The six-degree-of-freedom movement of an offshore plate anchor is essential to evaluate anchor performance.As an emerging technology,magnetometer has shown its potential in measuring the six-degree-of-freedom movement...The six-degree-of-freedom movement of an offshore plate anchor is essential to evaluate anchor performance.As an emerging technology,magnetometer has shown its potential in measuring the six-degree-of-freedom movement of offshore anchors under 1-g model laboratory tests.The paper presents the feasibility of adopting a magnetometer system in geotechnical centrifuge testing.Interference factors that may affect the measuring accuracy of the magnetometer system are investigated.The results demonstrate that the magnetometer system can accurately catch the anchor movement in the soils with the restrictions of:(1)the model anchor was made with stainless steel;(2)the system was placed at least 30 cm away from the side wall of soil model tank;(3)started the measurement when the artificial acceleration by centrifuge was stable.展开更多
We fabricated direct-current superconducting quantum interference device magnetometers with single layer epi-taxial Tl_(2)Ba_(2)CaCu_(2)O_(x) films on 36.8° SrTiO_(3) bicrystal substrates.The white Aux noise and ...We fabricated direct-current superconducting quantum interference device magnetometers with single layer epi-taxial Tl_(2)Ba_(2)CaCu_(2)O_(x) films on 36.8° SrTiO_(3) bicrystal substrates.The white Aux noise and the field-flux transformation coefficient of the devices are 1.5 × 10^(-5)Φ0/√Hz and 40 nT/Φ0,respectively.The magnetometers can work in unshielded environment.展开更多
Low-noise high-stability current sources have essential applications such as neutron electric dipole moment measurement and high-stability magnetometers. Previous studies mainly focused on frequency noise above 0.1 Hz...Low-noise high-stability current sources have essential applications such as neutron electric dipole moment measurement and high-stability magnetometers. Previous studies mainly focused on frequency noise above 0.1 Hz while less on the low-frequency noise/drift. We use double resonance alignment magnetometers(DRAMs) to measure and suppress the low-frequency noise of a homemade current source(CS) board. The CS board noise level is suppressed by about 10 times in the range of 0.001-0.1 Hz and is reduced to 100 n A/√Hz at 0.001 Hz. The relative stability of CS board can reach2.2 × 10^(-8). In addition, the DRAM shows a better resolution and accuracy than a commercial 7.5-digit multimeter when measuring our homemade CS board. Further, by combining the DRAM with a double resonance orientation magnetometer,we may realize a low-noise CS in the 0.001-1000 Hz range.展开更多
We have developed a simple sintering system to prepare the yttria-stabilized-zirconia(YSZ)bicrystals.Grain-boundary junctions made from the epitaxial YBa_(2)Cu_(3)O_(7-δ) films on the bicrystal substrates demonstrate...We have developed a simple sintering system to prepare the yttria-stabilized-zirconia(YSZ)bicrystals.Grain-boundary junctions made from the epitaxial YBa_(2)Cu_(3)O_(7-δ) films on the bicrystal substrates demonstrated Josephson behavior.Using new square washer design,single-level magnetometer of dc superconducting quantum interference.device(SQUID)has been fabricated.Owing to the flux focusing effect of the large washer,the magnetic field sensitivity of the devices has been enhanced.The magnetic field resolution of the magnetometer is IpT/Hz^(1/2) at 10Hz,and increases to 3pT/Hz^(1/2) at 1Hz at 77K.展开更多
The emergence of biomagnetism imaging has led to the development of ultrasensitive and compact spin-exchange relaxation-free(SERF)atomic magnetometers that promise high-resolution magnetocardiography(MCG)and magnetoen...The emergence of biomagnetism imaging has led to the development of ultrasensitive and compact spin-exchange relaxation-free(SERF)atomic magnetometers that promise high-resolution magnetocardiography(MCG)and magnetoencephalography(MEG).However,conventional optical components are not compatible with nanofabrication processes that enable the integration of atomic magnetometers on chips,especially for elliptically polarized laserpumped SERF magnetometers with bulky optical systems.In this study,an elliptical-polarization pumping beam(at 795 nm)is achieved through a single-piece metasurface,which results in an SERF magnetometer with a high sensitivity reaching 10.61 fT/Hz1/2 by utilizing a 87Rb vapor cell with a 3mm inner diameter.To achieve the optimum theoretical polarization,our design combines a computer-assisted optimization algorithm with an emerging metasurface design process.The metasurface is fabricated with 550 nm thick silicon-rich silicon nitride on a 2×2 cm^(2)SiO_(2)substrate and features a 22.17°ellipticity angle(a deviation from the target polarization of less than 2%)and more than 80%transmittance.This study provides a feasible approach for on-chip polarization control of future allintegrated atomic magnetometers,which will further pave the way for high-resolution biomagnetism imaging and portable atomic sensing applications.展开更多
High-sensitivity radio-frequency optically pumped magnetometers (RF-OPMs), working without cryogenic condition, play a critical role in magnetic field imaging(MFI) at low frequencies(e.g., 100 Hz to 1 MHz). We introdu...High-sensitivity radio-frequency optically pumped magnetometers (RF-OPMs), working without cryogenic condition, play a critical role in magnetic field imaging(MFI) at low frequencies(e.g., 100 Hz to 1 MHz). We introduce the principle of operation and recent developments of RF-OPMs and focus on reviewing the MFI applications in magnetic induction tomography, ultralow-field magnetic resonance imaging, and magnetic particle imaging. For the applications of RF-OPMs, ranging from industrial monitoring to medical imaging and security screening, the unshielded and portable RF-OPMs(and RF-OPM array)techniques are still under the further development for detecting and scanning over the target object for accomplishing the final three-dimensional imaging, and thus extremely require the abilities of active compensation of the ambient magnetic field and sensor miniaturization in the future.展开更多
