期刊文献+
共找到13,635篇文章
< 1 2 250 >
每页显示 20 50 100
The fitting of a dipolar magnetic field by a dipole model
1
作者 ZhaoJin Rong Yong Wei +8 位作者 Fei He Lucy Klinger YanYan Yang JiaWei Gao Zhen Shi HuaPei Wang ShuHui Cai HuaFeng Qin RiXiang Zhu 《Earth and Planetary Physics》 2025年第6期1125-1134,共10页
Many planets,including the Earth,possess a global dipolar magnetic field.To diagnose the interior source of the dipolar field,researchers usually adopt a dipole model consisting of six parameters to fit the observed d... Many planets,including the Earth,possess a global dipolar magnetic field.To diagnose the interior source of the dipolar field,researchers usually adopt a dipole model consisting of six parameters to fit the observed dataset of the magnetic field.However,the simultaneous fitting of these parameters often leads to multiple local optimal parameter sets.To address this fitting dilemma,Rong ZJ et al.(2021)recently developed a current loop model.This technique can successively separate and invert the loop parameters.Here,we further show how this technique can be reduced and modified to fit a dipole model.Applications of this reduced technique to the International Geomagnetic Reference Field model and the Martian crustal field model highlight its unique ability to diagnose both the planetary global dipolar field and the local crustal field anomaly,a capability that sets it apart from existing methods.The potential impact of this technique on geomagnetism and planetary magnetism is significant,given its unique ability to diagnose both the planetary global dipolar field and the local crustal field anomaly. 展开更多
关键词 geomagnetic field magnetic dipole INVERSION dipolar magnetic field magnetic anomaly crustal magnetic field magnetic sources eccentic dipole
在线阅读 下载PDF
The application of multi-scale magnetic matrix materials in high-gradient magnetic separation:From micro-and nano-to millimeter-scale
2
作者 WANG Dong KU Jian-gang +3 位作者 LEI Zhong-yun LI Xin YAN Ju-jian WANG Qian 《Journal of Central South University》 2025年第4期1299-1326,共28页
Micro-and nano-to millimeter-scale magnetic matrix materials have gained widespread application due to their exceptional magnetic properties and favorable cost-effectiveness.With the rapid progress in condensed matter... Micro-and nano-to millimeter-scale magnetic matrix materials have gained widespread application due to their exceptional magnetic properties and favorable cost-effectiveness.With the rapid progress in condensed matter physics,materials science,and mineral separation technologies,these materials are now poised for new opportunities in theoretical research and development.This review provides a comprehensive analysis of these matrices,encompassing their structure,size,shape,composition,properties,and multifaceted applications.These materials,primarily composed of alloys of transition state metasl such as iron(Fe),cobalt(Co),titanium(Ti),and nickel(Ni),exhibit unique attributes like high magnetization rates,low eleastic modulus,and high saturation magnetic field strengths.Furthermore,the studies also delve into the complex mechanical interactions involved in the separation of magnetic particles using magnetic separator matrices,including magnetic,gravitational,centrifugal,and van der Waals forces.The review outlines how size and shape effects influence the magnetic behavior of matrices,offering new perspectives for innovative applications of magnetic matrices in various domains of materials science and magnetic separation. 展开更多
关键词 magnetic matrix materials magnetic separation micro-and nano-magnetic matrix millimeter magnetic matrix
在线阅读 下载PDF
Isoelectronic Ga Substitution Effects on Antiferromagnetic Order in CeRh(In_(1-x)Ga(_x))_(5)
3
作者 Xin Li Kai Wen Chen +6 位作者 Cheng Yu Jiang Jia Chen Jiao Mu Yuan Zou Oksana Zaharko Bai Jiang Lv Guang-Ai Sun Lei Shu 《Chinese Physics Letters》 2025年第8期168-174,共7页
