Diabetic wound healing remains a major clinical challenge,primarily due to excessive inflammation,bacterial infection,and impaired angiogenesis.Although various biomaterial-based strategies have been explored,coordina...Diabetic wound healing remains a major clinical challenge,primarily due to excessive inflammation,bacterial infection,and impaired angiogenesis.Although various biomaterial-based strategies have been explored,coordinating the complex diabetic wound microenvironment remains difficult to achieve.This study proposes a novel multifunctional hydrogel dressing designed to synergistically address multiple issues.Its key innovation lies in dynamically crosslinking deer antler decellularized matrix(dECM)with oxidized dextran via imine bonds,creating a self-healing hydrogel(dECMH).The deer antler dECM,rich in pro-regenerative components,provides a biomimetic scaffold,while Schiff base crosslinking confers mechanical self-healing and injectability.To further address the complexity of diabetic wounds,magnesium gallate metalorganic frameworks(Mg-EGCG)were embedded within the dECMH network,forming Mg-EGCG@dECMH.This innovative combination enables sustained co-delivery of epigallocatechin gallate(EGCG)—possessing antibacterial,anti-inflammatory,and antioxidant properties—alongside magnesium ions that actively promote cell proliferation and vascular regeneration.In vitro analyses confirmed the hydrogel's capacity to enhance endothelial cell proliferation,boost angiogenesis,and mitigate oxidative stress.In vivo evaluations demonstrated accelerated wound healing,manifested by rapid inflammation resolution,ordered collagen deposition,and stimulated neovascularization.Additionally,the material exhibited excellent biocompatibility,hemostatic effects,and antimicrobial activity.This multifunctional dressing synergistically integrates the inherent bioactivity of unique antler decellularized matrix with the multimodal therapeutic effects of metal-organic nanocomposites,offering an innovative and effective strategy for diabetic wound management.展开更多
Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosize...Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosized anatase TiO_(2) exposed(001)facet doubles the capacity compared to the micro-sized sample ascribed to the interfacial Mg^(2+)ion storage.First-principles calculations reveal that the diffusion energy barrier of Mg^(2+)on the(001)facet is significantly lower than those in the bulk phase and on(100)facet,and the adsorption energy of Mg^(2+)on the(001)facet is also considerably lower than that on(100)facet,which guarantees superior interfacial Mg^(2+)storage of(001)facet.Moreover,anatase TiO_(2) exposed(001)facet displays a significantly higher capacity of 312.9 mAh g^(−1) in Mg-Li dual-salt electrolyte compared to 234.3 mAh g^(−1) in Li salt electrolyte.The adsorption energies of Mg^(2+)on(001)facet are much lower than the adsorption energies of Li+on(001)facet,implying that the Mg^(2+)ion interfacial storage is more favorable.These results highlight that controlling the crystal facet of the nanocrystals effectively enhances the interfacial storage of multivalent ions.This work offers valuable guidance for the rational design of high-capacity storage systems.展开更多
Rechargeable magnesium batteries(RMBs)have attracted much attention due to the high theoretical capacity(3833 mAh cm−3)of magnesium metal negative electrode and abundant resources.However,the preparation of ultra-thin...Rechargeable magnesium batteries(RMBs)have attracted much attention due to the high theoretical capacity(3833 mAh cm−3)of magnesium metal negative electrode and abundant resources.However,the preparation of ultra-thin magnesium foils faces the problems of rolling difficulty and high processing cost,while the use of thick magnesium foils leads to low utilization of magnesium and reduces the energy density.To tackle the above problems,we successfully prepared ultra-thin magnesium foils based on electrolytic process and investigated the effect of different substrates.The magnesium foils prepared using Mo substrate have more uniform surface morphology and lower surface roughness,which is attributed to the lower magnesium nucleation overpotential of Mo substrate.Meanwhile,density functional theory calculations show that the adsorption energy of Mo on Mg is more negative,which is conducive to achieving uniform nucleation and deposition of Mg.The Mg deposition on Mo substrate undergoes the characteristic stages of transient nucleation,nucleus accretion,multidirectional heterotopic growth,and columnar crystal stacking,and ultimately the formation of a dense deposited layer.In addition,the prepared ultra-thin Mg foil with Mo substrate can stably cycle for 1000 h at 3 mA cm^(-2) with high utilization of 50% in the symmetric cell.This study develops a facile method for the preparation of ultra-thin Mg foils,which opens up a new path for developing high-performance ultra-thin negative electrodes for RMBs.展开更多