The alkali-atom density measurement method based on light absorption is highly suitable for a spin-exchange relaxationfree(SERF)atomic magnetometer because of its high-precision measurement and complete nonmagnetic in...The alkali-atom density measurement method based on light absorption is highly suitable for a spin-exchange relaxationfree(SERF)atomic magnetometer because of its high-precision measurement and complete nonmagnetic interference.In this study,the optical rotation angle detection system based on polarization balance detection is utilized to realize the alkali-atom density real-time measurement without affecting magnetic field measurement.We discovered that there exists an optimal frequency detuning of the probe light,which offers the highest sensitivity in alkali-atom density measurement and the lowest susceptibility to temperature fluctuations in terms of the scale factor.In contrast to conventional light absorption measurements based on pump light,this method demonstrated a threefold improvement in alkali-atom density measurement sensitivity while remaining immune to ambient magnetic fields and incident light intensity fluctuations.Furthermore,we utilized this method to achieve closed-loop temperature control with an accuracy of 0.04℃.展开更多
The scientific research of geomagnetism has been largely driven by new geomagnetic data that are available to scientists.Macao Science Satellite-1(MSS-1)was successfully launched on 21st May 2023 into a near-circular ...The scientific research of geomagnetism has been largely driven by new geomagnetic data that are available to scientists.Macao Science Satellite-1(MSS-1)was successfully launched on 21st May 2023 into a near-circular orbit of altitude of about 450 km with a low inclination of 41°.After careful evaluation and calibration(7^(th)June 2023 to 31^(st)July 2024),the data of MSS-1 were released to the international scientific community on 1 August 2024,providing the highly accurate data of global geomagnetic field with an unprecedented local-time coverage to the community.This special issue of Initial Scientific Results of MSS-1,primarily driven by the new MSS-1 data,contains 27 research articles ranging from the MSS-1 design,satellite data analysis,outer core dynamics,mantle induction,lithospheric field modeling,ocean induced magnetic field,ionosphere and magnetosphere currents,to solar activities.展开更多
The Macao Science Satellite-1(known as MSS-1)is the first scientific exploration satellite that was designed to measure the Earth's low latitude magnetic field at high resolution and with high precision by collect...The Macao Science Satellite-1(known as MSS-1)is the first scientific exploration satellite that was designed to measure the Earth's low latitude magnetic field at high resolution and with high precision by collecting data in a near-equatorial orbit.Magnetic field data from MSS-1's onboard Vector Fluxgate Magnetometer(VFM),collected at a sample rate of 50 Hz,allows us to detect and investigate sources of magnetic data contamination,from DC to relevant Nyquist frequency.Here we report two types of artificial disturbances in the VFM data.One is V-shaped events concentrated at night,with frequencies sweeping from the Nyquist frequency down to zero and back up.The other is 5-Hz events(ones that exhibit a distinct 5 Hz spectrum peak);these events are always accompanied by intervals of spiky signals,and are clearly related to the attitude control of the satellite.Our analyses show that VFM noise levels in daytime are systematically lower than in nighttime.The daily average noise levels exhibit a period of about 52 days.The V-shaped events are strongly correlated with higher VFM noise levels.展开更多
High-precision magnetic field measurements are crucial for understanding Earth’s internal structure,space environment,and dynamic geomagnetic variations.Data from the Fluxgate Magnetometer (FGM) on the Macao Science ...High-precision magnetic field measurements are crucial for understanding Earth’s internal structure,space environment,and dynamic geomagnetic variations.Data from the Fluxgate Magnetometer (FGM) on the Macao Science Satellite-1A (MSS-1A),added to data from other space-based magnetometers,should increase significantly the ability of scientists to observe changes in Earth’s magnetic field over time and space.Additionally,the MSS-1A’s FGM is intended to help identify magnetic disturbances affecting the spacecraft itself.This report focuses on the in-flight calibration of the MSS-1 FGM.A scalar calibration,independent of geomagnetic field models,was performed to correct offsets,sensitivities,and misalignment angles of the FGM.Using seven months of data,we find that the in-flight calibration parameters show good stability.We determined Euler angles describing the rotational relationship between the FGM and the Advanced Stellar Compass (ASC) coordinate system using two approaches:calibration with the CHAOS-7 geomagnetic field model,and simultaneous estimation of Euler angles and Gaussian spherical harmonic coefficients through self-consistent modeling.The accuracy of Euler angles describing the rotation was better than 18 arcsec.The calibrated FGM data exhibit good agreement with the calibrated data of the Vector Field Magnetometer (VFM),which is the primary vector magnetometer of the satellite.These calibration efforts have significantly improved the accuracy of the FGM measurements,which are now providing reliable data for geomagnetic field studies that promise to advance our understanding of the Earth’s magnetic environment.展开更多
Zero-and ultralow-field nuclear magnetic resonance(ZULF NMR)has experienced rapid development and provides an excellent tool for diverse research fields ranging from materials science and quantum information processin...Zero-and ultralow-field nuclear magnetic resonance(ZULF NMR)has experienced rapid development and provides an excellent tool for diverse research fields ranging from materials science and quantum information processing to fundamental physics.The detection of ZULF NMR signals in samples with natural abundance remains a challenging endeavor,due to the limited sensitivity of NMR detectors and thermal polarization.In this work,we demonstrate a femtotesla(fT)Potassium spin-exchange relaxation-free(SERF)magnetometer designed for ZULF NMR detection.A Potassium vapor cell with high buffer gas pressure and high atomic number density is used in the magnetometer.With absorption spectroscopy and SERF effect,the key parameters of the vapor cell are characterized and applied to optimize the magnetometer sensitivity.To combine our SERF magnetometer and ZULF NMR detection,a custom-made vacuum chamber is employed to keep NMR sample close to the magnetometer cell and protect the sample from undesired heating effects.Gradiometric measurement is performed to greatly reduce the magnetic noise.With the phase calibration applied,the gradiometric measurement achieves 7-fold enhancement in magnetic-field sensitivity compared to the single channel and has a magnetic noise floor of 1.2 fT/Hz^(1/2).Our SERF magnetometer exhibits high sensitivity and is promising to realize ZULF NMR detection of samples with natural abundance.展开更多
