Magnetic refrigeration(MR)technology is regarded as an ideal solution for cryogenic applications,relying on magnetocaloric materials which provide necessary chilling effect.A series of polycrystalline Tm_(1-x)Er_(x)Ni...Magnetic refrigeration(MR)technology is regarded as an ideal solution for cryogenic applications,relying on magnetocaloric materials which provide necessary chilling effect.A series of polycrystalline Tm_(1-x)Er_(x)Ni_(2)Si_(2)(x=0.2,0.4)compounds was synthesized,and their magnetic properties,magnetic phase transition together with magnetocaloric effect(MCE)were studied.The Tm_(1-x)Er_(x)Ni_(2)Si_(2)(x=0.2,0.4)compounds display a field-induced metamagnetic transition from antiferromagnetic(AFM)to ferromagnetism(FM)in excess of 0.2 T,respectively.Meanwhile,the AFM ground state is unstable.Under the field change of 0-2 T,the values of maximal magnetic entropy change(-ΔS_(M)^(max))and refrigerant capacity(RC)for Tm_(0.8)Er_(0.2)Ni_(2)Si_(2)compound are 17.9 J/(kg·K)and 83.5 J/kg,respectively.The large reversible MCE under low magnetic fields(≤2 T)indicates that Tm_(0.8)Er_(0.2)Ni_(2)Si_(2)compound can serve as potential candidate materials for cryogenic magnetic refrigeration.展开更多
With the rapid development of artificial intelligence,magnetocaloric materials as well as other materials are being developed with increased efficiency and enhanced performance.However,most studies do not take phase t...With the rapid development of artificial intelligence,magnetocaloric materials as well as other materials are being developed with increased efficiency and enhanced performance.However,most studies do not take phase transitions into account,and as a result,the predictions are usually not accurate enough.In this context,we have established an explicable relationship between alloy compositions and phase transition by feature imputation.A facile machine learning is proposed to screen candidate NiMn-based Heusler alloys with desired magnetic entropy change and magnetic transition temperature with a high accuracy R^(2)≈0.98.As expected,the measured properties of prepared NiMn-based alloys,including phase transition type,magnetic entropy changes and transition temperature,are all in good agreement with the ML predictions.As well as being the first to demonstrate an explicable relationship between alloy compositions,phase transitions and magnetocaloric properties,our proposed ML model is highly predictive and interpretable,which can provide a strong theoretical foundation for identifying high-performance magnetocaloric materials in the future.展开更多
High-entropy materials have attracted considerable attention in recent years owing to their unique structural characteristics,tailorable chemical composition,and tunable functional properties.In this study,the concept...High-entropy materials have attracted considerable attention in recent years owing to their unique structural characteristics,tailorable chemical composition,and tunable functional properties.In this study,the concept of entropy-mediated phase stabilization was combined with strongly correlated electron systems to achieve directional property control in single-phase manganites.As Ca and Cr are sequentially doped into(Pr_(0.25)La_(0.25)Nd_(0.25)Sm_(0.25))MnO_(3) at specific contents,the original weak ferromagnetic(FM)state with a spin-canted antiferromagnetic(AFM)background transforms into the charge-ordered AFM state,and then further transitions to the intense FM-AFM competition state.Magnetic state evolution also causes significant changes in electrical properties,highlighting the complex magnetoelectronic phase diagram of this system.Under specific doping conditions,the system exhibits a temperature-induced metamagnetic transition and a significant magnetocaloric effect,demonstrating interesting properties brought about by magnetic phase transitions.The complex magnetoelectric behavior induced by the coexistence and competition of multiple interactions is discussed by combining microstructural characterization with a magnetic theory framework.This study explores a method for effectively manipulating the physical properties of manganites based on the high-entropy concept,which is conducive to the development of new functional materials with kaleidoscopic characteristics.展开更多
The magnetic and magnetocaloric performances of the ternary Fe_(87)M_(10)B_(3)(M=Zr,Pr) amorphous alloys were systematically studied in the present work.By complete Pr substitution for Zr,the maximum magnetic entropy ...The magnetic and magnetocaloric performances of the ternary Fe_(87)M_(10)B_(3)(M=Zr,Pr) amorphous alloys were systematically studied in the present work.By complete Pr substitution for Zr,the maximum magnetic entropy change(-ΔS_(m)^(peak)) under 5 T is significantly enlarged from about 3.22 J/(kg·K) at 293 K to 4.66 J/(kg·K) at 337 K,with a simultaneous slight increase of magnetic hysteresis at 10 K.The mechanism involved was investigated with the help of first-principles simulation and magnetic force microscopy observation.The coercivity of the Fe_(87)Pr_(10)B_(3) amorphous ribbon at 10 K,which is induced by the strong random magnetic anisotropy that is related to the charge transfer from Pr atoms to Fe atoms,decreases to nearly zero at 200 K,indicating that the coercivity does not affect the magnetocaloric properties near room temperature.The enhanced Curie temperature(T_(c)) and the significantly enlarged-ΔS_(m)^(peak) are supposed to be closely related to a combination of the reinforced 3d-3d interaction and the introduction of 4f-4f interaction by complete Pr substitution for Zr.展开更多
The assembly of the three-dimensional(3D) lanthanide complexes,aiming at obtaining large magnetocalo ric effects,encounte rs a substantial challenge.In this study,we successfully isolated a novel series of Lnexclusive...The assembly of the three-dimensional(3D) lanthanide complexes,aiming at obtaining large magnetocalo ric effects,encounte rs a substantial challenge.In this study,we successfully isolated a novel series of Lnexclusive 3D complexes,fo rmulated as {[Ln_(2)(EDTA)(C_(2)O_(4))(H_(2)O)_(2)]}n(abbreviated as Ln_(2),Ln=Gd^(Ⅲ)(1),Eu^(Ⅲ)(2),Sm^(Ⅲ)(3),H_(4)EDTA=ethylene diamine tetraacetic acid;H_(2)C_(2)O_(4)=oxalic acid).Crystallographic study exhibits that complex 1 features a cute snail-shaped Gd_(2) unit.Adjacent Gd_(2) units are aggregated by hexadentate EDTA^(4-) and C_(2)O_(4)^(2-)ligands,further constructing a charming three-dimensional metal-organic framework with interesting parallelogram-shaped layers.Notably,all coordinated EDTA^(4-)ligands and lightweight C_(2)O_(4)^(2-)groups contribute to building a densely packed metal-organic framework,endowing complex 1 with remarkable magnetocaloric effect(-ΔS_(m)^(max)=42.5 J/(kg·K) at 2.5 K and ΔH=7.0 T).Additionally,complexes 2 and 3 exhibit outstanding solid-state luminescent properties with lifetimes of43 8.22 and 4.13 μs,and quantum yields(QY) of 7.03% and 15.46%,respectively.展开更多
Frustrated lanthanide oxides with dense magnetic lattice and suppressed ordering temperature have potential applications in cryogenic magnetic refrigeration.Herein,the crystal structure,magnetic properties,magnetic ph...Frustrated lanthanide oxides with dense magnetic lattice and suppressed ordering temperature have potential applications in cryogenic magnetic refrigeration.Herein,the crystal structure,magnetic properties,magnetic phase transition(MPT)together with magnetocaloric effect(MCE)of LnOF(Ln=Gd,Dy,Ho,and Er)compounds were investigated.Crystallographic study shows that these compounds crystallize in the centrosymmetric space group R3m with an ideal triangular lattice.No long-range magnetic ordering is observed above 2 K for LnOF(Ln=Gd,Ho,and Er).However,DyOF compound undergoes an MPT from paramagnetic(PM)to antiferromagnetic(AFM)at the Neel temperature(TN≈4 K).Considerable reversible MCE is observed in these triangular-lattice compounds.Under the magnetic field change(μ0ΔH)of 0-2 T,the maximum values of magnetic entropy change(-ΔSMmax)of them are 6.1,9.4,12.7,and 14.1 J/(kg·K),respectively.Interestingly,the value of ErOF with Ising-like spin is 2.3 times that of GdOF,which provides an approach for exploring magnetic refrigerants with excellent low-field cryogenic magnetocaloric effect.展开更多