Rechargeable magnesium batteries(RMBs)are considered promising candidates for next-generation energy storage systems due to their high theoretical capacity.However,the non-uniform deposition/stripping behavior of Mg m...Rechargeable magnesium batteries(RMBs)are considered promising candidates for next-generation energy storage systems due to their high theoretical capacity.However,the non-uniform deposition/stripping behavior of Mg metal hinders the practical application of RMBs.This study demonstrates that the designed interfacial electric field effect,driven by a copper phthalocyanine(CuPc)conductive interlayer,enhances the kinetics and stability of the Mg anode.In situ electrochemical impedance spectroscopy coupled with distribution of relaxation times analysis reveals that the highly delocalized electron cloud network of CuPc establishes a low-energy-barrier electron transport pathway,significantly reducing charge transfer resistance.Electrochemical characterization and density functional theory calculations indicate that the interfacial electric field effect effectively improves interfacial Mg^(2+)diffusion by enhancing electron delocalization and reducing the Mg^(2+)migration energy barrier.Furthermore,finite element simulations substantiate that the interfacial electric field imparts uniform interfacial charge distribution and homogeneous Mg deposition during plating/stripping processes.Consequently,the symmetric cell with CuPc@Mg achieves an ultra-long lifetime(1,400h at 5mAcm^(−2))and a high Coulombic efficiency(99.3%).Furthermore,the CuPc@Mg||Mo6S8 cell achieves high capacity retention(92%).This work highlights the potential of metal phthalocyanines in stabilizing Mg anodes.展开更多
Efficient lubrication of magnesium alloys is a highly challenging topic in the field of tribology.In this study,magnesium silicate hydroxide(MSH)nanotubes with serpentine structures were synthesized.The tribological b...Efficient lubrication of magnesium alloys is a highly challenging topic in the field of tribology.In this study,magnesium silicate hydroxide(MSH)nanotubes with serpentine structures were synthesized.The tribological behavior of AZ91D magnesium alloy rubbed against GCr15 steel was studied under lubricating oil with surface-modified MSH nanotubes as additives.The effects of the concentration,applied load,and reciprocating frequency on the friction and wear of the AZ91D alloy were studied using an SRV-4 sliding wear tester.Results show a decrease of 18.7–68.5%in friction coefficient,and a reduction of 19.4–54.3%in wear volume of magnesium alloy can be achieved by applying the synthetic serpentine additive under different conditions.A suspension containing 0.3 wt.%MSH was most efficient in reducing wear and friction.High frequency and medium load were more conducive to improving the tribological properties of magnesium alloys.A series of beneficial physical and chemical processes occurring at the AZ91D alloy/steel interface can be used to explain friction and wear reduction based on the characterization of the morphology,chemical composition,chemical state,microstructure,and nanomechanical properties of the worn surface.The synthetic MSH,with serpentine structure and nanotube morphology,possesses excellent adsorbability,high chemical activity,and good self-lubrication and catalytic activity.Therefore,physical polishing,tribochemical reactions,and physicalchemical depositions can occur easily on the sliding contacts.A dense tribolayer with a complex composition and composite structure was formed on the worn surface.Its high hardness,good toughness and plasticity,and prominent lubricity resulted in the improvement of friction and wear,making the synthetic MSH a promising efficient oil additive for magnesium alloys under boundary and mixed lubrication.展开更多