In this work,Ga-doped Ce RhIn_(5) single crystals are grown by In/Ga flux method.Single-crystal X-ray diffraction,magnetic susceptibility,specific heat,and neutron diffraction measurements are utilized to characterize... In this work,Ga-doped Ce RhIn_(5) single crystals are grown by In/Ga flux method.Single-crystal X-ray diffraction,magnetic susceptibility,specific heat,and neutron diffraction measurements are utilized to characterize the sample quality and the antiferromagnetic transition temperature T_(N).By substituting In with Ga,T_(N) is slightly decreased,but the antiferromagnetic transition peaks in magnetic susceptibility and specific heat measurements are obviously broadened by external field along c-axis.By comparing with Zn-doped Ce RhIn_(5),it can be concluded that T_(N) is dominated by electron density,and the stiffness of antiferromagnetic transition is obviously reduced by Ga substitution.The substitution effects of Ga are possibly caused by forming heterogeneous local structures,which avoids quantum critical point,superconductivity,and non-Fermi liquid states.Investigations on Gadoped Ce RhIn_(5) help to comprehend the chemical substitution effects in Ce RhIn_(5),and the interaction between heterogeneous structure and long-range antiferromagnetic states. 展开更多
关键词 antiferromagnetic order isoelectronic substitution antiferromagnetic transition peaks antiferromagnetic transition temperature Ga doping external field magnetic susceptibility neutron diffraction measurements
原文传递
Low‑Temperature Oxidation Induced Phase Evolution with Gradient Magnetic Heterointerfaces for Superior Electromagnetic Wave Absorption 被引量:1
4
作者 Zizhuang He Lingzi Shi +6 位作者 Ran Sun Lianfei Ding Mukun He Jiaming Li Hua Guo Tiande Gao Panbo Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期191-204,共14页
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan... Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption. 展开更多
关键词 magnetic heterointerfaces Phase evolution Interfacial polarization magnetic coupling Electromagnetic wave absorption
在线阅读 下载PDF
Determining AC Magnetic Susceptibility of Kilogram-Level Test Masses for TianQin
5
作者 Jia-Hao Xu Wen-Long Ma +3 位作者 Ya-Ting Zhang Qing-Lan Wang Lin Zhu Qi Liu 《Chinese Physics Letters》 2025年第7期489-493,共5页
The effect from the interaction of the alternating current(AC)magnetic field with kilogram-level test mass(TM)limits the detectivity of the TianQin space-based gravitational wave detection.The quantifed effect require... The effect from the interaction of the alternating current(AC)magnetic field with kilogram-level test mass(TM)limits the detectivity of the TianQin space-based gravitational wave detection.The quantifed effect requires the determination of the AC magnetic susceptibilityχ(f)of the TM.A torque method is proposed to measure theχ(f)of kg-level samples at the mHz band with a precision of 1×10^(-7).Combined with our previous work[Phys.Rev.Appl.18044010(2022)],the general frequency-dependent susceptibility of the alloy cube with side length L and electrical conductivityσis determined asχ(f)=χ0+(0.24±0.01)σμ0L^(2)f from 0.1 mHz to 1 Hz.The determination is helpful for the preliminary estimation of the in-band eddy current efect in the TianQin noise budget.The technique can be adopted to accurately measureχ(f)of the actual TM in other precision experiments,where the magnetic noise is a signifcant detection limit. 展开更多
关键词 gravitational wave detection quantifed effect determination ac magnetic susceptibility f magnetic noise torque method Tianqin ac magnetic susceptibility eddy current effect
原文传递
Magnetic-Mediated Carrier, Phonon and Spin Dynamics in the Ferromagnetic Semiconductor (In,Fe)Sb
6
作者 K.Hu X.H.Zhu +2 位作者 H.L.Wang D.H.Wei J.Qi 《Chinese Physics Letters》 2025年第5期206-214,共9页
We investigate the carrier, phonon, and spin dynamics in the ferromagnetic semiconductor(In,Fe)Sb using ultrafast optical pump-probe spectroscopy. We discover two anomalies near T^(*)(~40 K) and T^(†)(~200 K) in the p... We investigate the carrier, phonon, and spin dynamics in the ferromagnetic semiconductor(In,Fe)Sb using ultrafast optical pump-probe spectroscopy. We discover two anomalies near T^(*)(~40 K) and T^(†)(~200 K) in the photoexcited carrier dynamics, which can be attributed to the electron-spin and spin-lattice scattering processes influenced by the magnetic phase transition and modifications in magnetic anisotropy. The magnetization change can be revealed by the dynamics of coherent acoustic phonon. We also observe abrupt changes in the photoinduced spin dynamics near T^(*)and T^(†), which not only illustrate the spin-related scatterings closely related to the long-range magnetic order, but also reveal the D'yakonov–Perel and Elliott–Yafet mechanisms dominating at temperatures below and above T^(†), respectively. Our findings provide important insights into the nonequilibrium properties of the photoexcited(In,Fe)Sb. 展开更多