Optically pumped magnetometers(OPMs)have developed rapidly in the bio-magnetic measurement field,which requires lasers with stable frequency and intensity for high sensitivity.Herein we stabilize a vertical-cavity sur...Optically pumped magnetometers(OPMs)have developed rapidly in the bio-magnetic measurement field,which requires lasers with stable frequency and intensity for high sensitivity.Herein we stabilize a vertical-cavity surface-emitting laser(VCSEL)without any additional setup except for the parts of an OPM.The linewidth of the absorption spectrum as a frequency reference is broadened to 40 GHz owing to pressure broadening.To enhance performance,the VCSEL injection current and temperature are tuned simultaneously using a closed-loop control system.The experiments reveal that the VCSEL frequency stability achieves 2×10^(-7) at an average time of 1 s,and the intensity noise is 1×10^(-6)V/Hz^(1/2) at 1-100 Hz.This approach is useful for suppressing OPM noise without additional sensor probe parts.展开更多
This article presents several design techniques to fabricate micro-electro-mechanical systems(MEMS)using standard complementary metal-oxide semiconductor(CMOS)processes.They were applied to fabricate high yield CMOS-M...This article presents several design techniques to fabricate micro-electro-mechanical systems(MEMS)using standard complementary metal-oxide semiconductor(CMOS)processes.They were applied to fabricate high yield CMOS-MEMS shielded Lorentz-force magnetometers(LFM).The multilayered metals and oxides of the back-end-of-line(BEOL),normally used for electronic routing,comprise the structural part of the MEMS.The most important fabrication challenges,modeling approaches and design solutions are discussed.Equations that predict the Q factor,sensitivity,Brownian noise and resonant frequency as a function of temperature,gas pressure and design parameters are presented and validated in characterization tests.A number of the fabricated magnetometers were packaged into Quad Flat No-leads(QFN)packages.We show this process can achieve yields above 95%when the proper design techniques are adopted.Despite CMOS not being a process for MEMS manufacturing,estimated performance(sensitivity and noise level)is similar or superior to current commercial magnetometers and others built with MEMS processes.Additionally,typical offsets present in Lorentz-force magnetometers were prevented with a shielding electrode,whose efficiency is quantified.Finally,several reliability test results are presented,which demonstrate the robustness against high temperatures,magnetic fields and acceleration shocks.展开更多
We explore the impact of pumping beams with different transverse intensity profiles on the performance of the spinexchange relaxation-free(SERF) atomic magnetometers(AMs). We conduct experiments comparing the traditio...We explore the impact of pumping beams with different transverse intensity profiles on the performance of the spinexchange relaxation-free(SERF) atomic magnetometers(AMs). We conduct experiments comparing the traditional Gaussian optically-pumped AM with that utilizing the flat-top optically-pumped(FTOP) method. Our findings reveal that the FTOP-based approach outperforms the conventional method, exhibiting a larger response, a narrower magnetic resonance linewidth, and a superior low-frequency noise performance. Specifically, the use of FTOP method leads to a 16% enhancement in average sensitivity within 1 Hz–30 Hz frequency range. Our research emphasizes the significance of achieving transverse polarization uniformity in AMs, providing insights for future optimization efforts and sensitivity improvements in miniaturized magnetometers.展开更多
Most triaxial-vectorial magnetic field measurements with spin-exchange relaxation free(SERF)atomic magnetometer(AM)are based on the quasi-steady-state solution of the Bloch equation.However,the responding speed of the...Most triaxial-vectorial magnetic field measurements with spin-exchange relaxation free(SERF)atomic magnetometer(AM)are based on the quasi-steady-state solution of the Bloch equation.However,the responding speed of these methods is greatly limited because the frequency of the modulation signal should be slow enough to ensure the validity of the quasi-steady-state solution.In this work,a new model to describe the response of the three-axis sensitive SERF AM with high modulation frequency is presented and verified.The response of alkali-atomic spin to high-frequency modulation field is further investigated by solving the Bloch equation in a modulation-frequency-dependence manner.This solution is well verified by our experiments and can offer a reference for selection of modulation frequencies.The result shows a potential to achieve a SERF AM operating in a geomagnetic field without heavy aluminum shielding when the modulation frequencies are selected properly.展开更多