Cryogenic magnetic cooling based on the principle of the magnetocaloric effects(MCEs)of magnetic solids has been recognized as an alternative cooling technology due to its significant economic and social benefits.Desi...Cryogenic magnetic cooling based on the principle of the magnetocaloric effects(MCEs)of magnetic solids has been recognized as an alternative cooling technology due to its significant economic and social benefits.Designing novel magnetic materials with good magnetocaloric performance is a prerequisite for practical applications.In this study,three gadolinium-transition metal-based high entropy oxides(HEOs)of Gd(Fe_(1/4)Ni_(1/4)Al_(1/4)Cr_(1/4))O_(3),Gd(Fe_(1/5)Ni_(1/5)Al_(1/5)Cr_(1/5)Co_(1/5))O_(3),and Gd(Fe_(1/6)Ni_(1/6)Al_(1/6)Cr_(1/6)Co_(1/6)Mn_(1/6))O_(3)were designed and systematically characterized regarding their structural and cryogenic magnetic properties.These HEOs were confirmed to crystallize into a single-phase perovskite-type orthorhombic structure with a homogeneous microstructure,reveal a second-order magnetic transition at low temperatures,and exhibit significant cryogenic MCEs.The magnetocaloric performances of the present HEOs,identified by magnetic entropy changes,relative cooling power,and temperature-averaged entropy changes,were com-parable with recently reported candidate materials.The present study indicates potential applications for cryogenic magnetic cooling of the present HEOs and provides meaningful clues for designing and exploring HEOs with good cryogenic magnetocaloric performances.展开更多
This study investigated the effects of interstitial carbon doping on the microstructural and magnetocaloric properties of off-stoichiometric La_(1.2)Fe_(11.6)Si_(1.4)Cx(x=0,0.25,0.5,0.75,1)alloys.The alloys were prepa...This study investigated the effects of interstitial carbon doping on the microstructural and magnetocaloric properties of off-stoichiometric La_(1.2)Fe_(11.6)Si_(1.4)Cx(x=0,0.25,0.5,0.75,1)alloys.The alloys were prepared by melt-spinning following vacuum arc-melting.For the as-prepared and annealed samples,the carbon existed in the La_(2)Fe_(2)Si_(2)C and NaZn_(13)-type La(Fe,Si)_(13)(denoted by 1:13)phases,respectively.During the annealing process,the C atoms inhibited the diffusion reaction and depressed the generation of 1:13 phase,reducing mass fraction of the 1:13 phase in annealed La_(1.2)Fe_(11.6)Si_(1.4)Cx compounds.The introduction of carbon resulted in lattice expansion and increased the Curie temperature(T_(C))from 192 K to 273 K with x=0.5.The first-order magnetic transition was gradually transformed into the second-order magnetic transition with increasing carbon content,which induced the significant reduction of thermal and magnetic hysteresis,as well as the maximum magnetic entropy change and adiabatic temperature change vary from 18.92 J/(kg·K)to 4.60 J/(kg·K)and from 4.9 K to 2.2 K under an applied field change of 0-2 T.The results demonstrate that interstitial carbon doping is an effective strategy to improve the magnetocaloric performance of La(Fe,Si)_(13)alloys.展开更多
The rare earth(RE)-transition metal(TM)based compounds have emerged as one of the best candi-dates for the application in eco-friendly and effective cooling technology due to their outstanding cryogenic magnetocaloric...The rare earth(RE)-transition metal(TM)based compounds have emerged as one of the best candi-dates for the application in eco-friendly and effective cooling technology due to their outstanding cryogenic magnetocaloric performances.In this work,three RE-TM germanides RE_(3)Co_(2)Ge_(4)(RE=Gd,Tb and Dy)were synthesized and characterized,aiming to investigating their structural,magnetic and magnetocaloric properties.These compounds crystallize in the Tb_(3)Co_(2)Ge_(4)-type monoclinic structure(space group C2/m,Z=2).Two successive ferromagnetic transitions are observed with T_(c) of 31 and 135 K for Gd_(3)Co_(2)Ge_(4),ferromagnetic and spin reorientation transitions are observed with Tc of 24 K and T_(s) of 19 K for Dy_(3)Co_(2)Ge_(4),all of which are second ordered.In contrast,Tb_(3)Co_(2)Ge_(4)exhibits a second order antiferromagnetic transition with T_(n) of 36 K,accompanied with a spin reorientation transition with T_(s) of 17 K.Furthermore,the ferromagnetic ground state for Gd_(3)Co_(2)Ge_(4)is also confirmed by the first-principles calculations.Significant cryogenic magnetocaloric performances are observed in these compounds,.The determined maximum magnetic entropy change(-ΔS_(M)^(max))under a magnetic field change(△H)of 0-7 T are 10.7,5.3 and 11.6 J/(kg·K)for Gd_(3)Co_(2)Ge_(4),Tb_(3)Co_(2)Ge_(4)and Dy_(3)Co_(2)Ge_(4),respectively.Our results suggest that Gd_(3)Co_(2)Ge_(4)and Dy_(3)Co_(2)Ge_(4)compounds are attractive candidates for cryogenic magnetic refrigeration applications.展开更多
The magnetic refrigeration(MR)based on the principle of magnetocaloric effect(MCE)in magnetic materials was recognized as an alternative cooling way to our present commercialized vapor compression cycle technology.Evi...The magnetic refrigeration(MR)based on the principle of magnetocaloric effect(MCE)in magnetic materials was recognized as an alternative cooling way to our present commercialized vapor compression cycle technology.Evidently,a vital prerequisite for practical applications is the exploration of candidate materials with prominent magnetocaloric performances.In this paper,the polycrystalline garnet RE_(3)Al_(5)O_(12)(RE=Tb,Dy and Ho)compounds with the cubic structure(space group:Ia3d)were prepared using the Pechini sol-gel method,and their crystal structure,magnetic properties and comprehensive magnetocaloric performances were studied.The analysis of magnetic susceptibility curves in a static magnetic field H=0.1 T reveal that the Dy_(3)Al_(5)O_(12)undergoes antiferromagnetic transition with Néel temperature TN≈2.6 K,whereas the Tb_(3)Al_(5)O_(12)and Ho_(3)Al_(5)O_(12)exhibit no features indicative of the magnetic ordering processes down to 1.8 K.The comprehensive magnetocaloric performances,namely the maximum magnetic entropy change and relative cooling power,are derived indirectly from the isothermal field-dependent magnetization data,which yield 11.72,10.42,7.53 J/(kg·K)and 84.56,69.52,70.35 J/kg for the Tb_(3)Al_(5)O_(12),Dy_(3)Al_(5)O_(12)and Ho_(3)Al_(5)O_(12)under a low field change(ΔH)of 0-2 T,respectively.The superior comprehensive magnetocaloric performances and wide operating temperature range of these compounds under lowΔH make them attractive for cryogenic MR technology.展开更多
Giant magnetocaloric effect(MCE)materials in the liquid helium temperature region have attracted a lot of attention in the field of low-temperature magnetic refrigeration(MR).In this study,a series of niobium(Nb)and i...Giant magnetocaloric effect(MCE)materials in the liquid helium temperature region have attracted a lot of attention in the field of low-temperature magnetic refrigeration(MR).In this study,a series of niobium(Nb)and iron(Fe)co-substituted EuTiO_(3) perovskites with cubic structure(space group pm3m)was successfully fabricated,and their magnetic properties as well as cryogenic magnetocaloric effects were investigated in detail.As expected,the introduction of Nb and Fe can significantly modulate the magnetic phase transition and magnetocaloric effect of the EuTiO_(3) compounds.With increasing Fe concentration,two local minima corresponding to the AFM-FM magnetic phase transition near 5.0 K and FM-PM transition near 10 K with no hysteresis in the thermomagnetic curves are observed,which is attributed to an enhancement of FM coupling.At the same time,the gradually widened-ΔSM-T curves and the two peaks with a broad shoulder lead to considerable refrigeration capacity(RC).With the field change ofΔH=2 T,the calculated values of-ΔS_(M)^(max) for the EuTi_(0.9375-x)Nb_(0.0625)Fe_(x)O_(3)(x=0.075,0.1,0.125,0.15)compounds are 24.2,17.6,14.5 and 14.0 J/(kg·K),respectively.The corresponding RC values were calculated to be 144.6,138.3,151.2 and 159 J/kg,respectively.Especially,the values of-ΔS_(M)^(max) for EuTi_(0.8625)Nb_(0.0625)Fe_(0.075)O_(3) are 8.6 and 15.1 J/(kg·K)under low field changes of 0.5 and 1 T,respectively.The giant low-field reversible magnetocaloric effect makes them attractive candidates for magnetic refrigeration in the liquid helium temperature region.展开更多