关键词 magnetization change photoexcited carrier dynamics spin dynamics magnetic mediated carrier dynamics ferromagnetic semiconductor modifications magnetic anisotropy phonon dynamics coherent acoustic phonon
原文传递
Reconnection of magnetic flux ropes driven by two-color Laguerre–Gaussian laser pulses in plasma
7
作者 Yin-Hong Liu Su-Ming Weng Zheng-Ming Sheng 《Matter and Radiation at Extremes》 2025年第4期24-34,共11页
The generation and reconnection of magneticflux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequen-cies and opposite topological charges are investigated numerically by particle-... The generation and reconnection of magneticflux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequen-cies and opposite topological charges are investigated numerically by particle-in-cell simulations.It is shown that twisted plasma currents and hence magneticflux ropes can be effectively generated as long as the laser frequency difference matches the electron plasma frequency.More importantly,subsequent reconnection of magneticflux ropes can occur.Typical signatures of magnetic reconnection,such as magnetic island formation and plasma heating,are identified in the reconnection of magneticflux ropes.Notably,it is found that a strong axial magneticfield can be generated on the axis,owing to the azimuthal current induced during the reconnection of the ropes.This indicates that in the reconnection of magneticflux ropes,the energy can be transferred not only from the magneticfield to the plasma but also from the plasma current back to the magneticfield.This work opens a new avenue to the study of magneticflux ropes,which helps in understanding magnetic topology changes,and resultant magnetic energy dissipation,plasma heating,and particle acceleration found in solarflares,and magnetic confinement fusion devices. 展开更多
关键词 twisted plasma currents laguerre gaussian laser pulses magnetic islands electron plasma frequency Laguerre Gaussian laser pulses magnetic ux ropes magnetic flux ropes plasma reconnection
在线阅读 下载PDF
Nonvolatile Manipulating Magnetic and Topological Properties in Sliding h-BN Capped MnBi_(2)Te_(4)
8
作者 Xuqi Li Haidan Sang +3 位作者 Yu Zhang Hong Xu Shifei Qi Zhenhua Qiao 《Chinese Physics Letters》 2025年第7期310-319,共10页
Interlayer antiferromagnetic coupling,small magnetic anisotropy,and low air stability of the intrinsic magnetic topological insulator MnBi_(2)Te_(4)have been critical bottlenecks to the future application of the quant... Interlayer antiferromagnetic coupling,small magnetic anisotropy,and low air stability of the intrinsic magnetic topological insulator MnBi_(2)Te_(4)have been critical bottlenecks to the future application of the quantum anomalous Hall efect(QAHE)at zero magnetic feld.In this study,we propose a scheme to utilize capped sliding van der Waals materials to efectively modulate the magnetic and topological properties of MnBi_(2)Te_(4).Our results demonstrate that the h-BN/MnBi_(2)Te_(4)/h-BN heterostructure,constructed by sliding ferroelectric h-BN bilayer and MnBi_(2)Te_(4),not only realizes a transition from interlayer antiferromagnetic to ferromagnetic coupling but also signifcantly enhances the out-of-plane magnetism and air stability of MnBi_(2)Te_(4).Moreover,the above magnetic properties can be further improved by tuning the interlayer distance between h-BN and MnBi_(2)Te_(4).Additionally,the obtained band structures and topological properties clearly support that the h-BN/MnBi_(2)Te_(4)/hBN heterostructure can harbor the QAHE with a Chern number of C=1.This work provides a new and nonvolatile modulation approach to achieve high-temperature and high-precision QAHE at zero magnetic feld. 展开更多
关键词 NONVOLATILE quantum anomalous hall efect qahe low air stability intrinsic magnetic topological insulator magnetic properties capped sliding van der waals materials topological properties modulate magnetic topological properties
原文传递
Duality and stability analysis of biomagnetic fluid flow and heat transfer with magnetic particles along a shrinking cylinder in presence of magnetic dipole