Landmines continue to pose an ongoing threat in various regions around the world,with countless buried landmines affecting numerous human lives.The detonation of these landmines results in thousands of casualties repo...Landmines continue to pose an ongoing threat in various regions around the world,with countless buried landmines affecting numerous human lives.The detonation of these landmines results in thousands of casualties reported worldwide annually.Therefore,there is a pressing need to employ diverse landmine detection techniques for their removal.One effective approach for landmine detection is UAV(Unmanned Aerial Vehicle)based AirborneMagnetometry,which identifies magnetic anomalies in the local terrestrial magnetic field.It can generate a contour plot or heat map that visually represents the magnetic field strength.Despite the effectiveness of this approach,landmine removal remains a challenging and resource-intensive task,fraughtwith risks.Edge computing,on the other hand,can play a crucial role in critical drone monitoring applications like landmine detection.By processing data locally on a nearby edge server,edge computing can reduce communication latency and bandwidth requirements,allowing real-time analysis of magnetic field data.It enables faster decision-making and more efficient landmine detection,potentially saving lives and minimizing the risks involved in the process.Furthermore,edge computing can provide enhanced security and privacy by keeping sensitive data close to the source,reducing the chances of data exposure during transmission.This paper introduces the MAGnetometry Imaging based Classification System(MAGICS),a fully automated UAV-based system designed for landmine and buried object detection and localization.We have developed an efficient deep learning-based strategy for automatic image classification using magnetometry dataset traces.By simulating the proposal in various network scenarios,we have successfully detected landmine signatures present in themagnetometry images.The trained models exhibit significant performance improvements,achieving a maximum mean average precision value of 97.8%.展开更多
Dynamical decoupling(DD)is normally ineffective when applied to DC measurement.In its straightforward implementation,DD nulls out DC signal as well while suppressing noise.This work proposes a phase relay method that ...Dynamical decoupling(DD)is normally ineffective when applied to DC measurement.In its straightforward implementation,DD nulls out DC signal as well while suppressing noise.This work proposes a phase relay method that is capable of continuously interrogating the DC signal over many DD cycles.We illustrate its efficacy when applied to the measurement of a weak DC magnetic field with an atomic spinor Bose-Einstein condensate.Sensitivities approaching standard quantum limit or Heisenberg limit are potentially realizable for a coherent spin state or a squeezed spin state of 10000 atoms,respectively,while ambient laboratory level noise is suppressed by DD.Our work offers a practical approach to mitigate the limitations of DD to DC measurement and would find other applications for resorting coherence in quantum sensing and quantum information processing research.展开更多
We develop a quantum precision measurement method for magnetic field at the Tesla level by utilizing a fiber diamond magnetometer.Central to our system is a micron-sized fiber diamond probe positioned on the surface o...We develop a quantum precision measurement method for magnetic field at the Tesla level by utilizing a fiber diamond magnetometer.Central to our system is a micron-sized fiber diamond probe positioned on the surface of a coplanar waveguide made of nonmagnetic materials.Calibrated with a nuclear magnetic resonance magnetometer,this probe demonstrates a broad magnetic field range from 10 mT to 1.5 T with a nonlinear error better than 0.0028%under a standard magnetic field generator and stability better than 0.0012%at a 1.5 T magnetic field.Finally,we demonstrate quantitative mapping of the vector magnetic field on the surface of a permanent magnet using the diamond magnetometer.展开更多
Excellent magnetic properties in ferrites are required for high-frequency applications and for wastewater treatment. Thus, the present study shows the comparison of magnetic and structural properties of Nd and Sm subs...Excellent magnetic properties in ferrites are required for high-frequency applications and for wastewater treatment. Thus, the present study shows the comparison of magnetic and structural properties of Nd and Sm substituted Ni-Zn-Bi ferrites with the series Ni_(0.5)Zn_(0.5)Bi_(0.04)Nd_(x)Fe_(1.96-x)O_4(with step size 0.002)and Ni_(0.5)Zn_(0.5)Bi_(0.04)Sm_(x)Fe_(1.96-x)O_4(with step size 0.02) prepared using citrate precursor method. The impact of the substitution of rare earth ions(Nd and Sm) on magnetic properties of the synthesized samples is observed using a vibrating sample magnetometer(VSM). The saturation magnetization values enhance considerably from 52 to 58 emu/g for Nd^(3+)ions and 39 to 57 emu/g for Sm^(3+) ions, thus, making these materials magnetically hard. Further, the higher value of coercivity is also observed ranging from133 to 167 Oe for Nd^(3+)ions and 81 to 155 Oe for Sm^(3+) ions. The shape of hysteresis loops indicates a super paramagnetic and ferromagnetic behavior in the obtained samples. The squareness ratio value is<0.5, suggesting the uniaxial anisotropy of particles and hence, these ferrites are suitable for microwaveabsorbing and in permanent magnetic materials. The X-ray diffraction(XRD) pattern shows the formation of pure cubic crystallites, where, lattice parameters range from 0.840 to 0.839 nm and from 0.838to 0.839 nm for Nd^(3+)and Sm^(3+) ions substitution, respectively. The crystallite size ranges between 28.63to 29.89 nm and 18.33 to 26.23 nm, for substitution of Nd^(3+)and Sm^(3+) ions, respectively. Field emission scanning electron microscopy(FESEM) shows the formation of homogeneous grains, whereas, energy dispersive spectrometer(EDS) counts describe the purity of the samples. The Sm concentration x = 0.10has the maximum surface area with value of 42.6 m^(2)/g which proves to be having good data storage application due to high surface area. The zero-field cooled(ZFC) and field cooled(FC) data show that Nddoped Ni-Zn-Bi nanoferrites show superparamagnetic behaviour in the room temperature range which makes them suitable for practical applications.展开更多
The SMILE(Solar wind Magnetosphere Ionosphere Link Explorer)mission is a joint space science mission between the Chinese Academy of Sciences(CAS)and the European Space Agency(ESA),aiming to understand the interaction ...The SMILE(Solar wind Magnetosphere Ionosphere Link Explorer)mission is a joint space science mission between the Chinese Academy of Sciences(CAS)and the European Space Agency(ESA),aiming to understand the interaction of the solar wind with the Earth’s magnetosphere in a global manner.As of May 2024,the SMILE mission is in phase-D with an expected launch date of September 2025.This report summarizes developments in the mission during the past two years.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51890912).