In perovskite EuTiO_(3),the magnetic characteristics and magnetocaloric effect(MCE) can be flexibly regulated by converting the magnetism from antiferromagnetic to ferromagnetic.In the present work,a series of Eu(Ti,N...In perovskite EuTiO_(3),the magnetic characteristics and magnetocaloric effect(MCE) can be flexibly regulated by converting the magnetism from antiferromagnetic to ferromagnetic.In the present work,a series of Eu(Ti,Nb,Mn)O_(3) compounds,abbreviated as ETNMO for convenience of description,was fabricated and their crystallography,magnetism together with cryogenic magnetocaloric effects were systematically investigated.The crystallographic results demonstrate the cubic perovskite structure for all the compounds,with the space group of Pm3m.Two magnetic phase transitions are observed in these second-order phase transition(SOPT) materials.The joint substitution of elements Mn and Nb can considerably manipulate the magnetic phase transition process and magnetocaloric performance of the ETNMO compounds.As the Mn content increases,gradually widened-ΔS_(M)-T curves are obtained,and two peaks with a broad shoulder are observed in the-ΔS_(M)-T curves for Δμ_(0)H≤0-1 T.Under a field change of 0-5 T,the values of maximum magnetic entropy change(-ΔS_(M)^(max)) and refrigeration capacity(RC) are evaluated to be 34.7 J/(kg·K) and 364.9 J/kg for EuTi_(0.8625)Nb_(0.0625)Mn_(0.075)O_(3), 27.8 J/(kg·K) and367.6 J/kg for EuTi_(0.8375)Nb_(0.0625)Mn_(0.1)O_(3),23.2 J/(kg·K) and 369.2 J/kg for EuTi_(0.8125)Nb_(0.0625)Mn_(0.125)O_(3),17.1 J/(kg·K) and 357.6 J/kg for EuTi_(0.7875)Nb_(0.0625)Mn_(0.15)O_(3),respectively.The co nsiderable MCE parameters make the ETNMO compounds potential candidates for cryogenic magnetic refrigeration.展开更多
The development of zero and negative therma expansion(i.e.,ZTE and NTE)materials is of crucial importance to the control of undesirable thermal expansion for high-precision devices.In the present work,ZTE and NTE were...The development of zero and negative therma expansion(i.e.,ZTE and NTE)materials is of crucial importance to the control of undesirable thermal expansion for high-precision devices.In the present work,ZTE and NTE were obtained in directionally-solidified Mn_(x)Fe_(5-x)Si_(3)alloys with a strong<001>texture,in striking contrast to positive thermal expansion in their isotropic counterparts Magnetometry and in-situ X-ray diffraction(XRD)measurements were performed to uncover the origin of the anomalous thermal expansion.Magnetic measurements indicate a strong easy-plane magnetocrystalline anisotropy in the textured samples,where the magnetic moments are aligned within the ab plane of the hexagonal structure Temperature-dependent XRD on the x=1 sample reveals a ZTE character in the ab plane that is coupled to a ferromagnetic transition.As a result,the macroscopic ZTE(~0.22×10^(-6)K^(-1))in the x=1 sample can be attributed to the microscopic magneto volume effect within the ab plane,which is realized by the introduction of the<001>-textured microstructure.Besides,the competition between antiferromagnetic and ferromagnetic exchange coupling leads to NTE in textured x=1.5 and 2 samples.Additionally,textured x=1 sample displays enhanced magnetocaloric properties as compared to the conventional counterparts with randomly-oriented grains.Consequently this work demonstrates a new strategy toward the exploration of anomalous thermal expansion properties as well as the enhancement of magnetocaloric properties for materials with a strong magnetocrystalline anisotropy.展开更多
Rare earth high-entropy alloys(RE-HEAs)exhibit great potential to be applied as refrigerants due to their good comprehensive magnetocaloric properties.In this work,octary GdTbDyHoErTmCoAl and GdTbDyHoErTmCoNi RE-HEAs ...Rare earth high-entropy alloys(RE-HEAs)exhibit great potential to be applied as refrigerants due to their good comprehensive magnetocaloric properties.In this work,octary GdTbDyHoErTmCoAl and GdTbDyHoErTmCoNi RE-HEAs with amorphous/nanocrystalline structure exhibiting comparable magnetocaloric effect were synthesized.Both RE-HEAs show a second-order magnetic phase transition in the temperature range of hydrogen liquefaction.Due to the complex magnetic interactions,a spin glasslike behavior at low temperatures is observed in the RE-HEAs.A superior magnetocaloric effect is obtained in the nanocrystalline GdTbDyHoErTmCoNi high-entropy alloy that is multiphase attributed to a stronger magnetic exchange interaction when compared with the other that exhibits single amorphous structure.Despite heterogeneous microstructure,homogeneous chemical distributions are observed in the partially crystallized high-entropy alloy.In addition,the magnetocaloric effect and magnetic transition behavior of rare earth medium-and high-entropy alloys,including the RE-HEAs in this study,are summarized and discussed.The results in this work provide a helpful guide for the design of RE-HEAs for hydrogen liquefaction applications with excellent magnetocaloric effects.展开更多
Lanthanide complex-based materials with magnetic and luminescent properties have received a great deal of attention,owing to their importantly potential applications in diverse fields.In this work,the 9-anthracenecarb...Lanthanide complex-based materials with magnetic and luminescent properties have received a great deal of attention,owing to their importantly potential applications in diverse fields.In this work,the 9-anthracenecarboxylic acid(9-Haca)as bridging ligand was applied in combination with optically activeπ-conjugated 2,4,6-tri(2-pyridyl)-1,3,5-triazine(tptz)to construct a series of new di-nuclear and tetranuclear lanthanide 9-anthracenecarboxylates[La_(2)(9-aca)_(6)(tptz)_(2)(μ-H_(2)O)]·0.25H_(2)O(1),[Ln_(2)(9-aca)_(6)(tptz)_(2)(H_(2)O)_(2)]·0.5AQ·CH_(3)COOH_(2)H_(2)O[Ln=Sm(2a),Eu(2b),Gd(2c),Tb(2d),Dy(2e),Tm(2f);AQ=9,10-anthracenedione]and[Ln_(4)(9-aca)_(10)(tptz)_(2)(CH3COO)2]·H_(2)O[Ln=Eu(3a),Gd(3b),Dy(3c)].1 displays a di-nuclear centrosymmetric moiety[La_(2)(9-aca)_(6)(tptz)_(2)(μ-H_(2)O)]built up from two complex[La(9-aca)_(2)(tptz)]groups bridged by one H_(2)O molecule and two syn-syn-μ2-η1:η1-9-aca-bridging ligands,while 2a-2f are isostructural and co mprise another di-nuclear centrosymmetric moieties[Ln_(2)(9-aca)_(6)(tptz)_(2)(H_(2)O)_(2)]based on two complex[Ln(9-aca)_(2)(tptz)(H_(2)O)]groups connected by two syn-syn-μ2-η1:η1-9-aca-bridging ligands,3a-3c are isostructural and show tetra-nuclear centro symmetric moieties[Ln4(9-aca)10(tptz)2(CH3COO)2]containing three types of coordination modes of 9-aca-ligands.The present compounds offer the only examples of lanthanide 9-anthracenecarboxylates decorated by optically active tptz.Magnetic investigations of 2a,2c-2f,and 3b-3c indicate that 3c is typical of slow relaxation of the magnetization,while 2c and 3b show significant magnetocaloric effect(MCE)with the value of-ΔSm of 5.26 J/(kg·K)at 4 K and 15.65 J/(kg·K)at 2 K(ΔH=7 T),respectively.The luminescent properties were also studied and reveal that the characteristic luminescent properties of the 7r-conjugated aromatic ligands are introduced into magnetic lanthanide 9-anthracenecarboxylates,simultaneously exhibiting slow magnetic relaxation(or MCE)and luminescent properties.展开更多
