期刊文献+
共找到253篇文章
< 1 2 13 >
每页显示 20 50 100
Realization of Large Magnetocaloric Effect in the Kagome Antiferromagnet Gd3BWO9 for Sub-Kelvin Cryogenic Refrigeration
1
作者 Fangyuan Song Xinyang Liu +10 位作者 Chao Dong Jin Zhou Xinlong Shi Yuyan Han Langsheng Ling Huifen Ren Songliu Yuan Shun Wang Junsen Xiang Peijie Sun Zhaoming Tian 《Chinese Physics Letters》 2025年第12期253-268,共16页
Rare-earth based frustrated magnets have attracted great attention as excellent candidates for magnetic refrigeration at sub-Kelvin temperatures,while the experimental identification of systems exhibiting both large v... Rare-earth based frustrated magnets have attracted great attention as excellent candidates for magnetic refrigeration at sub-Kelvin temperatures,while the experimental identification of systems exhibiting both large volumetric cooling capacity and reduced working temperatures far below 1K remains a challenge.Here,through ultra-low temperature magnetism and thermodynamic characterizations,we unveil the large magnetocaloric effect(MCE)realized at sub-Kelvin temperatures in the frustrated Kagome antiferromagnet Gd_(3)BWO_(9)with T_(N)∼1.0 K.The isothermal magnetization curves indicate the existence of field(B)induced anisotropic magnetic phase diagrams,where four distinct magnetic phases for B‖c-axis and five magnetic phases for B‖ab-plane are identified at T<T_(N).The analysis of magnetic entropy S(B,T)data and direct adiabatic demagnetization tests reveal remarkable cooling performance at sub-Kelvin temperatures featured by a large volumetric entropy density of 502.2 mJ/K/cm^(3)and a low attainable minimal temperature T_(min)∼168mK from the initial cooling condition of 2K and 6 T,surpassing most Gd-based refrigerants previously documented in temperature ranges of 0.25–4 K.The realized T_(min)∼168mK far below T_(N)∼1.0K in Gd_(3)BWO_(9)is related to the combined effects of magnetic frustration and criticality-enhanced MCE,which together leave substantial magnetic entropy at reduced temperatures by enhancing spin fluctuations. 展开更多
关键词 magnetic refrigeration GD BWO magnetocaloric effect kagome antiferromagnet thermodynamic characterizationswe magnetocaloric effect mce realized frustrated magnets sub kelvin refrigeration
原文传递
Giant low-field magnetocaloric effect in unstable antiferromagnetic Tm_(1-x)Er_(x)Ni_(2)Si_(2)(x=0.2,0.4)compounds
2
作者 Bo Xu Lu Tian +4 位作者 Junfeng Wang Mei Wu Xinqiang Gao Zhenxing Li Jun Shen 《Journal of Rare Earths》 2025年第2期312-318,I0003,共8页
Magnetic refrigeration(MR)technology is regarded as an ideal solution for cryogenic applications,relying on magnetocaloric materials which provide necessary chilling effect.A series of polycrystalline Tm_(1-x)Er_(x)Ni... Magnetic refrigeration(MR)technology is regarded as an ideal solution for cryogenic applications,relying on magnetocaloric materials which provide necessary chilling effect.A series of polycrystalline Tm_(1-x)Er_(x)Ni_(2)Si_(2)(x=0.2,0.4)compounds was synthesized,and their magnetic properties,magnetic phase transition together with magnetocaloric effect(MCE)were studied.The Tm_(1-x)Er_(x)Ni_(2)Si_(2)(x=0.2,0.4)compounds display a field-induced metamagnetic transition from antiferromagnetic(AFM)to ferromagnetism(FM)in excess of 0.2 T,respectively.Meanwhile,the AFM ground state is unstable.Under the field change of 0-2 T,the values of maximal magnetic entropy change(-ΔS_(M)^(max))and refrigerant capacity(RC)for Tm_(0.8)Er_(0.2)Ni_(2)Si_(2)compound are 17.9 J/(kg·K)and 83.5 J/kg,respectively.The large reversible MCE under low magnetic fields(≤2 T)indicates that Tm_(0.8)Er_(0.2)Ni_(2)Si_(2)compound can serve as potential candidate materials for cryogenic magnetic refrigeration. 展开更多
关键词 magnetocaloric materials magnetocaloric effects Cryogenic magnetic refrigeration TmNi_(2)Si_(2) Rare earths
原文传递
Accurate prediction of magnetocaloric effect in NiMn-based Heusler alloys by prioritizing phase transitions through explainable machine learning 被引量:2
3
作者 Yi-Chuan Tang Kai-Yan Cao +7 位作者 Ruo-Nan Ma Jia-Bin Wang Yin Zhang Dong-Yan Zhang Chao Zhou Fang-Hua Tian Min-Xia Fang Sen Yang 《Rare Metals》 2025年第1期639-651,共13页