9
作者 Jahangir Alam M.G.Murtaza +1 位作者 Efstratios Tzirtzilakis Mohammad Ferdows 《Applied Mathematics(A Journal of Chinese Universities)》 2025年第3期581-601,共21页
In the present study,we concentrate on finding the dual solutions of biomagnetic fluid namely blood flow and heat transfer along with magnetic particles over a two dimensional shrinking cylinder in the presence of a m... In the present study,we concentrate on finding the dual solutions of biomagnetic fluid namely blood flow and heat transfer along with magnetic particles over a two dimensional shrinking cylinder in the presence of a magnetic dipole.To make the results physically realistic,stability analysis is also carried out in this study so that we realized which solution is stable and which is not.The governing partial equations are converted into ordinary differential equations by using similarity transformations and the numerical solution is calculated by applying bvp4c function technique in MATLAB software.The effects of different physical parameters are plotted graphically and discussed according to the outcomes of results.From the present study we observe that ferromagnetic interaction parameter had a great influenced on fluid velocity and temperature distributions.It is also found from the current analysis that the first and second solutions of shrinking cylinder obtained only when we applied particular ranges values of suction parameter.The most important characteristics part of study is to analyze the skin friction coefficient and rate of heat transfer which also covered in this analysis.It reveals that both skin friction coefficient and rate of heat transfer are reduced with rising values of ferromagnetic number.A comparison has also been made to make the solution feasible. 展开更多
关键词 dual solutions stability analysis biomagnetic fluid BLOOD magnetic particles shrinking cylinder magnetic dipole
在线阅读 下载PDF
Analysis of the effects of strong stray magnetic fields generated by tokamak device on transformers assembled in electronic power converters
10
作者 Xingjian ZHAO Ge GAO +2 位作者 Li JIANG Yong YANG Hong LEI 《Plasma Science and Technology》 2025年第5期81-93,共13页
As the plasma current power in tokamak devices increases,a significant number of stray magnetic fields are generated around the equipment.These stray magnetic fields can disrupt the operation of electronic power devic... As the plasma current power in tokamak devices increases,a significant number of stray magnetic fields are generated around the equipment.These stray magnetic fields can disrupt the operation of electronic power devices,particularly transformers in switched-mode power supplies.Testing flyback converters with transformers under strong background magnetic fields highlights electromagnetic compatibility(EMC)issues for such switched-mode power supplies.This study utilizes finite element analysis software to simulate the electromagnetic environment of switched-mode power supply transformers and investigates the impact of variations in different magnetic field parameters on the performance of switched-mode power supplies under strong stray magnetic fields.The findings indicate that EMC issues are associated with transformer core saturation and can be alleviated through appropriate configurations of the core size,air gap,fillet radius,and installation direction.This study offers novel solutions for addressing EMC issues in high magnetic field environments. 展开更多
关键词 TRANSFORMERS magnetic field interference magnetic components power electronics magnetic field simulation
在线阅读 下载PDF
Evaluation of influence of detrending CSES satellite data on lithospheric magnetic field modeling
11
作者 Jie Wang YanYan Yang +2 位作者 ZhiMa Zeren JianPing Huang HengXin Lu 《Earth and Planetary Physics》 2025年第2期346-356,共11页