This paper presents a systematic investigation of the microstructure and magnetocaloric properties of melt-extracted Sm_(20)Gd_(20)Dy_(20)Co_(20)Al_(20)high-entropy microwires.The fabricated wires exhibited an amorpho...This paper presents a systematic investigation of the microstructure and magnetocaloric properties of melt-extracted Sm_(20)Gd_(20)Dy_(20)Co_(20)Al_(20)high-entropy microwires.The fabricated wires exhibited an amorphous structure,and the temperature interval of the undercooled liquid AT was 45 K.The microwires underwent a second-order magnetic transition from a ferromagnetic to a paramagnetic state near the Curie temperature(T_(C)=52 K),The maximum magnetic entropy change(-ΔS_M^(max)),the relative cooling power and the refrigeration capacity reached 6.34 J·kg^(-1)·K^(-1).422.09 J·kg^(-1)and 332.94 J·kg^(-1),respectively,under a magnetic field change of 5 T.In addition,the temperature-averaged entropy changes with two temperature lifts(3 and 10 K)were 6.32 and 6.27 J·kg^(-1)·K^(-1),respectively.The good magnetocalorie performance highlights the significant potential for the Sm_(20)Gd_(20)Dy_(20)Co_(20)Al_(20)microwires to be used as magnetic refrigerant materials in low-temperature region applications.This work will serve as a valuable reference for future investigations on low-temperature high-entropy magnetocaloric materials.展开更多
Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass exhibited excellent magnetic refrigeration material with a wide temperature range and high refrigeration capacity(RC)was reported.Er_(20)Ho_(20)Dy_(20)Cu_...Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass exhibited excellent magnetic refrigeration material with a wide temperature range and high refrigeration capacity(RC)was reported.Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass was observed with typical spin glass behavior around 15.5 K.In addition,we find that the magnetic entropy change(-△S_(M))originates from the sample undergoing a ferromagnetic(FM)to paramagnetic(PM)transition around 20 K.Under a field change from 0 T to 7 T,the value of maximum magnetic entropy change(-△S_(M)^(max))reaches 12.5 J/kg·K,and the corresponding value of RC reaches 487.7 J/kg in the temperature range from 6 K to 60 K.The large RC and wide temperature range make the Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass be a promising material for application in magnetic refrigerators.展开更多
Melanoma treatment has been revolutionized with the development of targeted therapies and immunotherapies,which shows a positive influence on the patients.However,the long-term efficaciousness of such therapy is restr...Melanoma treatment has been revolutionized with the development of targeted therapies and immunotherapies,which shows a positive influence on the patients.However,the long-term efficaciousness of such therapy is restricted by side effects,limited clinical effects as well as quick resistance to treatment.In this work,we prepared magnetocaloric carrier-free bimetallic hydrogels,named manganese-iron oxide nanocubes@polyethylene glycol-hydrogels(MFO@PEG-Gels),to realize ion-interferential cell cycle arrest for melanoma treatment.In detail,the tumor site was exposed to alternating magnetic field(AMF)after intratumorally injected MFO@PEG-Gels,which generated hyperthermia and promoted the sol-gel phase transition for MFO sustained release.Under the tumor microenvironment,hydrogen peroxide triggered MFO degradation to induce Mn^(2+)and Fe^(3+)release.On one hand,Mn^(2+)blocked G1/S phase through the activation of p27 pathway.On the other hand,Fe^(3+)could arrest the G2/M phase by upregulating the polo-like kinase 4(PLK4)expression as well as inhibiting autolysosome formation to achieve the enhanced cell cycle arrest,thereby promoting the apoptosis of melanoma cells.In summary,this study proposed ion-interferential cell cycle arrest strategy by a multifunctional and injectable magnetic bimetallic hydrogel for melanoma treatment,which provided a secure and sustainable regimen for enhancing antitumor efficacy.展开更多
We report on the structural,magnetic,and magnetocaloric properties of EuRhO_(3) powders.The oxidation states of Eu and Rh ions were studied using X-ray photoelectron spectroscopy(XPS).It is found that the Eu ions are ...We report on the structural,magnetic,and magnetocaloric properties of EuRhO_(3) powders.The oxidation states of Eu and Rh ions were studied using X-ray photoelectron spectroscopy(XPS).It is found that the Eu ions are mainly in the divalent oxidation state while the Rh ions have+4 state.EuRhO_(3) powders are found to be antiferromagnetic with a second order magnetic transition at Neel temperature(T_(N)=2.9 K).Analysis of the magnetic susceptibility versus temperature data in terms of the Curie=Weiss law:(χ=C/(T-θ_(W))) for T>T_(N),yields θ_(W)=-3.1 K and effective magne tic moment μ_(ff)^(exp),which is close to the theoretical value μ_(eff)^(theo).The magnetic entropy change(-Δ_(SM)),was determined by em ploying the thermodynam ic Maxwell's relation.At μ_0H=5 T and near T_(N),ΔS_(M)^(Max) and relative cooling power(RCP) exhibit large values of 33.7 J/(kg·K) and 238 J/kg,respectively.The large magnitude of-Δ_(SM) and RCP show that the EuRhO_(3) compound could be a potential candidate to be used in cryogenic magnetic refrigeration.展开更多
Refrigeration in the liquid helium temperature range provides vital technological support for many scientific frontiers and engineering technologies.The considerable magnetocaloric effect(MCE)makes EuTiO_(3)a potentia...Refrigeration in the liquid helium temperature range provides vital technological support for many scientific frontiers and engineering technologies.The considerable magnetocaloric effect(MCE)makes EuTiO_(3)a potential candidate for magnetic refrigeration near liquid helium temperature.More interestingly,the magnetic transition from antiferromagnetism to ferromagnetism offers the possibility to tailor the magnetism and improve the MCE of this magnetic system.In this study,the magnetic properties and MCE of EuTi_(0.875)Zr_(0.125)O_(3)were systematically investigated by first-principles calculation and experiments.The substitution of Zr induces a significant lattice expansion and alters the electronic interactions,leading to a dominance of ferromagnetism in the compound.Remarkable low-field MCE performance has been achieved attributed to the enhanced ferromagnetism and low saturation field.Under the field change of 0-1 T,the maximum magnetic entropy change(−△S_(M)^(max))and adiabatic temperature change(△T_(ad)^(max))are 17.9 J kg^(-1)K^(-1)and 6.1 K,respectively.It is worth noting that the−△S_(M)^(max)of EuTi_(0.875)Zr_(0.125)O_(3)reaches 10.3 J kg^(-1)K^(-1)for a field change of 0-0.5 T,making it one of the best magnetocaloric materials ever reported operating in the liquid helium temperature range.展开更多
基金Project supported by the National Key Research and Development Program of China(2021YFB3501204)the National Natural Science Foundation of China(52171054)+1 种基金the National Science Foundation for Distinguished Young Scholars(51925605)the National Science Foundation for Excellent Young Scholars(52222107)。
文摘Magnetic refrigeration(MR)technology is regarded as an ideal solution for cryogenic applications,relying on magnetocaloric materials which provide necessary chilling effect.A series of polycrystalline Tm_(1-x)Er_(x)Ni_(2)Si_(2)(x=0.2,0.4)compounds was synthesized,and their magnetic properties,magnetic phase transition together with magnetocaloric effect(MCE)were studied.The Tm_(1-x)Er_(x)Ni_(2)Si_(2)(x=0.2,0.4)compounds display a field-induced metamagnetic transition from antiferromagnetic(AFM)to ferromagnetism(FM)in excess of 0.2 T,respectively.Meanwhile,the AFM ground state is unstable.Under the field change of 0-2 T,the values of maximal magnetic entropy change(-ΔS_(M)^(max))and refrigerant capacity(RC)for Tm_(0.8)Er_(0.2)Ni_(2)Si_(2)compound are 17.9 J/(kg·K)and 83.5 J/kg,respectively.The large reversible MCE under low magnetic fields(≤2 T)indicates that Tm_(0.8)Er_(0.2)Ni_(2)Si_(2)compound can serve as potential candidate materials for cryogenic magnetic refrigeration.
