial study was limited to two-dimensional (2D) cases. Due to the intrinsic three-dimensional (3D) characteristics of the geospace, 3D MHD simulations emerged in the 1980s, in an attempt to model the large-scale structures and fundamental physical processes in the magnetosphere. They started to combine with the space exploration missions in the 1990s and make comparisons with observations. Physics-based space weather forecast models started to be developed in the 21st century. Currently only a few space-power countries such as USA and Japan have developed 3D magnetospheric MHD models. With the rapid advance of space science in China, we have developed a new global MHD model, namely PPMLR-MHD, which has high order spatial accuracy and low numerical dissipation. In this review, we will briefly introduce the global 3D MHD modeling, especially the PPMLR-MHD code, and summarize our recent work based on the PPMLR-MHD model, with an emphasis on the interaction of interplanetary shocks with the magnetosphere, large-scale current systems, reconnection voltage and transpolar potential drop, and Kelvin-Helmholtz (K-H) instability at the magnetopause.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41574154 and 41431071)
文摘In this paper, we study the characteristic of large-scale convection electric field in the inner magnetosphere, using magnetospheric multiscale(MMS) observations between L=5 and L=8 over the period from September 1, 2015 to October 31, 2016,covering almost all magnetic local time(MLT). Observations show that the DC convection electric field generally has small variations in this region. We investigate whether the convection electric field is correlated with geomagnetic indices and solar wind parameters. It is found that, among the studied parameters, solar wind electric field, z component of interplanetary magnetic field, AE and Kp indices show good correlations with the averaged convection electric field. The results in this paper provide valuable information for understanding the role of electric field on the dynamics of the inner magnetosphere.
基金supported by the National Natural Science Foundation of China(Grant Nos.41731070,41974211,41774173,41731070)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDJ-SSW-JSC028)the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences(Grant Nos.XDA15052500,XDA15350201)。
文摘We propose to use the Moon as a platform to obtain a global view of Earth's magnetosphere by a Lunar-based Soft X-ray Imager(LSXI).LSXI is a wide field-of-view Soft X-ray telescope,which can obtain X-ray images of Earth's magnetosphere based on the solar wind charge exchange(SWCX)X-ray emission.Global perspective is crucial to understand the overall interaction of the solar wind with magnetosphere.LSXI is capable of continuously monitoring the evolution of geospace conditions under the impact of the solar wind by simultaneous observation of the bow shock,magnetosheath,magnetopause and cusps for the first time.This proposal is answering the call for the Chinese Lunar Exploration Program Phase IV.
基金the National Natural Science Foundation of China (Grant Nos. 40604018, 40523006)CSSAR (Grant No. O72114AA4S)+1 种基金Scientific Research Start-up Foundation for President Prize of CAS, 973 Program of China (Grant No. 2006CB806305)the Specialized Research Fund for State Key Laboratories
文摘During the interval 06:14―07:30 UT on August 24, 2005, since the Earth’s magneto- pause was suddenly compressed by the persistent high-speed solar wind stream with the southward component of the interplanetary magnetic field (IMF), the magnetopause moved inward for about 3.1 RE. Meanwhile, TC-1 satellite shifted from northern plasma sheet to the northern lobe/mantle region, although it kept inward flying during the interval 06:00―07:30UT. The shift of TC-1 from the plasma sheet to the lobe/mantle is caused by the simultaneous inward displacements of the plasma sheet and near-Earth lobe/mantle region, and their inward movement velocity is larger than the inward motion velocity of TC-1. The joint inward dis-placements of the magnetopause, the lobe/mantle region and the plasma sheet indicate that the whole magnetosphere shrinks inward due to the magnetospheric compression by the high-speed solar wind stream, and the magnetospheric ions are attached to the magnetic field lines (i.e. ‘frozen’ in magnetic field) and move inward in the shrinking process of magnetosphere. The large shrinkage of magne-tosphere indicates that the near-Earth magnetotail compression caused by the strong solar wind dynamic pressure is much larger than its thickening caused by the southward component of the IMF, and the locations of magnetospheric regions with different plasmas vary remarkably with the variation of the solar wind dynamic pressure.
基金supported by the National Natural Science Foundation of China(Grant No.40704032)
文摘Based on the magnetospheric kinetic theory, a model is developed to specify the flux of energetic electrons in the inner and middle magnetosphere. Under the assumption of adiabatic motion and isotropic particle distribution maintained by pitch-angle scattering, the model calculates the electron flux by following bounce-averaged electric field, gradient, and curvature drift in the time dependent electric and magnetic field, meanwhile it counts the electron loss caused by pitch angle scattering. Using the model, the clectron flux distribution during a magnetic storm was calculated and compared with the observation data from the geosynchronous orbit. It is shown that the model can successfully reproduce most of the major electron flux enhancements observed at the geosynchronous orbit and generally tracks the satellite data well. The rms errors of the modeled logarithm of flux are between 0.5-1.0.