The China Seismo-Electromagnetic Satellite(CSES) was successfully launched in February 2018. The high precision magnetometer(HPM) on board the CSES has captured high-quality magnetic data that have been used to derive... The China Seismo-Electromagnetic Satellite(CSES) was successfully launched in February 2018. The high precision magnetometer(HPM) on board the CSES has captured high-quality magnetic data that have been used to derive a global lithospheric magnetic field model. While preparing the datasets for this lithospheric magnetic field model, researchers found that they still contained prominent residual trends within the magnetic anomaly even once signals from other sources had been eliminated. However, no processing was undertaken to deal with the residual trends during modeling to avoid subjective processing and represent the realistic nature of the data. In this work, we analyze the influence of these residual trends on the lithospheric magnetic field modeling.Polynomials of orders 0–3 were used to fit the trend of each track and remove it for detrending. We then derived four models through detrending-based processing, and compared their power spectra and grid maps with those of the CSES original model and CHAOS-7model. The misfit between the model and the dataset decreased after detrending the data, and the convergence of the inverted spherical harmonic coefficients improved. However, detrending reduced the signal strength and the power spectrum, while detrending based on high-order polynomials introduced prominent distortions in details of the magnetic anomaly. Based on this analysis, we recommend along-track detrending by using a zero-order polynomial(removing a constant value) on the CSES magnetic anomaly data to drag its mean value to zero. This would lead to only a slight reduction in the signal strength while significantly improving the stability of the inverted coefficients and details of the anomaly. 展开更多
关键词 lithospheric magnetic field model satellite magnetic survey DETRENDING long-wavelength magnetic anomaly CSES
在线阅读 下载PDF
Obtaining extremely low coercivity of high B_(s) FeCoBSiCPCu nanocrystalline alloys through modulation of magnetic anisotropy
12
作者 Mingjuan Cai Zhijun Guo +5 位作者 Lei Li Xingyu Zheng Xiaoxuan Yang Qianqian Liu Gaopeng Zou Baolong Shen 《Journal of Materials Science & Technology》 2025年第4期105-112,共8页
Longitudinal magnetic field annealing is utilized for modifying the magnetic anisotropy and enhancing the magnetic softness of Fe_(75)Co_(8)(B_(10)Si_(3)C_(3)P_(1))_(1-x)/_(17)Cux(x=0.5,0.75,1,1.25)nanocrystalline all... Longitudinal magnetic field annealing is utilized for modifying the magnetic anisotropy and enhancing the magnetic softness of Fe_(75)Co_(8)(B_(10)Si_(3)C_(3)P_(1))_(1-x)/_(17)Cux(x=0.5,0.75,1,1.25)nanocrystalline alloys.All of the magnetic field-annealed nanocrystalline alloys with Cu content more than 0.5 at.%exhibit significantly improved soft-magnetic properties,including high saturation magnetic flux density up to 1.87 T,effective permeability of 13,000-16,000 under the condition of 1 A/m and 1 kHz,coercivity as low as 1.6 A/m,and core loss of 0.11-0.45 W/kg under the condition of 1.0 T and 50 Hz.The application of a magnetic field promotes the nucleation and inhibits the growth of grains,leading to an increase in the number density of nanocrystals and the crystalline volume fraction,and a reduction in the grain size.The magnetic field annealing reduces the effective magneto-crystalline anisotropy energy to 2-4 J/m^(3),and induces longitudinal magnetic anisotropy with anisotropy energy density of 400-900 J/m^(3)which shows dependence on the crystalline volume fraction.The field-induced magnetic anisotropy dominates over the random local magnetic anisotropies,and results in the formation of regular magnetic domains aligned longitudinally,pinning-free domain wall displacement,and thus enhanced soft-magnetic properties. 展开更多
关键词 Nanocrystalline alloy magnetic anisotropy magnetic field annealing Soft-magnetic property MICROSTRUCTURE
原文传递
Van der Waals Ferroelectric Engineering as a Universal Strategy for Nonvolatile Magnetic Switching in Nonmagnetic Two-Dimensional VSiN_(3)
13
作者 Shili Yang Chun-Sheng Liu +5 位作者 Shaohui Yu Peng Jiang Hua Hao Lei Zhang Yushen Liu Xiaohong Zheng 《Chinese Physics Letters》 2025年第9期169-182,共14页