With the rapid development of artificial intelligence,magnetocaloric materials as well as other materials are being developed with increased efficiency and enhanced performance.However,most studies do not take phase t... With the rapid development of artificial intelligence,magnetocaloric materials as well as other materials are being developed with increased efficiency and enhanced performance.However,most studies do not take phase transitions into account,and as a result,the predictions are usually not accurate enough.In this context,we have established an explicable relationship between alloy compositions and phase transition by feature imputation.A facile machine learning is proposed to screen candidate NiMn-based Heusler alloys with desired magnetic entropy change and magnetic transition temperature with a high accuracy R^(2)≈0.98.As expected,the measured properties of prepared NiMn-based alloys,including phase transition type,magnetic entropy changes and transition temperature,are all in good agreement with the ML predictions.As well as being the first to demonstrate an explicable relationship between alloy compositions,phase transitions and magnetocaloric properties,our proposed ML model is highly predictive and interpretable,which can provide a strong theoretical foundation for identifying high-performance magnetocaloric materials in the future. 展开更多
关键词 NiMn-based Heusler materials Phase transition-type Machine learning magnetocaloric effect Composition design
原文传递
High-entropy approach to engineering the magnetoelectric and magnetocaloric properties of manganites 被引量:1
4
作者 Xin-Jie Xing Zi-Yi Huo +3 位作者 Ning Jiang Xiao-Lei Wang Qi-Cheng Yan Shi-Feng Zhao 《Rare Metals》 2025年第4期2644-2660,共17页
High-entropy materials have attracted considerable attention in recent years owing to their unique structural characteristics,tailorable chemical composition,and tunable functional properties.In this study,the concept... High-entropy materials have attracted considerable attention in recent years owing to their unique structural characteristics,tailorable chemical composition,and tunable functional properties.In this study,the concept of entropy-mediated phase stabilization was combined with strongly correlated electron systems to achieve directional property control in single-phase manganites.As Ca and Cr are sequentially doped into(Pr_(0.25)La_(0.25)Nd_(0.25)Sm_(0.25))MnO_(3) at specific contents,the original weak ferromagnetic(FM)state with a spin-canted antiferromagnetic(AFM)background transforms into the charge-ordered AFM state,and then further transitions to the intense FM-AFM competition state.Magnetic state evolution also causes significant changes in electrical properties,highlighting the complex magnetoelectronic phase diagram of this system.Under specific doping conditions,the system exhibits a temperature-induced metamagnetic transition and a significant magnetocaloric effect,demonstrating interesting properties brought about by magnetic phase transitions.The complex magnetoelectric behavior induced by the coexistence and competition of multiple interactions is discussed by combining microstructural characterization with a magnetic theory framework.This study explores a method for effectively manipulating the physical properties of manganites based on the high-entropy concept,which is conducive to the development of new functional materials with kaleidoscopic characteristics. 展开更多
关键词 Rare-earth manganite Exchange interaction Magnetic phase transition MAGNETOELECTRIC magnetocaloric
原文传递
Magnetic and magnetocaloric properties of ternary Fe_(87)M_(10)B_(3)(M = Zr,Pr) metallic glasses
5
作者 Qiang Wang Ding Ding +2 位作者 Benzhen Tang Peng Yu Lei Xia 《Journal of Rare Earths》 2025年第9期1892-1900,共9页
The magnetic and magnetocaloric performances of the ternary Fe_(87)M_(10)B_(3)(M=Zr,Pr) amorphous alloys were systematically studied in the present work.By complete Pr substitution for Zr,the maximum magnetic entropy ... The magnetic and magnetocaloric performances of the ternary Fe_(87)M_(10)B_(3)(M=Zr,Pr) amorphous alloys were systematically studied in the present work.By complete Pr substitution for Zr,the maximum magnetic entropy change(-ΔS_(m)^(peak)) under 5 T is significantly enlarged from about 3.22 J/(kg·K) at 293 K to 4.66 J/(kg·K) at 337 K,with a simultaneous slight increase of magnetic hysteresis at 10 K.The mechanism involved was investigated with the help of first-principles simulation and magnetic force microscopy observation.The coercivity of the Fe_(87)Pr_(10)B_(3) amorphous ribbon at 10 K,which is induced by the strong random magnetic anisotropy that is related to the charge transfer from Pr atoms to Fe atoms,decreases to nearly zero at 200 K,indicating that the coercivity does not affect the magnetocaloric properties near room temperature.The enhanced Curie temperature(T_(c)) and the significantly enlarged-ΔS_(m)^(peak) are supposed to be closely related to a combination of the reinforced 3d-3d interaction and the introduction of 4f-4f interaction by complete Pr substitution for Zr. 展开更多