文摘The six-degree-of-freedom movement of an offshore plate anchor is essential to evaluate anchor performance.As an emerging technology,magnetometer has shown its potential in measuring the six-degree-of-freedom movement of offshore anchors under 1-g model laboratory tests.The paper presents the feasibility of adopting a magnetometer system in geotechnical centrifuge testing.Interference factors that may affect the measuring accuracy of the magnetometer system are investigated.The results demonstrate that the magnetometer system can accurately catch the anchor movement in the soils with the restrictions of:(1)the model anchor was made with stainless steel;(2)the system was placed at least 30 cm away from the side wall of soil model tank;(3)started the measurement when the artificial acceleration by centrifuge was stable.
基金Supported by the National Center for R&D on Superconductivity and the Ministry of Science and Technology of China(NKBRSF-G19990646).
文摘We fabricated direct-current superconducting quantum interference device magnetometers with single layer epi-taxial Tl_(2)Ba_(2)CaCu_(2)O_(x) films on 36.8° SrTiO_(3) bicrystal substrates.The white Aux noise and the field-flux transformation coefficient of the devices are 1.5 × 10^(-5)Φ0/√Hz and 40 nT/Φ0,respectively.The magnetometers can work in unshielded environment.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12174446 and 61671458)。
文摘Low-noise high-stability current sources have essential applications such as neutron electric dipole moment measurement and high-stability magnetometers. Previous studies mainly focused on frequency noise above 0.1 Hz while less on the low-frequency noise/drift. We use double resonance alignment magnetometers(DRAMs) to measure and suppress the low-frequency noise of a homemade current source(CS) board. The CS board noise level is suppressed by about 10 times in the range of 0.001-0.1 Hz and is reduced to 100 n A/√Hz at 0.001 Hz. The relative stability of CS board can reach2.2 × 10^(-8). In addition, the DRAM shows a better resolution and accuracy than a commercial 7.5-digit multimeter when measuring our homemade CS board. Further, by combining the DRAM with a double resonance orientation magnetometer,we may realize a low-noise CS in the 0.001-1000 Hz range.
基金Supported by the National Research and Development Center for SuperconductivityFEUYT of State Educational Commission of China.
文摘We have developed a simple sintering system to prepare the yttria-stabilized-zirconia(YSZ)bicrystals.Grain-boundary junctions made from the epitaxial YBa_(2)Cu_(3)O_(7-δ) films on the bicrystal substrates demonstrated Josephson behavior.Using new square washer design,single-level magnetometer of dc superconducting quantum interference.device(SQUID)has been fabricated.Owing to the flux focusing effect of the large washer,the magnetic field sensitivity of the devices has been enhanced.The magnetic field resolution of the magnetometer is IpT/Hz^(1/2) at 10Hz,and increases to 3pT/Hz^(1/2) at 1Hz at 77K.
基金supported by the National Science Fund for Outstanding Young Scholars(37127701)the National Natural Science Foundation of China(77051001)the Innovation Program for Quantum Science and Technology(0300503).
文摘The emergence of biomagnetism imaging has led to the development of ultrasensitive and compact spin-exchange relaxation-free(SERF)atomic magnetometers that promise high-resolution magnetocardiography(MCG)and magnetoencephalography(MEG).However,conventional optical components are not compatible with nanofabrication processes that enable the integration of atomic magnetometers on chips,especially for elliptically polarized laserpumped SERF magnetometers with bulky optical systems.In this study,an elliptical-polarization pumping beam(at 795 nm)is achieved through a single-piece metasurface,which results in an SERF magnetometer with a high sensitivity reaching 10.61 fT/Hz1/2 by utilizing a 87Rb vapor cell with a 3mm inner diameter.To achieve the optimum theoretical polarization,our design combines a computer-assisted optimization algorithm with an emerging metasurface design process.The metasurface is fabricated with 550 nm thick silicon-rich silicon nitride on a 2×2 cm^(2)SiO_(2)substrate and features a 22.17°ellipticity angle(a deviation from the target polarization of less than 2%)and more than 80%transmittance.This study provides a feasible approach for on-chip polarization control of future allintegrated atomic magnetometers,which will further pave the way for high-resolution biomagnetism imaging and portable atomic sensing applications.
基金supported by the National Natural Science Foundation of China (Nos.62375002,62071012,61571018,61531003,and 91436210)the National Science Fund for Distinguished Young Scholars of China (No.61225003)the National Hi-Tech Research and Development (863) Program。
文摘High-sensitivity radio-frequency optically pumped magnetometers (RF-OPMs), working without cryogenic condition, play a critical role in magnetic field imaging(MFI) at low frequencies(e.g., 100 Hz to 1 MHz). We introduce the principle of operation and recent developments of RF-OPMs and focus on reviewing the MFI applications in magnetic induction tomography, ultralow-field magnetic resonance imaging, and magnetic particle imaging. For the applications of RF-OPMs, ranging from industrial monitoring to medical imaging and security screening, the unshielded and portable RF-OPMs(and RF-OPM array)techniques are still under the further development for detecting and scanning over the target object for accomplishing the final three-dimensional imaging, and thus extremely require the abilities of active compensation of the ambient magnetic field and sensor miniaturization in the future.