The presence of a van Hove singularity(vHS)at the Fermi level can trigger magnetic instability by mediating a spontaneous transition from paramagnetic to magnetically ordered states.While electrostatic doping(typicall... The presence of a van Hove singularity(vHS)at the Fermi level can trigger magnetic instability by mediating a spontaneous transition from paramagnetic to magnetically ordered states.While electrostatic doping(typically achieved via ionic gating)to shift the vHS to the Fermi level provides a general mechanism for engineering such magnetism,its volatile nature often leads to the collapse of induced states upon gate field removal.Here,a novel scheme is presented for non-volatile magnetic control by utilizing ferroelectric heterostructures to achieve reversible magnetism switching.Using two-dimensional VSiN_(3),a nonmagnetic material with Mexican-hat electronic band dispersions hosting vHSs,as a prototype,it is preliminarily demonstrated that both electron and hole doping can robustly induce magnetism.Further,by interfacing VSiN_(3)with ferroelectric Sc_(2)CO_(2),reversible switching of its magnetic state via polarization-driven heterointerfacial charge transfer is achieved.This mechanism enables a dynamic transition between insulating and half-metallic phases in VSiN_(3),establishing a pathway to design multiferroic tunnel junctions with giant tunneling electroresistance or magnetoresistance.This work bridges non-volatile ferroelectric control with vHS-enhanced magnetism,opening opportunities for energy-efficient and high-performance spintronic devices and non-volatile memory devices. 展开更多
关键词 van hove singularity vhs van der waals ferroelectric engineering nonvolatile magnetic switching ionic gating electrostatic doping typically trigger magnetic instability nonmagnetic two dimensional vsin collapse induced states
原文传递
Direct Observation of Large Altermagnetic Splitting in CrSb(100)Thin Film
14
作者 Sen Liao Xianglin Li +9 位作者 Xiuhua Chen Ziyan Yu Jianghao Yao Rui Xu Jiexiong Sun Zhengtai Liu Dawei Shen Yilin Wang Donglai Feng Juan Jiang 《Chinese Physics Letters》 2025年第6期285-290,共6页
Altermagnets represent a newly discovered class of magnetically ordered materials.Among all the candidates,CrSb stands out due to its largest spin splitting energy and highest Néel temperature exceeding 700 K,mak... Altermagnets represent a newly discovered class of magnetically ordered materials.Among all the candidates,CrSb stands out due to its largest spin splitting energy and highest Néel temperature exceeding 700 K,making it promising for room-temperature spintronic applications.Here we have successfully grown high quality CrSb(100)thin film on GaAs(110)substrate by molecular beam epitaxy.Using angle-resolved photoemission spectroscopy,we successfully obtained the three-dimensional electronic structure of the thin film.Moreover,we observed the emergence of the altermagnetic splitting bands corresponding to the calculated results along the low symmetry pathsT-QandP-D.The bands near the Fermi level are only spin splitting bands along theP-Ddirection,with splitting energy reaching as high as 910 meV.This finding provides insights into the magnetic properties of CrSb thin films and paves the way for further studies on their electronic structure and potential applications in spintronics. 展开更多
关键词 Crsb thin film molecular beam epitaxyusing magnetic properties angle resolved photoemission spectroscopy electronic structure spin splitting bands large altermagnetic splitting magnetically ordered materialsamong
原文传递
The ρ-Meson Electromagnetic Form Factors within the Light-Front Quark Model
15
作者 Shuai Xu Xiao-Nan Li Xing-Gang Wu 《Chinese Physics Letters》 2025年第8期31-37,共7页
In this paper,we study the ρ-meson electromagnetic form factors(EMFFs)within the framework of the light-front quark model.The physical form factors G_(C,M,Q)(Q^(2))of the ρ-meson,as well as the charged square radius... In this paper,we study the ρ-meson electromagnetic form factors(EMFFs)within the framework of the light-front quark model.The physical form factors G_(C,M,Q)(Q^(2))of the ρ-meson,as well as the charged square radius<r^(2)>,the magnetic moment μ,and the quadrupole moment Q,are calculated,which describe the behaviors of EMFFs at zero momentum transfer.Using the type-Ⅱ replacement,we find that the zero-mode does contribute zero to the matrix element S_(00)^(+).It is found that the“M→M_(0)”replacement improves the angular condition remarkably,which permits different prescriptions of ρ-meson EMFFs to give the consistent results.The residual tiny violation of angular condition needs other explanations beyond the zero-mode contributions.Our results indicate that the relativistic effects or interaction internal structure are weaken in the zero-binding limit.This work is also applicable to other spin-1 particles. 展开更多