基金supported by the National Key R&D Program of China(No.2022YFE0109500)the National Natural Science Foundation of China(Nos.52071255,52301250,52171190 and 12304027)+2 种基金the Key R&D Project of Shaanxi Province(No.2022GXLH-01-07)the Fundamental Research Funds for the Central Universities(China)the World-Class Universities(Disciplines)and the Characteristic Development Guidance Funds for the Central Universities.
文摘With the rapid development of artificial intelligence,magnetocaloric materials as well as other materials are being developed with increased efficiency and enhanced performance.However,most studies do not take phase transitions into account,and as a result,the predictions are usually not accurate enough.In this context,we have established an explicable relationship between alloy compositions and phase transition by feature imputation.A facile machine learning is proposed to screen candidate NiMn-based Heusler alloys with desired magnetic entropy change and magnetic transition temperature with a high accuracy R^(2)≈0.98.As expected,the measured properties of prepared NiMn-based alloys,including phase transition type,magnetic entropy changes and transition temperature,are all in good agreement with the ML predictions.As well as being the first to demonstrate an explicable relationship between alloy compositions,phase transitions and magnetocaloric properties,our proposed ML model is highly predictive and interpretable,which can provide a strong theoretical foundation for identifying high-performance magnetocaloric materials in the future.
基金supported by the National Natural Science Foundation of China(Nos.12074204,12374258 and 12404326)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Nos.2022ZD06 and 2023QN01008)+3 种基金the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(No.NMGIRT2203)the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region(No.NJZZ23024)the Fundamental Research Funds for the Inner Mongolia Normal University(No.2023JBYJ015)the Funds for Reform and Development of Local Universities Supported by the Central Government(Cultivation of First-Class Disciplines in Physics).
文摘High-entropy materials have attracted considerable attention in recent years owing to their unique structural characteristics,tailorable chemical composition,and tunable functional properties.In this study,the concept of entropy-mediated phase stabilization was combined with strongly correlated electron systems to achieve directional property control in single-phase manganites.As Ca and Cr are sequentially doped into(Pr_(0.25)La_(0.25)Nd_(0.25)Sm_(0.25))MnO_(3) at specific contents,the original weak ferromagnetic(FM)state with a spin-canted antiferromagnetic(AFM)background transforms into the charge-ordered AFM state,and then further transitions to the intense FM-AFM competition state.Magnetic state evolution also causes significant changes in electrical properties,highlighting the complex magnetoelectronic phase diagram of this system.Under specific doping conditions,the system exhibits a temperature-induced metamagnetic transition and a significant magnetocaloric effect,demonstrating interesting properties brought about by magnetic phase transitions.The complex magnetoelectric behavior induced by the coexistence and competition of multiple interactions is discussed by combining microstructural characterization with a magnetic theory framework.This study explores a method for effectively manipulating the physical properties of manganites based on the high-entropy concept,which is conducive to the development of new functional materials with kaleidoscopic characteristics.
基金Project supported by the National Natural Science Foundation of China (51871139, 52071196, 52071043)。
文摘The magnetic and magnetocaloric performances of the ternary Fe_(87)M_(10)B_(3)(M=Zr,Pr) amorphous alloys were systematically studied in the present work.By complete Pr substitution for Zr,the maximum magnetic entropy change(-ΔS_(m)^(peak)) under 5 T is significantly enlarged from about 3.22 J/(kg·K) at 293 K to 4.66 J/(kg·K) at 337 K,with a simultaneous slight increase of magnetic hysteresis at 10 K.The mechanism involved was investigated with the help of first-principles simulation and magnetic force microscopy observation.The coercivity of the Fe_(87)Pr_(10)B_(3) amorphous ribbon at 10 K,which is induced by the strong random magnetic anisotropy that is related to the charge transfer from Pr atoms to Fe atoms,decreases to nearly zero at 200 K,indicating that the coercivity does not affect the magnetocaloric properties near room temperature.The enhanced Curie temperature(T_(c)) and the significantly enlarged-ΔS_(m)^(peak) are supposed to be closely related to a combination of the reinforced 3d-3d interaction and the introduction of 4f-4f interaction by complete Pr substitution for Zr.
基金Project supported by the National Natural Science Foundation of China (92161109)the Postgraduate Research&Practice Innovation Program of Jiangsu Province (KYCX24_1566)。
文摘The assembly of the three-dimensional(3D) lanthanide complexes,aiming at obtaining large magnetocalo ric effects,encounte rs a substantial challenge.In this study,we successfully isolated a novel series of Lnexclusive 3D complexes,fo rmulated as {[Ln_(2)(EDTA)(C_(2)O_(4))(H_(2)O)_(2)]}n(abbreviated as Ln_(2),Ln=Gd^(Ⅲ)(1),Eu^(Ⅲ)(2),Sm^(Ⅲ)(3),H_(4)EDTA=ethylene diamine tetraacetic acid;H_(2)C_(2)O_(4)=oxalic acid).Crystallographic study exhibits that complex 1 features a cute snail-shaped Gd_(2) unit.Adjacent Gd_(2) units are aggregated by hexadentate EDTA^(4-) and C_(2)O_(4)^(2-)ligands,further constructing a charming three-dimensional metal-organic framework with interesting parallelogram-shaped layers.Notably,all coordinated EDTA^(4-)ligands and lightweight C_(2)O_(4)^(2-)groups contribute to building a densely packed metal-organic framework,endowing complex 1 with remarkable magnetocaloric effect(-ΔS_(m)^(max)=42.5 J/(kg·K) at 2.5 K and ΔH=7.0 T).Additionally,complexes 2 and 3 exhibit outstanding solid-state luminescent properties with lifetimes of43 8.22 and 4.13 μs,and quantum yields(QY) of 7.03% and 15.46%,respectively.
基金Project supported by the National Key Research and Development Program of China(2022YFB3505101)the National Science Foundation for Excellent Young Scholars(52222107)+2 种基金the National Science Foundation for Distinguished Young Scholars(51925605)the National Natural Science Foundation of China(52171195)the Projects of Ganjiang Innovation Academy,Chinese Academy of Sciences(E055B002)。
文摘Frustrated lanthanide oxides with dense magnetic lattice and suppressed ordering temperature have potential applications in cryogenic magnetic refrigeration.Herein,the crystal structure,magnetic properties,magnetic phase transition(MPT)together with magnetocaloric effect(MCE)of LnOF(Ln=Gd,Dy,Ho,and Er)compounds were investigated.Crystallographic study shows that these compounds crystallize in the centrosymmetric space group R3m with an ideal triangular lattice.No long-range magnetic ordering is observed above 2 K for LnOF(Ln=Gd,Ho,and Er).However,DyOF compound undergoes an MPT from paramagnetic(PM)to antiferromagnetic(AFM)at the Neel temperature(TN≈4 K).Considerable reversible MCE is observed in these triangular-lattice compounds.Under the magnetic field change(μ0ΔH)of 0-2 T,the maximum values of magnetic entropy change(-ΔSMmax)of them are 6.1,9.4,12.7,and 14.1 J/(kg·K),respectively.Interestingly,the value of ErOF with Ising-like spin is 2.3 times that of GdOF,which provides an approach for exploring magnetic refrigerants with excellent low-field cryogenic magnetocaloric effect.