文摘The alkali-atom density measurement method based on light absorption is highly suitable for a spin-exchange relaxationfree(SERF)atomic magnetometer because of its high-precision measurement and complete nonmagnetic interference.In this study,the optical rotation angle detection system based on polarization balance detection is utilized to realize the alkali-atom density real-time measurement without affecting magnetic field measurement.We discovered that there exists an optimal frequency detuning of the probe light,which offers the highest sensitivity in alkali-atom density measurement and the lowest susceptibility to temperature fluctuations in terms of the scale factor.In contrast to conventional light absorption measurements based on pump light,this method demonstrated a threefold improvement in alkali-atom density measurement sensitivity while remaining immune to ambient magnetic fields and incident light intensity fluctuations.Furthermore,we utilized this method to achieve closed-loop temperature control with an accuracy of 0.04℃.
基金supported by the National Natural Science Foundation of China(42250101)the Macao Foundation and China National Space Administration。
文摘The scientific research of geomagnetism has been largely driven by new geomagnetic data that are available to scientists.Macao Science Satellite-1(MSS-1)was successfully launched on 21st May 2023 into a near-circular orbit of altitude of about 450 km with a low inclination of 41°.After careful evaluation and calibration(7^(th)June 2023 to 31^(st)July 2024),the data of MSS-1 were released to the international scientific community on 1 August 2024,providing the highly accurate data of global geomagnetic field with an unprecedented local-time coverage to the community.This special issue of Initial Scientific Results of MSS-1,primarily driven by the new MSS-1 data,contains 27 research articles ranging from the MSS-1 design,satellite data analysis,outer core dynamics,mantle induction,lithospheric field modeling,ocean induced magnetic field,ionosphere and magnetosphere currents,to solar activities.
基金supported by the National Key R&D Program of China(Grant2022YFF0503700)the National Natural Science Foundation of China(42474200 and 42174186)。
文摘The Macao Science Satellite-1(known as MSS-1)is the first scientific exploration satellite that was designed to measure the Earth's low latitude magnetic field at high resolution and with high precision by collecting data in a near-equatorial orbit.Magnetic field data from MSS-1's onboard Vector Fluxgate Magnetometer(VFM),collected at a sample rate of 50 Hz,allows us to detect and investigate sources of magnetic data contamination,from DC to relevant Nyquist frequency.Here we report two types of artificial disturbances in the VFM data.One is V-shaped events concentrated at night,with frequencies sweeping from the Nyquist frequency down to zero and back up.The other is 5-Hz events(ones that exhibit a distinct 5 Hz spectrum peak);these events are always accompanied by intervals of spiky signals,and are clearly related to the attitude control of the satellite.Our analyses show that VFM noise levels in daytime are systematically lower than in nighttime.The daily average noise levels exhibit a period of about 52 days.The V-shaped events are strongly correlated with higher VFM noise levels.
文摘High-precision magnetic field measurements are crucial for understanding Earth’s internal structure,space environment,and dynamic geomagnetic variations.Data from the Fluxgate Magnetometer (FGM) on the Macao Science Satellite-1A (MSS-1A),added to data from other space-based magnetometers,should increase significantly the ability of scientists to observe changes in Earth’s magnetic field over time and space.Additionally,the MSS-1A’s FGM is intended to help identify magnetic disturbances affecting the spacecraft itself.This report focuses on the in-flight calibration of the MSS-1 FGM.A scalar calibration,independent of geomagnetic field models,was performed to correct offsets,sensitivities,and misalignment angles of the FGM.Using seven months of data,we find that the in-flight calibration parameters show good stability.We determined Euler angles describing the rotational relationship between the FGM and the Advanced Stellar Compass (ASC) coordinate system using two approaches:calibration with the CHAOS-7 geomagnetic field model,and simultaneous estimation of Euler angles and Gaussian spherical harmonic coefficients through self-consistent modeling.The accuracy of Euler angles describing the rotation was better than 18 arcsec.The calibrated FGM data exhibit good agreement with the calibrated data of the Vector Field Magnetometer (VFM),which is the primary vector magnetometer of the satellite.These calibration efforts have significantly improved the accuracy of the FGM measurements,which are now providing reliable data for geomagnetic field studies that promise to advance our understanding of the Earth’s magnetic environment.
基金supported by National Science Foundation of China(Grant Nos.T2388102,11927811,92476204,12150014,12205296,12274395,and 12261160569)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0303205)+1 种基金Youth Innovation Promotion Association(Grant No.2023474)Chinese Academy of Sciences Magnetic Resonance Technology Alliance Research Instrument and Equipment Development/Functional Development(Grant No.2022GZL003).