Magnesium-based materials,including magnesium alloys,have emerged as a promising class of biodegradable materials with potential applications in cancer therapy due to their unique properties,including biocompatibility...Magnesium-based materials,including magnesium alloys,have emerged as a promising class of biodegradable materials with potential applications in cancer therapy due to their unique properties,including biocompatibility,biodegradability,and the ability to modulate the tumor microenvironment.The main degradation products of magnesium alloys are magnesium ions(Mg^(2+)),hydrogen(H_(2)),and magnesium hydroxide(Mg(OH)_(2)).Magnesium ions can regulate tumor growth and metastasis by mediating the inflammatory response and oxidative stress,maintaining genomic stability,and affecting the tumor microenvironment.Similarly,hydrogen can inhibit tumorigenesis through antioxidant and anti-inflammatory properties.Moreover,Mg(OH)_(2) can alter the pH of the microenvironment,impacting tumorigenesis.Biodegradable magnesium alloys serve various functions in clinical applications,including,but not limited to,bonefixation,coronary stents,and drug carriers.Nonetheless,the anti-tumor mechanism associated with magnesium-based materials has not been thoroughly investigated.This review provides a comprehensive overview of the current state of magnesium-based therapies for cancer.It highlights the mechanisms of action,identifies the challenges that must be addressed,and discusses prospects for oncological applications.展开更多
Metallic magnesium and its alloys,as new types of metallic structural materials,show great application potential in fields such as aerospace,electronics,and biomedicine.However,magnesium is chemically active and highl...Metallic magnesium and its alloys,as new types of metallic structural materials,show great application potential in fields such as aerospace,electronics,and biomedicine.However,magnesium is chemically active and highly susceptible to oxidation and corrosion in various environmental conditions,which can compromise its structural integrity and significantly reduce its service life.Therefore,it is of great significance to strengthen the development and application of corrosion protection technology for magnesium materials.At present,the nitridation of magnesium and its alloys is regarded as an effective surface treatment method to enhance corrosion resistance.To create durable nitrided layers on magnesium substrates with long-term stability,it is essential to thoroughly comprehend the influence of various techniques and processing conditions,as well as the resulting layer composition and microstructure.Additionally,a detailed understanding of how these fabricated layers behave in corrosive environments is crucial for optimizing their performance.This paper systematically reviews the research achievements and latest progress in the surface nitridation on magnesium alloys.The principles,advantages,drawbacks of different nitridation process,as well as their applications in enhancing the corrosion resistance of magnesium alloys are discussed.Furthermore,the paper summarizes the main technologies in the fabrication of magnesium nitride films,such as pulsed laser deposition,low-pressure chemical vapor deposition,reactive magnetron sputtering,thermal plasma synthesis,and molecular beam epitaxy,which offers a valuable reference for experimental research on magnesium nitride film.Finally,it also discusses the challenges and prospects of the research on the surface nitriding of magnesium and its alloys.展开更多
This study investigates the leaching and purification processes for dunite slurry,a common mining waste material,and the carbonation processes for the mineralization of CO_(2) with Mg^(2+).Results indicate that HCl is...This study investigates the leaching and purification processes for dunite slurry,a common mining waste material,and the carbonation processes for the mineralization of CO_(2) with Mg^(2+).Results indicate that HCl is a promising leaching agent,and pH and temperature are major factors in controlling the efficiency of the leaching process,with leaching efficiencies of 82%achieved after 4 h using 2 M HCl solution at 75℃.The removal of other ions like Fe^(3+),Fe^(2+),and Al^(3+)through the purification of the leachate using ammonium hydroxide was also proven to be effective,completely removing iron and aluminum from the leachate from starting concentrations of 3.10 and 0.40 g/L,respectively.The carbonation of magnesium at room temperature was investigated with both purified leachate and pure MgCl_(2) aqueous solution.Nesquehonite crystals began to form after 1.5 h with a conversion of Mg^(2+)to nesquehonite of approximately 5%.The produced crystals possess a needle-like shape,which could be modified using the biopolymers pectin and xanthan.Pectin had a limited influence on the length of the crystals,reducing the needle length with increasing pectin concentration.Xanthan,on the other hand,shortened and widened the needle-like structure into a column shape as more xanthan was added.This study demonstrates the potential for this process to utilize mining wastes and sequester CO_(2),producing useful mineral products in the process.展开更多