关键词 Metallic glass Rare earths magnetocaloric effect Magnetic entropy change First-principles simulation Magnetic domain
原文传递
Lanthanide metal-organic frameworks containing ethylene diamine tetraacetic acid exhibiting large magnetocaloric effect and interesting luminescence properties
6
作者 Qin Wang Qiongru Wu +5 位作者 Lingtong Xu Yating Yu Jilei Wang Pinfang Yan Xu Bai Yan Xu 《Journal of Rare Earths》 2025年第9期1929-1935,共7页
The assembly of the three-dimensional(3D) lanthanide complexes,aiming at obtaining large magnetocalo ric effects,encounte rs a substantial challenge.In this study,we successfully isolated a novel series of Lnexclusive... The assembly of the three-dimensional(3D) lanthanide complexes,aiming at obtaining large magnetocalo ric effects,encounte rs a substantial challenge.In this study,we successfully isolated a novel series of Lnexclusive 3D complexes,fo rmulated as {[Ln_(2)(EDTA)(C_(2)O_(4))(H_(2)O)_(2)]}n(abbreviated as Ln_(2),Ln=Gd^(Ⅲ)(1),Eu^(Ⅲ)(2),Sm^(Ⅲ)(3),H_(4)EDTA=ethylene diamine tetraacetic acid;H_(2)C_(2)O_(4)=oxalic acid).Crystallographic study exhibits that complex 1 features a cute snail-shaped Gd_(2) unit.Adjacent Gd_(2) units are aggregated by hexadentate EDTA^(4-) and C_(2)O_(4)^(2-)ligands,further constructing a charming three-dimensional metal-organic framework with interesting parallelogram-shaped layers.Notably,all coordinated EDTA^(4-)ligands and lightweight C_(2)O_(4)^(2-)groups contribute to building a densely packed metal-organic framework,endowing complex 1 with remarkable magnetocaloric effect(-ΔS_(m)^(max)=42.5 J/(kg·K) at 2.5 K and ΔH=7.0 T).Additionally,complexes 2 and 3 exhibit outstanding solid-state luminescent properties with lifetimes of43 8.22 and 4.13 μs,and quantum yields(QY) of 7.03% and 15.46%,respectively. 展开更多
关键词 3D complex Ln_(2) magnetocaloric effect LUMINESCENCE Rare earths
原文传递
Magnetism and cryogenic magnetocaloric effect of triangular-lattice LnOF(Ln=Gd,Dy,Ho,and Er) compounds
7
作者 Jianjian Gong Lu Tian +3 位作者 Lei Zhang Zhaojun Mo Yuanpeng Wang Jun Shen 《Journal of Rare Earths》 2025年第1期98-104,I0004,共8页
Frustrated lanthanide oxides with dense magnetic lattice and suppressed ordering temperature have potential applications in cryogenic magnetic refrigeration.Herein,the crystal structure,magnetic properties,magnetic ph... Frustrated lanthanide oxides with dense magnetic lattice and suppressed ordering temperature have potential applications in cryogenic magnetic refrigeration.Herein,the crystal structure,magnetic properties,magnetic phase transition(MPT)together with magnetocaloric effect(MCE)of LnOF(Ln=Gd,Dy,Ho,and Er)compounds were investigated.Crystallographic study shows that these compounds crystallize in the centrosymmetric space group R3m with an ideal triangular lattice.No long-range magnetic ordering is observed above 2 K for LnOF(Ln=Gd,Ho,and Er).However,DyOF compound undergoes an MPT from paramagnetic(PM)to antiferromagnetic(AFM)at the Neel temperature(TN≈4 K).Considerable reversible MCE is observed in these triangular-lattice compounds.Under the magnetic field change(μ0ΔH)of 0-2 T,the maximum values of magnetic entropy change(-ΔSMmax)of them are 6.1,9.4,12.7,and 14.1 J/(kg·K),respectively.Interestingly,the value of ErOF with Ising-like spin is 2.3 times that of GdOF,which provides an approach for exploring magnetic refrigerants with excellent low-field cryogenic magnetocaloric effect. 展开更多
关键词 Geometric magnetic frustration Magnetic phase transition magnetocaloric effect Magnetic refrigeration Rare earths
原文传递
Designing gadolinium-transition metals-based perovskite type high entropy oxides with good cryogenic magnetocaloric performances
8
作者 Junli Lin Xin Wang +2 位作者 Fengying Chen Hai-Feng Li Lingwei Li 《Journal of Materials Science & Technology》 2025年第4期317-323,共7页