文摘Zero-and ultralow-field nuclear magnetic resonance(ZULF NMR)has experienced rapid development and provides an excellent tool for diverse research fields ranging from materials science and quantum information processing to fundamental physics.The detection of ZULF NMR signals in samples with natural abundance remains a challenging endeavor,due to the limited sensitivity of NMR detectors and thermal polarization.In this work,we demonstrate a femtotesla(fT)Potassium spin-exchange relaxation-free(SERF)magnetometer designed for ZULF NMR detection.A Potassium vapor cell with high buffer gas pressure and high atomic number density is used in the magnetometer.With absorption spectroscopy and SERF effect,the key parameters of the vapor cell are characterized and applied to optimize the magnetometer sensitivity.To combine our SERF magnetometer and ZULF NMR detection,a custom-made vacuum chamber is employed to keep NMR sample close to the magnetometer cell and protect the sample from undesired heating effects.Gradiometric measurement is performed to greatly reduce the magnetic noise.With the phase calibration applied,the gradiometric measurement achieves 7-fold enhancement in magnetic-field sensitivity compared to the single channel and has a magnetic noise floor of 1.2 fT/Hz^(1/2).Our SERF magnetometer exhibits high sensitivity and is promising to realize ZULF NMR detection of samples with natural abundance.
基金supported by the National Key R&D Program of China(No.2018YFB2002405)the National Natural Science Foundation of China(No.61903013)。
文摘Optically pumped magnetometers(OPMs)have developed rapidly in the bio-magnetic measurement field,which requires lasers with stable frequency and intensity for high sensitivity.Herein we stabilize a vertical-cavity surface-emitting laser(VCSEL)without any additional setup except for the parts of an OPM.The linewidth of the absorption spectrum as a frequency reference is broadened to 40 GHz owing to pressure broadening.To enhance performance,the VCSEL injection current and temperature are tuned simultaneously using a closed-loop control system.The experiments reveal that the VCSEL frequency stability achieves 2×10^(-7) at an average time of 1 s,and the intensity noise is 1×10^(-6)V/Hz^(1/2) at 1-100 Hz.This approach is useful for suppressing OPM noise without additional sensor probe parts.
基金supported by Baolab Microsystems and by the Spanish Ministry of Science,Innovation and Universities,the State Research Agency(AEI),and the European Social Fund(ESF)under project RTI2018-099766-B-I00.
文摘This article presents several design techniques to fabricate micro-electro-mechanical systems(MEMS)using standard complementary metal-oxide semiconductor(CMOS)processes.They were applied to fabricate high yield CMOS-MEMS shielded Lorentz-force magnetometers(LFM).The multilayered metals and oxides of the back-end-of-line(BEOL),normally used for electronic routing,comprise the structural part of the MEMS.The most important fabrication challenges,modeling approaches and design solutions are discussed.Equations that predict the Q factor,sensitivity,Brownian noise and resonant frequency as a function of temperature,gas pressure and design parameters are presented and validated in characterization tests.A number of the fabricated magnetometers were packaged into Quad Flat No-leads(QFN)packages.We show this process can achieve yields above 95%when the proper design techniques are adopted.Despite CMOS not being a process for MEMS manufacturing,estimated performance(sensitivity and noise level)is similar or superior to current commercial magnetometers and others built with MEMS processes.Additionally,typical offsets present in Lorentz-force magnetometers were prevented with a shielding electrode,whose efficiency is quantified.Finally,several reliability test results are presented,which demonstrate the robustness against high temperatures,magnetic fields and acceleration shocks.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62303029)the China Postdoctoral Science Foundation (Grant No. 2022M720364)the Innovation Program for Quantum Science and Technology (Grant Nos. 2021ZD0300500 and 2021ZD0300503)。
文摘We explore the impact of pumping beams with different transverse intensity profiles on the performance of the spinexchange relaxation-free(SERF) atomic magnetometers(AMs). We conduct experiments comparing the traditional Gaussian optically-pumped AM with that utilizing the flat-top optically-pumped(FTOP) method. Our findings reveal that the FTOP-based approach outperforms the conventional method, exhibiting a larger response, a narrower magnetic resonance linewidth, and a superior low-frequency noise performance. Specifically, the use of FTOP method leads to a 16% enhancement in average sensitivity within 1 Hz–30 Hz frequency range. Our research emphasizes the significance of achieving transverse polarization uniformity in AMs, providing insights for future optimization efforts and sensitivity improvements in miniaturized magnetometers.
基金Project supported by the National Natural Science Foundation of China(Grant No.42074216).
文摘Most triaxial-vectorial magnetic field measurements with spin-exchange relaxation free(SERF)atomic magnetometer(AM)are based on the quasi-steady-state solution of the Bloch equation.However,the responding speed of these methods is greatly limited because the frequency of the modulation signal should be slow enough to ensure the validity of the quasi-steady-state solution.In this work,a new model to describe the response of the three-axis sensitive SERF AM with high modulation frequency is presented and verified.The response of alkali-atomic spin to high-frequency modulation field is further investigated by solving the Bloch equation in a modulation-frequency-dependence manner.This solution is well verified by our experiments and can offer a reference for selection of modulation frequencies.The result shows a potential to achieve a SERF AM operating in a geomagnetic field without heavy aluminum shielding when the modulation frequencies are selected properly.
基金funded by Institutional Fund Projects under Grant No(IFPNC-001-611-2020).