In the extraction of potassium from salt lakes,Mg is abundant in the form of bischofite(MgCl_(2)·6H_(2)O),which is not utilized effectively,resulting in the waste of resources and environmental pressure.Anhydrous...In the extraction of potassium from salt lakes,Mg is abundant in the form of bischofite(MgCl_(2)·6H_(2)O),which is not utilized effectively,resulting in the waste of resources and environmental pressure.Anhydrous MgCl_(2) prepared by the dehydration of bischofite is a high-quality raw material for the production of Mg.However,direct calcination of MgCl_(2)·6H_(2)O in industrial dehydration processes leads to a large amount of hydrolysis.The by-products are harmful to the electrolysis process of Mg,causing problems such as sludge formation,low current efficiency,and corrosion in the electrodes.To obtain high-purity anhydrous MgCl_(2),different advanced dehydration processes have been proposed.In this review,we focus on the recent progress of the dehydration process.Firstly,we discuss the molecular structure of MgCl_(2)·6H_(2)O and explain the reason why much hydrolysis occurs in dehydration.Secondly,we introduce the specific dehydration processes,mainly divided into direct dehydration processes and indirect dehydration processes.The direct dehydration processes are classified into gas protection heating and molecular sieve dehydration process.Indirect dehydration processes are classified into thermal dehydration of ammonium carnallite(NH_(4)Cl·MgCl_(2)·6H_(2)O),thermal dehydration of potassium carnallite(KCl·MgCl_(2)·6H_(2)O),thermal decomposition of the[HAE]Cl·MgCl_(2)·6H_(2)O,organic solvent distillation,ionic liquid dehydration process and ammonia complexation process.In the meanwhile,purity of anhydrous MgCl_(2) of each dehydration process,as well as the advantages and disadvantages,is discussed.The characteristics of different processes with a simple economic budget are also given in this paper.Finally,the main challenges are evaluated with suggested directions in the future,aiming to guide the synthesis of high-purity anhydrous MgCl_(2).展开更多
Magnesium phosphate cements(MPC)have shown promising applications in many fields,but high raw material prices hinder their development.The production of salt lake MPC(SLMPC)from magnesium slag(MS),a byproduct of lithi...Magnesium phosphate cements(MPC)have shown promising applications in many fields,but high raw material prices hinder their development.The production of salt lake MPC(SLMPC)from magnesium slag(MS),a byproduct of lithium extraction from salt lakes,offers significant environmental and economic advantages.In this study,a low-cost magnesia raw material was obtained through the calcination of MS,which was subsequently utilized in conjunction with KH_(2)PO_(4) to prepare SLMPC.The changes in hydration products,microscopic morphology,solution pH value,and TG content during the SLMPC curing process,and the hydration kinetics equation and model were used to study the hydration processes of SLMPC.The results show that the outcome indicates that the SLMPC system entered the accelerated reaction stage within 6 min after mixing,where the highest heat release rate was 6.29 J·g^(-1)·min^(-1),the maximum heat release was 205.3 J·g^(-1),and the main hydration product appeared at 50-60 min.The hydration behavior of SLMPC exhibits similarities to that of traditional MPC.Specifically,the acceleration phase is governed by an autocatalytic reaction,the deceleration phase is influenced by both autocatalytic reactions and diffusion processes,and the stabilization phase is predominantly controlled by diffusion mechanisms.This paper aims to establish the theoretical foundation for the industrial application of MS and the cost-effective production of MPC.展开更多