Cryogenic magnetic cooling based on the principle of the magnetocaloric effects(MCEs)of magnetic solids has been recognized as an alternative cooling technology due to its significant economic and social benefits.Desi... Cryogenic magnetic cooling based on the principle of the magnetocaloric effects(MCEs)of magnetic solids has been recognized as an alternative cooling technology due to its significant economic and social benefits.Designing novel magnetic materials with good magnetocaloric performance is a prerequisite for practical applications.In this study,three gadolinium-transition metal-based high entropy oxides(HEOs)of Gd(Fe_(1/4)Ni_(1/4)Al_(1/4)Cr_(1/4))O_(3),Gd(Fe_(1/5)Ni_(1/5)Al_(1/5)Cr_(1/5)Co_(1/5))O_(3),and Gd(Fe_(1/6)Ni_(1/6)Al_(1/6)Cr_(1/6)Co_(1/6)Mn_(1/6))O_(3)were designed and systematically characterized regarding their structural and cryogenic magnetic properties.These HEOs were confirmed to crystallize into a single-phase perovskite-type orthorhombic structure with a homogeneous microstructure,reveal a second-order magnetic transition at low temperatures,and exhibit significant cryogenic MCEs.The magnetocaloric performances of the present HEOs,identified by magnetic entropy changes,relative cooling power,and temperature-averaged entropy changes,were com-parable with recently reported candidate materials.The present study indicates potential applications for cryogenic magnetic cooling of the present HEOs and provides meaningful clues for designing and exploring HEOs with good cryogenic magnetocaloric performances. 展开更多
关键词 High entropy oxides Transition metal magnetocaloric properties Cryogenic magnetic refrigeration
原文传递
Microstructural evolution and magnetocaloric properties of off-stoichiometric La_(1.2)Fe_(11.6)Si_(1.4)alloys with interstitial C atoms
9
作者 Huiyan Zhang Ye Zhu +7 位作者 Fucheng Zhu Yang Xu Yunbo Chen Hailing Li Weihua Gu Zhiyuan Liu Weihuo Li Ailin Xia 《Chinese Physics B》 2025年第8期743-751,共9页
This study investigated the effects of interstitial carbon doping on the microstructural and magnetocaloric properties of off-stoichiometric La_(1.2)Fe_(11.6)Si_(1.4)Cx(x=0,0.25,0.5,0.75,1)alloys.The alloys were prepa... This study investigated the effects of interstitial carbon doping on the microstructural and magnetocaloric properties of off-stoichiometric La_(1.2)Fe_(11.6)Si_(1.4)Cx(x=0,0.25,0.5,0.75,1)alloys.The alloys were prepared by melt-spinning following vacuum arc-melting.For the as-prepared and annealed samples,the carbon existed in the La_(2)Fe_(2)Si_(2)C and NaZn_(13)-type La(Fe,Si)_(13)(denoted by 1:13)phases,respectively.During the annealing process,the C atoms inhibited the diffusion reaction and depressed the generation of 1:13 phase,reducing mass fraction of the 1:13 phase in annealed La_(1.2)Fe_(11.6)Si_(1.4)Cx compounds.The introduction of carbon resulted in lattice expansion and increased the Curie temperature(T_(C))from 192 K to 273 K with x=0.5.The first-order magnetic transition was gradually transformed into the second-order magnetic transition with increasing carbon content,which induced the significant reduction of thermal and magnetic hysteresis,as well as the maximum magnetic entropy change and adiabatic temperature change vary from 18.92 J/(kg·K)to 4.60 J/(kg·K)and from 4.9 K to 2.2 K under an applied field change of 0-2 T.The results demonstrate that interstitial carbon doping is an effective strategy to improve the magnetocaloric performance of La(Fe,Si)_(13)alloys. 展开更多
关键词 interstitial C addition off-stoichiometric La(Fe Si)_(13)alloy magnetocaloric effect magnetic transition
原文传递
Successive magnetic transitions and magnetocaloric performances in RE_(3)Co_(2)Ge_(4)(RE=Gd,Tb and Dy)compounds
10
作者 Guorui Xiao Baowen Wang +6 位作者 Tonghan Yang Qian Zhao Wuzhang Yang Zhi Ren Hai-Feng Li Yongqing Cai shen Lai 《Journal of Rare Earths》 2025年第6期1220-1227,I0005,共9页
The rare earth(RE)-transition metal(TM)based compounds have emerged as one of the best candi-dates for the application in eco-friendly and effective cooling technology due to their outstanding cryogenic magnetocaloric... The rare earth(RE)-transition metal(TM)based compounds have emerged as one of the best candi-dates for the application in eco-friendly and effective cooling technology due to their outstanding cryogenic magnetocaloric performances.In this work,three RE-TM germanides RE_(3)Co_(2)Ge_(4)(RE=Gd,Tb and Dy)were synthesized and characterized,aiming to investigating their structural,magnetic and magnetocaloric properties.These compounds crystallize in the Tb_(3)Co_(2)Ge_(4)-type monoclinic structure(space group C2/m,Z=2).Two successive ferromagnetic transitions are observed with T_(c) of 31 and 135 K for Gd_(3)Co_(2)Ge_(4),ferromagnetic and spin reorientation transitions are observed with Tc of 24 K and T_(s) of 19 K for Dy_(3)Co_(2)Ge_(4),all of which are second ordered.In contrast,Tb_(3)Co_(2)Ge_(4)exhibits a second order antiferromagnetic transition with T_(n) of 36 K,accompanied with a spin reorientation transition with T_(s) of 17 K.Furthermore,the ferromagnetic ground state for Gd_(3)Co_(2)Ge_(4)is also confirmed by the first-principles calculations.Significant cryogenic magnetocaloric performances are observed in these compounds,.The determined maximum magnetic entropy change(-ΔS_(M)^(max))under a magnetic field change(△H)of 0-7 T are 10.7,5.3 and 11.6 J/(kg·K)for Gd_(3)Co_(2)Ge_(4),Tb_(3)Co_(2)Ge_(4)and Dy_(3)Co_(2)Ge_(4),respectively.Our results suggest that Gd_(3)Co_(2)Ge_(4)and Dy_(3)Co_(2)Ge_(4)compounds are attractive candidates for cryogenic magnetic refrigeration applications. 展开更多