文摘Landmines continue to pose an ongoing threat in various regions around the world,with countless buried landmines affecting numerous human lives.The detonation of these landmines results in thousands of casualties reported worldwide annually.Therefore,there is a pressing need to employ diverse landmine detection techniques for their removal.One effective approach for landmine detection is UAV(Unmanned Aerial Vehicle)based AirborneMagnetometry,which identifies magnetic anomalies in the local terrestrial magnetic field.It can generate a contour plot or heat map that visually represents the magnetic field strength.Despite the effectiveness of this approach,landmine removal remains a challenging and resource-intensive task,fraughtwith risks.Edge computing,on the other hand,can play a crucial role in critical drone monitoring applications like landmine detection.By processing data locally on a nearby edge server,edge computing can reduce communication latency and bandwidth requirements,allowing real-time analysis of magnetic field data.It enables faster decision-making and more efficient landmine detection,potentially saving lives and minimizing the risks involved in the process.Furthermore,edge computing can provide enhanced security and privacy by keeping sensitive data close to the source,reducing the chances of data exposure during transmission.This paper introduces the MAGnetometry Imaging based Classification System(MAGICS),a fully automated UAV-based system designed for landmine and buried object detection and localization.We have developed an efficient deep learning-based strategy for automatic image classification using magnetometry dataset traces.By simulating the proposal in various network scenarios,we have successfully detected landmine signatures present in themagnetometry images.The trained models exhibit significant performance improvements,achieving a maximum mean average precision value of 97.8%.
基金Project supported by the NSAF(Grant No.U1930201)the National Natural Science Foundation of China(Grant Nos.12274331,91836101,and 91836302)+1 种基金the National Key R&D Program of China(Grant No.2018YFA0306504)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302100).
文摘Dynamical decoupling(DD)is normally ineffective when applied to DC measurement.In its straightforward implementation,DD nulls out DC signal as well while suppressing noise.This work proposes a phase relay method that is capable of continuously interrogating the DC signal over many DD cycles.We illustrate its efficacy when applied to the measurement of a weak DC magnetic field with an atomic spinor Bose-Einstein condensate.Sensitivities approaching standard quantum limit or Heisenberg limit are potentially realizable for a coherent spin state or a squeezed spin state of 10000 atoms,respectively,while ambient laboratory level noise is suppressed by DD.Our work offers a practical approach to mitigate the limitations of DD to DC measurement and would find other applications for resorting coherence in quantum sensing and quantum information processing research.
基金Project supported by the National Key R&D Program of China(Grant No.2021YFB2012600)。
文摘We develop a quantum precision measurement method for magnetic field at the Tesla level by utilizing a fiber diamond magnetometer.Central to our system is a micron-sized fiber diamond probe positioned on the surface of a coplanar waveguide made of nonmagnetic materials.Calibrated with a nuclear magnetic resonance magnetometer,this probe demonstrates a broad magnetic field range from 10 mT to 1.5 T with a nonlinear error better than 0.0028%under a standard magnetic field generator and stability better than 0.0012%at a 1.5 T magnetic field.Finally,we demonstrate quantitative mapping of the vector magnetic field on the surface of a permanent magnet using the diamond magnetometer.
基金Project supported by the National Key Research and Development Program of China(2022YFE0122700)in part by National Natural Science Foundation of China(62371241,62350610268,61971230)in part by the Jiangsu Distinguished Professor Program(R2022T48)。
文摘Excellent magnetic properties in ferrites are required for high-frequency applications and for wastewater treatment. Thus, the present study shows the comparison of magnetic and structural properties of Nd and Sm substituted Ni-Zn-Bi ferrites with the series Ni_(0.5)Zn_(0.5)Bi_(0.04)Nd_(x)Fe_(1.96-x)O_4(with step size 0.002)and Ni_(0.5)Zn_(0.5)Bi_(0.04)Sm_(x)Fe_(1.96-x)O_4(with step size 0.02) prepared using citrate precursor method. The impact of the substitution of rare earth ions(Nd and Sm) on magnetic properties of the synthesized samples is observed using a vibrating sample magnetometer(VSM). The saturation magnetization values enhance considerably from 52 to 58 emu/g for Nd^(3+)ions and 39 to 57 emu/g for Sm^(3+) ions, thus, making these materials magnetically hard. Further, the higher value of coercivity is also observed ranging from133 to 167 Oe for Nd^(3+)ions and 81 to 155 Oe for Sm^(3+) ions. The shape of hysteresis loops indicates a super paramagnetic and ferromagnetic behavior in the obtained samples. The squareness ratio value is<0.5, suggesting the uniaxial anisotropy of particles and hence, these ferrites are suitable for microwaveabsorbing and in permanent magnetic materials. The X-ray diffraction(XRD) pattern shows the formation of pure cubic crystallites, where, lattice parameters range from 0.840 to 0.839 nm and from 0.838to 0.839 nm for Nd^(3+)and Sm^(3+) ions substitution, respectively. The crystallite size ranges between 28.63to 29.89 nm and 18.33 to 26.23 nm, for substitution of Nd^(3+)and Sm^(3+) ions, respectively. Field emission scanning electron microscopy(FESEM) shows the formation of homogeneous grains, whereas, energy dispersive spectrometer(EDS) counts describe the purity of the samples. The Sm concentration x = 0.10has the maximum surface area with value of 42.6 m^(2)/g which proves to be having good data storage application due to high surface area. The zero-field cooled(ZFC) and field cooled(FC) data show that Nddoped Ni-Zn-Bi nanoferrites show superparamagnetic behaviour in the room temperature range which makes them suitable for practical applications.
基金Founded by the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(XDA15350000)。
文摘The SMILE(Solar wind Magnetosphere Ionosphere Link Explorer)mission is a joint space science mission between the Chinese Academy of Sciences(CAS)and the European Space Agency(ESA),aiming to understand the interaction of the solar wind with the Earth’s magnetosphere in a global manner.As of May 2024,the SMILE mission is in phase-D with an expected launch date of September 2025.This report summarizes developments in the mission during the past two years.