关键词 light front quark model zero mode contribution electromagnetic form factors emffs within relativistic effects rho meson magnetic moment electromagnetic form factors angular condition
原文传递
Fast and Accurate Prediction of Electromagnetic and Temperature Fields for SPMSM Equipped with Unequally Thick Magnetic Poles
16
作者 Feng Liu Xiuhe Wang +1 位作者 Lingling Sun Hongye Wei 《CES Transactions on Electrical Machines and Systems》 2025年第2期199-211,共13页
With the continuous upgrading of traditional manufacturing industries and the rapid rise of emerging technology fields,the performance requirements for the permanent magnet synchronous motors(PMSMs)have become higher ... With the continuous upgrading of traditional manufacturing industries and the rapid rise of emerging technology fields,the performance requirements for the permanent magnet synchronous motors(PMSMs)have become higher and higher.The importance of fast and accurate electromagnetic thermal coupling analysis of such motors becomes more and more prominent.In view of this,the surfacemounted PMSM(SPMSM)equipped with unequally thick magnetic poles is taken as the main object and its electromagnetic thermal coupling analytical model(ETc AM)is investigated.First,the electromagnetic analytical model(EAM)is studied based on the modified subdomain method.It realizes the fast calculation of key electromagnetic characteristics.Subsequently,the 3D thermal analytical model(TAM)is developed by combining the EAM,the lumped parameter thermal network method(LPTNM),and the partial differential equation of heat flux.It realizes the fast calculation of key thermal characteristics in 3D space.Further,the information transfer channel between EAM and TAM is built with reference to the intrinsic connection between electromagnetic field and temperature field.Thereby,the novel ETcAM is proposed to realize the fast and accurate prediction of electromagnetic and temperature fields.Besides,ETcAM has a lot to commend it.One is that it well accounts for the complex structure,saturation,and heat exchange behavior.Second,it saves a lot of computer resources.It offers boundless possibilities for initial design,scheme evaluation,and optimization of motors.Finally,the validity,accuracy,and practicality of this study are verified by simulation and experiment. 展开更多
关键词 Electromagnetic field and temperature field Electromagnetic thermal coupling analytical model(ETcAM) Fast and accurate prediction SPMSM Unequally thick magnetic poles
在线阅读 下载PDF
Preliminary results suggest observations from Macao Science Satellite-1 system can improve knowledge of tidal-induced magnetic fields 被引量:8
17
作者 ZhengYong Ren YiPiao Huang +2 位作者 Cong Yang ChaoJian Chen Keke Zhang 《Earth and Planetary Physics》 2025年第3期586-594,共9页
This study presents preliminary results of tidal-induced magnetic field signals extracted from 9 months of data collected by the Macao Science Satellite-1(MSS-1) from November 2023 to July 2024. Tidal signals were iso... This study presents preliminary results of tidal-induced magnetic field signals extracted from 9 months of data collected by the Macao Science Satellite-1(MSS-1) from November 2023 to July 2024. Tidal signals were isolated using sequential modeling techniques by subtracting non-tidal field model predictions from observed magnetic data. The extracted MSS-1 results show strong agreement with those from the Swarm and CryoSat satellites. MSS-1 effectively captures key large-scale tidal-induced magnetic anomalies, mainly due to its unique 41-degree low-inclination orbit, which provides wide coverage of local times. This finding underscores the strong potential of MSS-1 to recover high-resolution global tidal magnetic field models as more MSS-1 data become available. 展开更多
关键词 Macao Science Satellite-1 satellite magnetic data tidal-induced magnetic fields
在线阅读 下载PDF
Construction of iron manganese metal-organic framework-derived manganese ferrite/carbon-modified graphene composites toward broadband and efficient electromagnetic dissipation 被引量:2
18