Rechargeable magnesium batteries are promising alternatives to traditional lithium batteries because of the high abundance of Mg compounds in earth crust,their low toxicity,and possible favorable properties as electro...Rechargeable magnesium batteries are promising alternatives to traditional lithium batteries because of the high abundance of Mg compounds in earth crust,their low toxicity,and possible favorable properties as electrodes'material.However,Mg metal anodes face several challenges,notably the natively existence of an inactive oxide layer on their surfaces,which reduces their effectiveness.Additionally,interactions of Mg electrodes with electrolyte solutions'components can lead to the formation of insulating surface layers,that can fully block them for ions transport.This review addresses these issues by focusing on surface treatments strategies to enhance electrochemical performance of Mg anodes.It highlights chemical and physical modification techniques to prevent oxidation and inactive-layers formation,as well as their practical implications for MIBs.We also examined the impact of Mg anodes'surface engineering on their electrochemical reversibility and cycling efficiency.Finally,future research directions to improve the performance and commercial viability of magnesium anodes and advance development of high-capacity,safe,and cost-effective energy storage systems based on magnesium electrochemistry are discussed.展开更多
The development of magnesium batteries strongly relies on the use of a Mg metal anode and its benefits of high volumetric capacity,reduction potential,low cost and improved safety,however,to date,it still lacks suffic...The development of magnesium batteries strongly relies on the use of a Mg metal anode and its benefits of high volumetric capacity,reduction potential,low cost and improved safety,however,to date,it still lacks sufficient cycling stability and reversibility.Along with the electrolyte selection,the interfacial processes can be affected by the anode itself applying electrode engineering strategies.In this study,six different Mg anode approaches–namely bare Mg metal,Mg foil with an organic and inorganic artificial solid electrolyte interphase,Mg alloy,Mg pellet and a tape-casted Mg slurry–are selected to be investigated by means of electrochemical impedance spectroscopy in Mg|Mg and Mg|S cells.While a plating/stripping overpotential asymmetry was observed and assigned to the desolvation during Mg plating,the impedance spectra of stripping and plating hardly differ for all applied anodes.In contrast,the sulfur species significantly influence the impedance response by altering the surface layer composition.By systematic process assignment of the gained spectra in Mg|Mg and Mg|S cells,specific equivalent circuit models for different anodes and cell conditions are derived.Overall,the study aims to give valuable insights into the interfacial processes of Mg anodes to support their further development toward long-lasting Mg batteries.展开更多
More than 4000 papers in the field of Mg and Mg alloys were published and indexed in Web of Science(WoS)Core Collection database in 2021.The bibliometric analyses indicate that the microstructure,mechanical properties...More than 4000 papers in the field of Mg and Mg alloys were published and indexed in Web of Science(WoS)Core Collection database in 2021.The bibliometric analyses indicate that the microstructure,mechanical properties,and corrosion of Mg alloys still are the main research focus.Mg ion batteries and hydrogen storage Mg materials have attracted much attention.Significant contributions to the research and development of magnesium alloys were made by Chongqing University,Shanghai Jiaotong University,and Chinese Academy of Sciences in China,Helmholtz Zentrum Hereon in Germany,Ohio State University in the United States,the University of Queensland in Australia,Kumanto University in Japan,and Seoul National University in Korea,University of Tehran in Iran,etc..This review is aimed to summarize the progress in the development of structural and functional Mg and Mg alloys in 2021.Based on the issues and challenges identified here,some future research directions are suggested.展开更多
More than 4600 papers in the field of Mg and Mg alloys were published and indexed in the Web of Science(WoS)Core Collection database in 2022.The bibliometric analyses indicate that the microstructure,mechanical proper...More than 4600 papers in the field of Mg and Mg alloys were published and indexed in the Web of Science(WoS)Core Collection database in 2022.The bibliometric analyses indicate that the microstructure,mechanical properties,and corrosion of Mg alloys are still the main research focus.Bio-Mg materials,Mg ion batteries and hydrogen storage Mg materials have attracted much attention.Notable contributions to the research and development of magnesium alloys were made by Chongqing University(>200 papers),Chinese Academy of Sciences,Shanghai Jiao Tong University,and Northeastern University(>100 papers)in China,Helmholtz Zentrum Hereon in Germany,Ohio State University in the USA,the University of Queensland in Australia,Kumanto University in Japan,and Seoul National University in Korea,University of Tehran in Iran,and National University of Singapore in Singapore,etc.This review is aimed to summarize the progress in the development of structural and functional Mg and Mg alloys in 2022.Based on the issues and challenges identified here,some future research directions are suggested.展开更多