关键词 RE_(3)Co_(2)Ge_(4)compounds Crystal structure Magnetic transition magnetocaloric effect Magnetic refrigeration Rare earths
原文传递
Crystal structure,magnetic properties and cryogenic magnetocaloric performance of garnet RE_(3)Al_(5)O_(12)(RE=Tb,Dy and Ho)compounds
11
作者 Zhenqian Zhang Guangyi Sun +1 位作者 Xinyue Ye Lingwei Li 《Journal of Rare Earths》 2025年第10期2195-2203,I0005,共10页
The magnetic refrigeration(MR)based on the principle of magnetocaloric effect(MCE)in magnetic materials was recognized as an alternative cooling way to our present commercialized vapor compression cycle technology.Evi... The magnetic refrigeration(MR)based on the principle of magnetocaloric effect(MCE)in magnetic materials was recognized as an alternative cooling way to our present commercialized vapor compression cycle technology.Evidently,a vital prerequisite for practical applications is the exploration of candidate materials with prominent magnetocaloric performances.In this paper,the polycrystalline garnet RE_(3)Al_(5)O_(12)(RE=Tb,Dy and Ho)compounds with the cubic structure(space group:Ia3d)were prepared using the Pechini sol-gel method,and their crystal structure,magnetic properties and comprehensive magnetocaloric performances were studied.The analysis of magnetic susceptibility curves in a static magnetic field H=0.1 T reveal that the Dy_(3)Al_(5)O_(12)undergoes antiferromagnetic transition with Néel temperature TN≈2.6 K,whereas the Tb_(3)Al_(5)O_(12)and Ho_(3)Al_(5)O_(12)exhibit no features indicative of the magnetic ordering processes down to 1.8 K.The comprehensive magnetocaloric performances,namely the maximum magnetic entropy change and relative cooling power,are derived indirectly from the isothermal field-dependent magnetization data,which yield 11.72,10.42,7.53 J/(kg·K)and 84.56,69.52,70.35 J/kg for the Tb_(3)Al_(5)O_(12),Dy_(3)Al_(5)O_(12)and Ho_(3)Al_(5)O_(12)under a low field change(ΔH)of 0-2 T,respectively.The superior comprehensive magnetocaloric performances and wide operating temperature range of these compounds under lowΔH make them attractive for cryogenic MR technology. 展开更多
关键词 RE_(3)Al_(5)O_(12)(RE=Tb Dy and Ho)compounds Magnetic refrigeration Crystal structure Magnetic property Cryogenic magnetocaloric performance Rare earths
原文传递
Giant low-field magnetocaloric effect in ferromagnetically ordered Er_(1-x)Tm_(x)Al_(2)(0≤x≤1)compounds 被引量:3
12
作者 Shuxian Yang Xinqi Zheng +15 位作者 Dingsong Wang Juping Xu Wen Yin Lei Xi Chaofan Liu Jun Liu Jiawang Xu Hu Zhang Zhiyi Xu Lichen Wang Yihong Yao Maosen Zhang Yichi Zhang Jianxin Shen Shouguo Wang Baogen Shen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第15期168-176,共9页
Magnetocaloric material is the key working substance for magnetic refrigerant technology,for which the low-field and low-temperature magnetocaloric effect(MCE)performance is of great importance for practical applicati... Magnetocaloric material is the key working substance for magnetic refrigerant technology,for which the low-field and low-temperature magnetocaloric effect(MCE)performance is of great importance for practical applications at low temperatures.Here,a giant low-field magnetocaloric effect in ferromagnetically ordered Er_(1-x)Tm_(x)Al_(2)(0≤x≤1)compounds was reported,and the magnetic structure was characterized based on low-temperature neutron powder diffraction.With increasing Tm content from 0 to 1,the Curie temperature of Er_(1-x)Tm_(x)Al_(2)(0≤x≤1)compounds decreases from 16.0 K to 3.6 K.For Er_(0.7)Tm_(0.3)Al_(2) compound,it showed the largest low-field magnetic entropy change(–SM)with the peak value of 17.2 and 25.7 J/(kg K)for 0–1 T and 0–2 T,respectively.The(–SM)max up to 17.2 J/(kg K)of Er0.7Tm0.3Al2 compound for 0–1 T is the largest among the intermetallic magnetocaloric materials ever reported at temperatures below 20 K.The peak value of adiabatic temperature change(Tad)max was determined as 4.13 K and 6.87 K for 0–1 T and 0–2 T,respectively.The characteristic of second-order magnetic transitions was confirmed on basis of Arrott plots,the quantitative criterion of exponent n,rescaled universal curves,and the mean-field theory criterion.The outstanding low-field MCE performance with low working temperatures indicates that Er_(1-x)Tm_(x)Al_(2)(0≤x≤1)compounds are promising candidates for magnetic cooling materials at liquid hydrogen and liquid helium temperatures. 展开更多