基金supported by the National Natural Science Foundation of China(No.52171174).The authors acknowledge Dr.Chao Zhang from the Instrumentation Service Center for Physical Sciences at Westlake University for magnetization measurements.
文摘Cryogenic magnetic cooling based on the principle of the magnetocaloric effects(MCEs)of magnetic solids has been recognized as an alternative cooling technology due to its significant economic and social benefits.Designing novel magnetic materials with good magnetocaloric performance is a prerequisite for practical applications.In this study,three gadolinium-transition metal-based high entropy oxides(HEOs)of Gd(Fe_(1/4)Ni_(1/4)Al_(1/4)Cr_(1/4))O_(3),Gd(Fe_(1/5)Ni_(1/5)Al_(1/5)Cr_(1/5)Co_(1/5))O_(3),and Gd(Fe_(1/6)Ni_(1/6)Al_(1/6)Cr_(1/6)Co_(1/6)Mn_(1/6))O_(3)were designed and systematically characterized regarding their structural and cryogenic magnetic properties.These HEOs were confirmed to crystallize into a single-phase perovskite-type orthorhombic structure with a homogeneous microstructure,reveal a second-order magnetic transition at low temperatures,and exhibit significant cryogenic MCEs.The magnetocaloric performances of the present HEOs,identified by magnetic entropy changes,relative cooling power,and temperature-averaged entropy changes,were com-parable with recently reported candidate materials.The present study indicates potential applications for cryogenic magnetic cooling of the present HEOs and provides meaningful clues for designing and exploring HEOs with good cryogenic magnetocaloric performances.
基金supported by the National Natural Science Foundation of China(Grant No.52272263)the University Synergy Innovation Program of Anhui Province,China(Grant No.GXXT-2022-008)+2 种基金the University Natural Science Research Project of Anhui Province,China(Grant No.2024AH050145)the Youth Foundation of Anhui University of Technology(Grant No.QZ202303)the National Innovation and Entrepreneurship Training Program for College Students(Grant No.202310360018).
文摘This study investigated the effects of interstitial carbon doping on the microstructural and magnetocaloric properties of off-stoichiometric La_(1.2)Fe_(11.6)Si_(1.4)Cx(x=0,0.25,0.5,0.75,1)alloys.The alloys were prepared by melt-spinning following vacuum arc-melting.For the as-prepared and annealed samples,the carbon existed in the La_(2)Fe_(2)Si_(2)C and NaZn_(13)-type La(Fe,Si)_(13)(denoted by 1:13)phases,respectively.During the annealing process,the C atoms inhibited the diffusion reaction and depressed the generation of 1:13 phase,reducing mass fraction of the 1:13 phase in annealed La_(1.2)Fe_(11.6)Si_(1.4)Cx compounds.The introduction of carbon resulted in lattice expansion and increased the Curie temperature(T_(C))from 192 K to 273 K with x=0.5.The first-order magnetic transition was gradually transformed into the second-order magnetic transition with increasing carbon content,which induced the significant reduction of thermal and magnetic hysteresis,as well as the maximum magnetic entropy change and adiabatic temperature change vary from 18.92 J/(kg·K)to 4.60 J/(kg·K)and from 4.9 K to 2.2 K under an applied field change of 0-2 T.The results demonstrate that interstitial carbon doping is an effective strategy to improve the magnetocaloric performance of La(Fe,Si)_(13)alloys.
基金the Science and Technology Development Fund,Macao SAR,China(006/2022/ALC).
文摘The rare earth(RE)-transition metal(TM)based compounds have emerged as one of the best candi-dates for the application in eco-friendly and effective cooling technology due to their outstanding cryogenic magnetocaloric performances.In this work,three RE-TM germanides RE_(3)Co_(2)Ge_(4)(RE=Gd,Tb and Dy)were synthesized and characterized,aiming to investigating their structural,magnetic and magnetocaloric properties.These compounds crystallize in the Tb_(3)Co_(2)Ge_(4)-type monoclinic structure(space group C2/m,Z=2).Two successive ferromagnetic transitions are observed with T_(c) of 31 and 135 K for Gd_(3)Co_(2)Ge_(4),ferromagnetic and spin reorientation transitions are observed with Tc of 24 K and T_(s) of 19 K for Dy_(3)Co_(2)Ge_(4),all of which are second ordered.In contrast,Tb_(3)Co_(2)Ge_(4)exhibits a second order antiferromagnetic transition with T_(n) of 36 K,accompanied with a spin reorientation transition with T_(s) of 17 K.Furthermore,the ferromagnetic ground state for Gd_(3)Co_(2)Ge_(4)is also confirmed by the first-principles calculations.Significant cryogenic magnetocaloric performances are observed in these compounds,.The determined maximum magnetic entropy change(-ΔS_(M)^(max))under a magnetic field change(△H)of 0-7 T are 10.7,5.3 and 11.6 J/(kg·K)for Gd_(3)Co_(2)Ge_(4),Tb_(3)Co_(2)Ge_(4)and Dy_(3)Co_(2)Ge_(4),respectively.Our results suggest that Gd_(3)Co_(2)Ge_(4)and Dy_(3)Co_(2)Ge_(4)compounds are attractive candidates for cryogenic magnetic refrigeration applications.
基金supported by the National Natural Science Foundation of China(52301240,52472274)the Fundamental Research Funds for the Provincial Universities of Zhejiang(GK259909299001-022)。
文摘The magnetic refrigeration(MR)based on the principle of magnetocaloric effect(MCE)in magnetic materials was recognized as an alternative cooling way to our present commercialized vapor compression cycle technology.Evidently,a vital prerequisite for practical applications is the exploration of candidate materials with prominent magnetocaloric performances.In this paper,the polycrystalline garnet RE_(3)Al_(5)O_(12)(RE=Tb,Dy and Ho)compounds with the cubic structure(space group:Ia3d)were prepared using the Pechini sol-gel method,and their crystal structure,magnetic properties and comprehensive magnetocaloric performances were studied.The analysis of magnetic susceptibility curves in a static magnetic field H=0.1 T reveal that the Dy_(3)Al_(5)O_(12)undergoes antiferromagnetic transition with Néel temperature TN≈2.6 K,whereas the Tb_(3)Al_(5)O_(12)and Ho_(3)Al_(5)O_(12)exhibit no features indicative of the magnetic ordering processes down to 1.8 K.The comprehensive magnetocaloric performances,namely the maximum magnetic entropy change and relative cooling power,are derived indirectly from the isothermal field-dependent magnetization data,which yield 11.72,10.42,7.53 J/(kg·K)and 84.56,69.52,70.35 J/kg for the Tb_(3)Al_(5)O_(12),Dy_(3)Al_(5)O_(12)and Ho_(3)Al_(5)O_(12)under a low field change(ΔH)of 0-2 T,respectively.The superior comprehensive magnetocaloric performances and wide operating temperature range of these compounds under lowΔH make them attractive for cryogenic MR technology.