作者 Baohua Liu Shuai Liu +1 位作者 Zaigang Luo Ruiwen Shu 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期546-555,共10页
The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic ... The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic frameworks(MOFs)are ideal self-sacrificing templates for the construction of carbon-based EMW absorbers.In this work,bimetallic FeMn-MOF-derived MnFe_(2)O_(4)/C/graphene composites were fabricated via a two-step route of solvothermal reaction and the following pyrolysis treatment.The results re-veal the evolution of the microscopic morphology of carbon skeletons from loofah-like to octahedral and then to polyhedron and pomegran-ate after the adjustment of the Fe^(3+)to Mn^(2+)molar ratio.Furthermore,at the Fe^(3+)to Mn^(2+)molar ratio of 2:1,the obtained MnFe_(2)O_(4)/C/graphene composite exhibited the highest EMW absorption capacity.Specifically,a minimum reflection loss of-72.7 dB and a max-imum effective absorption bandwidth of 5.1 GHz were achieved at a low filling ratio of 10wt%.In addition,the possible EMW absorp-tion mechanism of MnFe_(2)O_(4)/C/graphene composites was proposed.Therefore,the results of this work will contribute to the construction of broadband and efficient carbon-based EMW absorbers derived from MOFs. 展开更多
关键词 metal-organic frameworks GRAPHENE magnetic composites morphology regulation electromagnetic dissipation
在线阅读 下载PDF
Absorption-Reflection-Transmission Power Coefficient Guiding Gradient Distribution of Magnetic MXene in Layered Composites for Electromagnetic Wave Absorption 被引量:2
19
作者 Yang Zhou Wen Zhang +7 位作者 Dong Pan Zhaoyang Li Bing Zhou Ming Huang Liwei Mi Chuntai Liu Yuezhan Feng Changyu Shen 《Nano-Micro Letters》 2025年第6期466-481,共16页
The morphological distribution of absorbent in composites is equally important with absorbents for the overall electromagnetic properties,but it is often ignored.Herein,a comprehensive consideration including electrom... The morphological distribution of absorbent in composites is equally important with absorbents for the overall electromagnetic properties,but it is often ignored.Herein,a comprehensive consideration including electromagnetic component regulation,layered arrangement structure,and gradient concentration distribution was used to optimize impedance matching and enhance electromagnetic loss.On the microscale,the incorporation of magnetic Ni nanoparticles into MXene nanosheets(Ni@MXene)endows suitable intrinsic permittivity and permeability.On the macroscale,the layered arrangement of Ni@MXene increases the effective interaction area with electromagnetic waves,inducing multiple reflection/scattering effects.On this basis,according to the analysis of absorption,reflection,and transmission(A-R-T)power coefficients of layered composites,the gradient concentration distribution was constructed to realize the impedance matching at low-concentration surface layer,electromagnetic loss at middle concentration interlayer and microwave reflection at high-concentration bottom layer.Consequently,the layered gradient composite(LG5-10-15)achieves complete absorption coverage of X-band at thickness of 2.00-2.20 mm with RL_(min) of-68.67 dB at 9.85 GHz in 2.05 mm,which is 199.0%,12.6%,and 50.6%higher than non-layered,layered and layered descending gradient composites,respectively.Therefore,this work confirms the importance of layered gradient structure in improving absorption performance and broadens the design of high-performance microwave absorption materials. 展开更多
关键词 magnetic MXene Layered and gradient structure Power coefficient Electromagnetic wave absorption
在线阅读 下载PDF
Enhanced magnetic properties in a Fe-based amorphous alloy via ultrasonic vibration rapid processing 被引量:1
20
作者 Hong-Zhen Li Sajad Sohrabi +4 位作者 Xin Li Lu-Yao Li Jiang Ma Huan-Lin Peng Chao Yang 《Rare Metals》 2025年第4期2853-2860,共8页
In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment techni... In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon. 展开更多
关键词 enhancing soft magnetic properties soft magnetic properties physical propertieshereinwe Fe based amorphous alloy amorphous alloy ribbon ultrasonic vibration rapid processing uvrp which Fe clusters ultrasonic vibration rapid processing
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部