关键词 magnetocaloric effect Low field magnetocaloric effect Magnetic structure RAl_(2)compounds
原文传递
Exploration of the rare-earth cobalt nickel-based magnetocaloric materials for hydrogen liquefaction 被引量:1
13
作者 Yikun Zhang Jiayu Ying +3 位作者 Xinqiang Gao Zhaojun Mo Jun Shen Lingwei Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第28期163-169,共7页
Magnetic refrigeration based on the magnetocaloric effect(MCE)of magnetic solids has been considered as an emerging technology for hydrogen liquefaction.However,the lack of high-performance materials has slowed the de... Magnetic refrigeration based on the magnetocaloric effect(MCE)of magnetic solids has been considered as an emerging technology for hydrogen liquefaction.However,the lack of high-performance materials has slowed the development of any practical applications.Here,we present a family of rare-earth cobalt nickel-based magnetocaloric materials,namely Dy_(1-x)Ho_(x)CoNi and Ho_(1-x)Er_(x)CoNi compounds,and system-atically investigated their structural and magnetic properties as well as the MCE and magnetocaloric per-formance.All of these compounds crystallize in the C15-type Laves-phase structure and undergo typi-cal second-order magnetic phase transition(MPT).The change in magnetism and the MPT temperature for the Dy_(1-x)Ho_(x)CoNi and Ho_(1-x)Er_(x)CoNi compounds originate from the exchange interactions between nearest-neighbor RE 3+ion pairs.No hysteresis magnetocaloric effect was achieved,and the MPT tem-perature of these compounds could be tuned from the liquefaction temperature of nitrogen(∼77 K)to hydrogen(∼20 K)by adjusting the ratio of rare-earth elements.This study’s findings indicate that theDy_(1-x)Ho_(x)CoNi and Ho_(1-x)Er_(x)CoNi compounds are of potential for practical magnetic refrigeration applica-tions in the field of hydrogen liquefaction. 展开更多
关键词 magnetocaloric effect Hydrogen liquefaction Rare earth magnetocaloric performance Magnetic refrigeration
原文传递
Magnetocaloric effects in RT X intermetallic compounds(R = Gd–Tm, T = Fe–Cu and Pd, X = Al and Si) 被引量:10
14
作者 张虎 沈保根 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第12期138-164,共27页
The magnetocaloric effect(MCE) of RT Si and RT Al systems with R = Gd–Tm, T = Fe–Cu and Pd, which have been widely investigated in recent years, is reviewed. It is found that these RT X compounds exhibit various c... The magnetocaloric effect(MCE) of RT Si and RT Al systems with R = Gd–Tm, T = Fe–Cu and Pd, which have been widely investigated in recent years, is reviewed. It is found that these RT X compounds exhibit various crystal structures and magnetic properties, which then result in different MCE. Large MCE has been observed not only in the typical ferromagnetic materials but also in the antiferromagnetic materials. The magnetic properties have been studied in detail to discuss the physical mechanism of large MCE in RT X compounds. Particularly, some RT X compounds such as Er Fe Si,Ho Cu Si, Ho Cu Al exhibit large reversible MCE under low magnetic field change, which suggests that these compounds could be promising materials for magnetic refrigeration in a low temperature range. 展开更多
关键词 rare-earth compounds magnetocaloric effect magnetic entropy change magnetic property
原文传递
Tunable Curie temperature and magnetocaloric effect of FeCrMoCBYNi bulk metallic glass with different crystallized phases 被引量:6
15
作者 Yuanbin Lv Qingjun Chen Youlin Huang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2019年第4期404-409,共6页
The investigation on Curie temperature and magnetocaloric effect of the FeCrMoCBYNi bulk metallic glass(BMG) with different crystallized phases was carried out by XRD,TEM and PPMS. The experimental results show that t... The investigation on Curie temperature and magnetocaloric effect of the FeCrMoCBYNi bulk metallic glass(BMG) with different crystallized phases was carried out by XRD,TEM and PPMS. The experimental results show that the Curie temperature(T_c) of Fe_(45)Cr_(15)Mo_(14)C_(15)B_6 Y_2 Ni_3 BMG with different annealing condition reaches a highest value of 95 K. The value of magnetic entropy change △S_M(T) of Sample 3 reaches a maxima of 0.48 J/(kg·K) at Tc temperature, which result from the interaction among the precipitated phases of(Fe,Cr)_(23)(C,B)_6, Fe_3 Mo_3 C and residual amorphous phase. Based on the experiment results, it can be obtained that the Curie temperature, magnetocaloric effect can reach their optimal value at low temperature, when the content of amorphous phase and precipitated phases type run up to certain value. The magnetic properties of Sample 1 with full amorphous phase and Sample 4 with full crystalline phase will both decrease. 展开更多