基金Project supported by the National Natural Science Foundation of China(52171195)Science and Technology Research Project for Education Department of Jiangxi Province(GJJ218509)。
文摘Giant magnetocaloric effect(MCE)materials in the liquid helium temperature region have attracted a lot of attention in the field of low-temperature magnetic refrigeration(MR).In this study,a series of niobium(Nb)and iron(Fe)co-substituted EuTiO_(3) perovskites with cubic structure(space group pm3m)was successfully fabricated,and their magnetic properties as well as cryogenic magnetocaloric effects were investigated in detail.As expected,the introduction of Nb and Fe can significantly modulate the magnetic phase transition and magnetocaloric effect of the EuTiO_(3) compounds.With increasing Fe concentration,two local minima corresponding to the AFM-FM magnetic phase transition near 5.0 K and FM-PM transition near 10 K with no hysteresis in the thermomagnetic curves are observed,which is attributed to an enhancement of FM coupling.At the same time,the gradually widened-ΔSM-T curves and the two peaks with a broad shoulder lead to considerable refrigeration capacity(RC).With the field change ofΔH=2 T,the calculated values of-ΔS_(M)^(max) for the EuTi_(0.9375-x)Nb_(0.0625)Fe_(x)O_(3)(x=0.075,0.1,0.125,0.15)compounds are 24.2,17.6,14.5 and 14.0 J/(kg·K),respectively.The corresponding RC values were calculated to be 144.6,138.3,151.2 and 159 J/kg,respectively.Especially,the values of-ΔS_(M)^(max) for EuTi_(0.8625)Nb_(0.0625)Fe_(0.075)O_(3) are 8.6 and 15.1 J/(kg·K)under low field changes of 0.5 and 1 T,respectively.The giant low-field reversible magnetocaloric effect makes them attractive candidates for magnetic refrigeration in the liquid helium temperature region.
基金Research Projects of Ganjiang Innovation Academy,Chinese Academy of Sciences (No.E055B002) for providing financial support。
文摘In perovskite EuTiO_(3),the magnetic characteristics and magnetocaloric effect(MCE) can be flexibly regulated by converting the magnetism from antiferromagnetic to ferromagnetic.In the present work,a series of Eu(Ti,Nb,Mn)O_(3) compounds,abbreviated as ETNMO for convenience of description,was fabricated and their crystallography,magnetism together with cryogenic magnetocaloric effects were systematically investigated.The crystallographic results demonstrate the cubic perovskite structure for all the compounds,with the space group of Pm3m.Two magnetic phase transitions are observed in these second-order phase transition(SOPT) materials.The joint substitution of elements Mn and Nb can considerably manipulate the magnetic phase transition process and magnetocaloric performance of the ETNMO compounds.As the Mn content increases,gradually widened-ΔS_(M)-T curves are obtained,and two peaks with a broad shoulder are observed in the-ΔS_(M)-T curves for Δμ_(0)H≤0-1 T.Under a field change of 0-5 T,the values of maximum magnetic entropy change(-ΔS_(M)^(max)) and refrigeration capacity(RC) are evaluated to be 34.7 J/(kg·K) and 364.9 J/kg for EuTi_(0.8625)Nb_(0.0625)Mn_(0.075)O_(3), 27.8 J/(kg·K) and367.6 J/kg for EuTi_(0.8375)Nb_(0.0625)Mn_(0.1)O_(3),23.2 J/(kg·K) and 369.2 J/kg for EuTi_(0.8125)Nb_(0.0625)Mn_(0.125)O_(3),17.1 J/(kg·K) and 357.6 J/kg for EuTi_(0.7875)Nb_(0.0625)Mn_(0.15)O_(3),respectively.The co nsiderable MCE parameters make the ETNMO compounds potential candidates for cryogenic magnetic refrigeration.
基金financially supported by the National Natural Science Foundation of China(Nos.12004179,U1832191,51801102,52271180,52001167 and 52101236)Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology+1 种基金the Fundamental Research Funds for the Central Universities(No.30922010802)the Sino-German Mobility Program from the Sino-German Center for Research Promotion(SGC)(No.M-0447)。
文摘The development of zero and negative therma expansion(i.e.,ZTE and NTE)materials is of crucial importance to the control of undesirable thermal expansion for high-precision devices.In the present work,ZTE and NTE were obtained in directionally-solidified Mn_(x)Fe_(5-x)Si_(3)alloys with a strong<001>texture,in striking contrast to positive thermal expansion in their isotropic counterparts Magnetometry and in-situ X-ray diffraction(XRD)measurements were performed to uncover the origin of the anomalous thermal expansion.Magnetic measurements indicate a strong easy-plane magnetocrystalline anisotropy in the textured samples,where the magnetic moments are aligned within the ab plane of the hexagonal structure Temperature-dependent XRD on the x=1 sample reveals a ZTE character in the ab plane that is coupled to a ferromagnetic transition.As a result,the macroscopic ZTE(~0.22×10^(-6)K^(-1))in the x=1 sample can be attributed to the microscopic magneto volume effect within the ab plane,which is realized by the introduction of the<001>-textured microstructure.Besides,the competition between antiferromagnetic and ferromagnetic exchange coupling leads to NTE in textured x=1.5 and 2 samples.Additionally,textured x=1 sample displays enhanced magnetocaloric properties as compared to the conventional counterparts with randomly-oriented grains.Consequently this work demonstrates a new strategy toward the exploration of anomalous thermal expansion properties as well as the enhancement of magnetocaloric properties for materials with a strong magnetocrystalline anisotropy.
基金Project supported by the National Natural Science Foundation of China(52101193,51975183)China Postdoctoral Science Foundation(2022M711002)+2 种基金Fundamental Research Funds for the Central Universities(B220202036)the Natural Science Foundation of Jiangsu Province(BK20201316)Jiangsu Planned Projects for Postdoctoral Research Funds(2021K646C)。
文摘Rare earth high-entropy alloys(RE-HEAs)exhibit great potential to be applied as refrigerants due to their good comprehensive magnetocaloric properties.In this work,octary GdTbDyHoErTmCoAl and GdTbDyHoErTmCoNi RE-HEAs with amorphous/nanocrystalline structure exhibiting comparable magnetocaloric effect were synthesized.Both RE-HEAs show a second-order magnetic phase transition in the temperature range of hydrogen liquefaction.Due to the complex magnetic interactions,a spin glasslike behavior at low temperatures is observed in the RE-HEAs.A superior magnetocaloric effect is obtained in the nanocrystalline GdTbDyHoErTmCoNi high-entropy alloy that is multiphase attributed to a stronger magnetic exchange interaction when compared with the other that exhibits single amorphous structure.Despite heterogeneous microstructure,homogeneous chemical distributions are observed in the partially crystallized high-entropy alloy.In addition,the magnetocaloric effect and magnetic transition behavior of rare earth medium-and high-entropy alloys,including the RE-HEAs in this study,are summarized and discussed.The results in this work provide a helpful guide for the design of RE-HEAs for hydrogen liquefaction applications with excellent magnetocaloric effects.
基金Project supported by the National Natural Science Foundation of China(21671029)Innovation andEntrepreneurship Team of Inorganic Optoelectronic Functional Materials for Chongqing Yingcai(cstc2021ycjh-bgzxm0131)+3 种基金MajorProject of the Science and Technology Research Program of Chongqing Education Commission of China(KJZD-M202100501)theInnovation Program for Chongqing’s Overseas Returnees(cx2019037)Natural Science Foundation of Chongqing,China(cstc2021jcyj-msxmX0380)Chongqing Normal University(21XLB034)。
文摘Lanthanide complex-based materials with magnetic and luminescent properties have received a great deal of attention,owing to their importantly potential applications in diverse fields.In this work,the 9-anthracenecarboxylic acid(9-Haca)as bridging ligand was applied in combination with optically activeπ-conjugated 2,4,6-tri(2-pyridyl)-1,3,5-triazine(tptz)to construct a series of new di-nuclear and tetranuclear lanthanide 9-anthracenecarboxylates[La_(2)(9-aca)_(6)(tptz)_(2)(μ-H_(2)O)]·0.25H_(2)O(1),[Ln_(2)(9-aca)_(6)(tptz)_(2)(H_(2)O)_(2)]·0.5AQ·CH_(3)COOH_(2)H_(2)O[Ln=Sm(2a),Eu(2b),Gd(2c),Tb(2d),Dy(2e),Tm(2f);AQ=9,10-anthracenedione]and[Ln_(4)(9-aca)_(10)(tptz)_(2)(CH3COO)2]·H_(2)O[Ln=Eu(3a),Gd(3b),Dy(3c)].1 displays a di-nuclear centrosymmetric moiety[La_(2)(9-aca)_(6)(tptz)_(2)(μ-H_(2)O)]built up from two complex[La(9-aca)_(2)(tptz)]groups bridged by one H_(2)O molecule and two syn-syn-μ2-η1:η1-9-aca-bridging ligands,while 2a-2f are isostructural and co mprise another di-nuclear centrosymmetric moieties[Ln_(2)(9-aca)_(6)(tptz)_(2)(H_(2)O)_(2)]based on two complex[Ln(9-aca)_(2)(tptz)(H_(2)O)]groups connected by two syn-syn-μ2-η1:η1-9-aca-bridging ligands,3a-3c are isostructural and show tetra-nuclear centro symmetric moieties[Ln4(9-aca)10(tptz)2(CH3COO)2]containing three types of coordination modes of 9-aca-ligands.The present compounds offer the only examples of lanthanide 9-anthracenecarboxylates decorated by optically active tptz.Magnetic investigations of 2a,2c-2f,and 3b-3c indicate that 3c is typical of slow relaxation of the magnetization,while 2c and 3b show significant magnetocaloric effect(MCE)with the value of-ΔSm of 5.26 J/(kg·K)at 4 K and 15.65 J/(kg·K)at 2 K(ΔH=7 T),respectively.The luminescent properties were also studied and reveal that the characteristic luminescent properties of the 7r-conjugated aromatic ligands are introduced into magnetic lanthanide 9-anthracenecarboxylates,simultaneously exhibiting slow magnetic relaxation(or MCE)and luminescent properties.