关键词 Bulk metallic glass Crystallization CURIE temperature magnetocaloric effect RARE earths
原文传递
Magnetocaloric effect in Gd5(Si,Ge)4 based alloys and composites 被引量:6
16
作者 K.Synoradzki P.Nowotny +1 位作者 P.Skokowski T.Tolinski 《Journal of Rare Earths》 SCIE EI CAS CSCD 2019年第11期1218-1223,共6页
The research on magnetocaloric materials for applications concentrates,among other,on two parameters:the ordering temperature and the value of the magnetocaloric effect(MCE).The optimization consists in tuning the for... The research on magnetocaloric materials for applications concentrates,among other,on two parameters:the ordering temperature and the value of the magnetocaloric effect(MCE).The optimization consists in tuning the former without significant drop in the latter.These studies report on the magnetic susceptibility,magnetization curves,heat capacity and magnetocaloric effect measurements for compositionally and structurally modified Gd5Si4 compound.The modifications are based on the doping of the parent compound with an excess Gd atoms and substitution of Si with B as well as on the dimensional effect studied by mechanical milling.Moreover,composite samples of the type Gd:Gd5Si2Ge2 were investigated revealing the influence of the intergranular interactions on the magnetocaloric properties.It appears that these interventions enable a controllable steering of the ordering temperature shifting it towards the room temperature with,in some cases,minor reduction of the parameters characterizing MCE. 展开更多
关键词 magnetocaloric effect INTERMETALLICS COMPOSITES Magnetic order Mechanical MILLING RARE earths
原文传递
Magnetocaloric effect and slow magnetic relaxation behavior in binuclear rare earth based RE_(2)(L)_(2)(DMF)4(RE=Gd,Tb,and Dy) complexes 被引量:11
17
作者 Zhenqian Zhang Yuwei Wu +1 位作者 Haifeng Wang Lingwei Li 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第6期916-923,I0003,共9页
Three binuclear rare earth based complexes combining RE ions with semirigid tricarboxylic ligand(H_(3)L).namely,[RE_(2)(L)_(2)(DMF)_(4)][RE=Gd,Tb,and Dy;H_(3)L=5-((4-Carboxybenzyl)oxy)isophthalic acid;DMF=N,N-dimethyl... Three binuclear rare earth based complexes combining RE ions with semirigid tricarboxylic ligand(H_(3)L).namely,[RE_(2)(L)_(2)(DMF)_(4)][RE=Gd,Tb,and Dy;H_(3)L=5-((4-Carboxybenzyl)oxy)isophthalic acid;DMF=N,N-dimethylformamide]complexes,were fabricated success fully.The RE_(2)(L)_(2)(DMF)_(4) co mplexe s consist of two central RE ions with the same coordination environment which were connected by two tridentate bridging carboxylic groups and two syn-syn bidentate bridging carboxylic groups originating from the L^(3-)ligands to form the{RE_(2)}dimeric unit,and thus provides the basis for further constructing a dense three-dimensional(3 D)network structure.Moreover,the present RE_(2)(L)_(2)(DMF)_(4) complexes can be described by a topology diagram with the topology point symbol of{4^(2)·6}_(2){4^(4)·6^(2)·8^(7)·10^(2)}.Weak antiferromagnetic(AFM)coupling between the adjacent RE ions for all the present complexes was found according to the magnetic calculations.The observed significant cryogenic magnetocaloric effect(MCE)with the maximum magnetic entropy change-ΔS_(M)^(max) to be 26.3 J/(kg·K)withΔH=7 T in Gd_(2)(L)_(2)(DMF)_(4) complex makes it competitive for the cryogenic magnetic refrigerant.Moreover,the slow magnetic relaxation behavior at 0.2 T dc field with an obvious large U_(eff)/k=45(4)K and τ_(0)=6.5(2)×10^(-10)s was confirmed in Dy_(2)(L)_(2)(DMF)_(4)complex.This work not only provides an effective strategy for obtaining molecular materials with high MCE,but also confirms that tricarboxylate ligands are the ideal choice for constructing stable high dimensional geometric structures. 展开更多
关键词 magnetocaloric effect Rare earth based complex Magnetic properties Slow magnetic relaxation bahavior
原文传递
Magnetic properties and large magnetocaloric effects of GdPd intermetallic compound 被引量:8
18