基金financially supported by the National Natural Science Foundation of China(No.51827801)the support by the Overseas Visiting Study Program of Harbin Institute of Technology。
文摘This paper presents a systematic investigation of the microstructure and magnetocaloric properties of melt-extracted Sm_(20)Gd_(20)Dy_(20)Co_(20)Al_(20)high-entropy microwires.The fabricated wires exhibited an amorphous structure,and the temperature interval of the undercooled liquid AT was 45 K.The microwires underwent a second-order magnetic transition from a ferromagnetic to a paramagnetic state near the Curie temperature(T_(C)=52 K),The maximum magnetic entropy change(-ΔS_M^(max)),the relative cooling power and the refrigeration capacity reached 6.34 J·kg^(-1)·K^(-1).422.09 J·kg^(-1)and 332.94 J·kg^(-1),respectively,under a magnetic field change of 5 T.In addition,the temperature-averaged entropy changes with two temperature lifts(3 and 10 K)were 6.32 and 6.27 J·kg^(-1)·K^(-1),respectively.The good magnetocalorie performance highlights the significant potential for the Sm_(20)Gd_(20)Dy_(20)Co_(20)Al_(20)microwires to be used as magnetic refrigerant materials in low-temperature region applications.This work will serve as a valuable reference for future investigations on low-temperature high-entropy magnetocaloric materials.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52371203 and 52271192)the Ministry of Science and Technology of China(Grant No.2021YFB3501201)。
文摘Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass exhibited excellent magnetic refrigeration material with a wide temperature range and high refrigeration capacity(RC)was reported.Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass was observed with typical spin glass behavior around 15.5 K.In addition,we find that the magnetic entropy change(-△S_(M))originates from the sample undergoing a ferromagnetic(FM)to paramagnetic(PM)transition around 20 K.Under a field change from 0 T to 7 T,the value of maximum magnetic entropy change(-△S_(M)^(max))reaches 12.5 J/kg·K,and the corresponding value of RC reaches 487.7 J/kg in the temperature range from 6 K to 60 K.The large RC and wide temperature range make the Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass be a promising material for application in magnetic refrigerators.
基金supported by National Natural Science Foundation of China(No.82273873)Young Elite Scientists Sponsorship Program by Tianjin(No.0701320001)+2 种基金Major Special Projects(No.0402080005)Natural Science Foundation of Tianjin(No.21JCYBJC00660)Young Program Natural Science Foundation of Tianjin(No.20JCQNJC01610)。
文摘Melanoma treatment has been revolutionized with the development of targeted therapies and immunotherapies,which shows a positive influence on the patients.However,the long-term efficaciousness of such therapy is restricted by side effects,limited clinical effects as well as quick resistance to treatment.In this work,we prepared magnetocaloric carrier-free bimetallic hydrogels,named manganese-iron oxide nanocubes@polyethylene glycol-hydrogels(MFO@PEG-Gels),to realize ion-interferential cell cycle arrest for melanoma treatment.In detail,the tumor site was exposed to alternating magnetic field(AMF)after intratumorally injected MFO@PEG-Gels,which generated hyperthermia and promoted the sol-gel phase transition for MFO sustained release.Under the tumor microenvironment,hydrogen peroxide triggered MFO degradation to induce Mn^(2+)and Fe^(3+)release.On one hand,Mn^(2+)blocked G1/S phase through the activation of p27 pathway.On the other hand,Fe^(3+)could arrest the G2/M phase by upregulating the polo-like kinase 4(PLK4)expression as well as inhibiting autolysosome formation to achieve the enhanced cell cycle arrest,thereby promoting the apoptosis of melanoma cells.In summary,this study proposed ion-interferential cell cycle arrest strategy by a multifunctional and injectable magnetic bimetallic hydrogel for melanoma treatment,which provided a secure and sustainable regimen for enhancing antitumor efficacy.
文摘We report on the structural,magnetic,and magnetocaloric properties of EuRhO_(3) powders.The oxidation states of Eu and Rh ions were studied using X-ray photoelectron spectroscopy(XPS).It is found that the Eu ions are mainly in the divalent oxidation state while the Rh ions have+4 state.EuRhO_(3) powders are found to be antiferromagnetic with a second order magnetic transition at Neel temperature(T_(N)=2.9 K).Analysis of the magnetic susceptibility versus temperature data in terms of the Curie=Weiss law:(χ=C/(T-θ_(W))) for T>T_(N),yields θ_(W)=-3.1 K and effective magne tic moment μ_(ff)^(exp),which is close to the theoretical value μ_(eff)^(theo).The magnetic entropy change(-Δ_(SM)),was determined by em ploying the thermodynam ic Maxwell's relation.At μ_0H=5 T and near T_(N),ΔS_(M)^(Max) and relative cooling power(RCP) exhibit large values of 33.7 J/(kg·K) and 238 J/kg,respectively.The large magnitude of-Δ_(SM) and RCP show that the EuRhO_(3) compound could be a potential candidate to be used in cryogenic magnetic refrigeration.
基金supported by the National Key R&D Program of China(No.2021YFB3501204)the National Science Foundation for Excellent Young Scholars(No.52222107)+1 种基金the National Science Fund for Distinguished Young Scholars(No.51925605)the National Natural Science Foundation of China(No.52171195).
文摘Refrigeration in the liquid helium temperature range provides vital technological support for many scientific frontiers and engineering technologies.The considerable magnetocaloric effect(MCE)makes EuTiO_(3)a potential candidate for magnetic refrigeration near liquid helium temperature.More interestingly,the magnetic transition from antiferromagnetism to ferromagnetism offers the possibility to tailor the magnetism and improve the MCE of this magnetic system.In this study,the magnetic properties and MCE of EuTi_(0.875)Zr_(0.125)O_(3)were systematically investigated by first-principles calculation and experiments.The substitution of Zr induces a significant lattice expansion and alters the electronic interactions,leading to a dominance of ferromagnetism in the compound.Remarkable low-field MCE performance has been achieved attributed to the enhanced ferromagnetism and low saturation field.Under the field change of 0-1 T,the maximum magnetic entropy change(−△S_(M)^(max))and adiabatic temperature change(△T_(ad)^(max))are 17.9 J kg^(-1)K^(-1)and 6.1 K,respectively.It is worth noting that the−△S_(M)^(max)of EuTi_(0.875)Zr_(0.125)O_(3)reaches 10.3 J kg^(-1)K^(-1)for a field change of 0-0.5 T,making it one of the best magnetocaloric materials ever reported operating in the liquid helium temperature range.