作者 Jianjun Huo Yusong Du +5 位作者 Gang Cheng Xiaofei Wu Lei Ma Jiang Wang Zhengcai Xia Guanghui Rao 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第10期1044-1049,共6页
With the intention to explore excellent magnetocaloric materials, the intermetallic compound GdPd was synthesized by arc melting and heat treatment. The microstructure, magnetic and magnetocaloric properties of the in... With the intention to explore excellent magnetocaloric materials, the intermetallic compound GdPd was synthesized by arc melting and heat treatment. The microstructure, magnetic and magnetocaloric properties of the intermetallic compound of GdPd were investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM) and the physical property measurement system(PPMS). A large reversible magnetocaloric effect is observed in GdPd accompanied by a second order magnetic phase transition from paramagnetism to ferromagnetism at ~39 K. The paramagnetic Curie temperature(θp) and the effective magnetic moment(μ(eff))are determined to be 34.7 K and 8.12 μB/Gd,respectively. The maximum entropy change(|△SM(Max)|) and the relative cooling power(RCP) under a field change of 5 T are estimated to be 20.14 J/(kg·K) and 433 J/kg, respectively. The giant reversible magnetocaloric effects(both the large△SM and the high RCP) together with the absence of thermal and field hysteresis make the GdPd compound an attractive candidate for low-temperature magnetic refrigeration. 展开更多
关键词 CdPd compound magnetocaloric effect Magnetic entropy change Magnetic refrigeration material Rare earths
原文传递
High-temperature phase transition behavior and magnetocaloric effect in a sub-rapidly solidified La–Fe–Si plate produced by centrifugal casting 被引量:5
19
作者 Zhishuai Xu Yuting Dai +5 位作者 Yue Fang Zhiping Luo Ke Han Changjiang Song Qijie Zhai Hongxing Zheng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第8期1337-1343,共7页
A sub-rapidly solidified LaFe11.6Si1.4 plate was fabricated directly from liquid by centrifugal casting method. The phase constitution, microstructure and magnetocaloric effect were investigated using backscatter scan... A sub-rapidly solidified LaFe11.6Si1.4 plate was fabricated directly from liquid by centrifugal casting method. The phase constitution, microstructure and magnetocaloric effect were investigated using backscatter scanning electron microscopy, X-ray diffraction, differential scanning calorimetry and phys- ical property measurement system. When the plate was annealed at 1373 K, rl phase was formed by a solid-state peritectoid reaction. A first-order magnetic phase transition occurred in the vicinity of 188 K, and the effective refrigeration capacities reached 203.5J/kg and 209.7J/kg in plates annealed for I h and 3 h, respectively, under a magnetic field change of 3T. It is suggested that centrifugal casting may become a new approach to prepare high-performance La-Fe-Si magnetocaloric plates for prac- tical applications, which could largely accelerate the formation of rl phase during high-temperature heat-treatment process due to refined and homogeneous honeycombed microstructure. 展开更多
关键词 La-Fe-Si magnetocaloric effect Rapid solidification Centrifugal casting Phase transition
原文传递
Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals 被引量:9
20
作者 李领伟 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第3期1-15,共15页
The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively in- vestigated during the last two decades, not only due to their potential applications for magnetic refr... The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively in- vestigated during the last two decades, not only due to their potential applications for magnetic refrigeration but also for better understanding of the fundamental problems of the materials. This paper reviews our recent progress on studying the magnetic properties and MCE in some binary or ternary intermetallic compounds of RE with low boiling point metal(s) (Zn, Mg, and Cd). Some of them exhibit promising MCE properties, which make them attractive for low temperature magnetic refrigeration. Characteristics of the magnetic transition, origin of large MCE, as well as the potential application of these compounds are thoroughly discussed. Additionally, a brief review of the magnetic and magnetocaloric properties in the quaternary rare earth nickel boroncarbides RENi2B2C superconductors is also presented. 展开更多
关键词 magnetocaloric effect rare earth based intermetallic compounds RENizB2C superconductors magnetic phase transition
原文传递
上一页 1 2 13 下一页 到第
使用帮助 返回顶部