Magnesium(Mg)-based bioresorbable stents represent a potentially groundbreaking advancement in cardiovascular therapy;offering tem-porary vessel support and complete biodegradability—addressing limitations of traditi...Magnesium(Mg)-based bioresorbable stents represent a potentially groundbreaking advancement in cardiovascular therapy;offering tem-porary vessel support and complete biodegradability—addressing limitations of traditional stents like in-stent restenosis and long-term com-plications.However,challenges such as rapid corrosion and suboptimal endothelialisation have hindered their clinical adoption.This review highlights the latest breakthroughs in surface modification,alloying,and coating strategies to enhance the mechanical integrity,corrosion resistance,and biocompatibility of Mg-based stents.Key surface engineering techniques,including polymer and bioactive coatings,are ex-amined for their role in promoting endothelial healing and minimising inflammatory responses.Future directions are proposed,focusing on personalised stent designs to optimize efficacy and long-term outcomes,positioning Mg-based stents as a transformative solution in interventional cardiology.展开更多
Rare-earth(RE) magnesium alloys have attracted lots of attention due to their excellent mechanical properties.In this work,the microstructure and mechanical properties of as-extruded 8.5Gd-4.5Y-0.8Zn-0.4Zr magnesium a...Rare-earth(RE) magnesium alloys have attracted lots of attention due to their excellent mechanical properties.In this work,the microstructure and mechanical properties of as-extruded 8.5Gd-4.5Y-0.8Zn-0.4Zr magnesium alloy under different solution treatment were examined with the optical microscope(OM),scanning electron microscope(SEM),high resolution transmission electron microscope(HRTEM),electron back-scattered diffraction(EBSD) and Instron testing machine.The results show that the ES12alloy(solution treatment for 12 h at 520℃) has the highest ultimate tensile strength(UTS) of 390 MPa with a fracture elongation of 24.5% at the co st of a minor drop in yielding strength(YS) compared to the asextruded alloy.During solution treatment,the block-shaped long period stacking ordered(LPSO) in asextruded alloy evolves into plate-shaped LPSO,which disperses at grain boundaries(GBs),and lamellar LPSO,which distributes in grains.The coexistence of plate-shaped and lamellar LPSO,which impedes the dislocations movement,and the activated dislocations are regarded as the primary reasons for mechanical properties improvement.Furthermore,the(11-21) <1-100> texture in as-extruded alloy transforms into the(11-20) <0001> texture in ES12 alloy.The average grain size increases from 3.45 μm in as-extruded alloy to 18.70 μm in ES12 alloy.The Schmid factors of {0001} <11-20>,{10-10} <11-20>,{10-11} <11-20>,and {11-22} <11-23> increase,which indicate that slip systems are more easily activated in plastic deformation.The dynamic recrystallization(DRX) grains fraction increase to 92.8% for ES12 alloy due to the particle-stimulated nucleation(PSN) mechanism triggered by block-shaped and plate-shaped LPSO.The freshly DRXed grains further weaken the texture,and reduce the dislocation density.All of these factors increase elongation of RE magnesium alloy.展开更多
Biliary system,which is responsible for transporting bile from the liver into the intestine,is commonly damaged by inflammation or tumors eventually causing liver failure or death.The implantation of biliary stents ca...Biliary system,which is responsible for transporting bile from the liver into the intestine,is commonly damaged by inflammation or tumors eventually causing liver failure or death.The implantation of biliary stents can effectively alleviate both benign and malignant biliary strictures,but the plastic and metal stents that are currently used cannot degrade and nearly has no beneficial biological effects,therefore their long-term service can result into inflammation,the formation of sludges and re-obstruction of bile duct.In recent years,magnesium(Mg)metal has been received increasing attention in the field of biomedical application due to its excellent biocompatibility,adequate mechanical properties,biodegradability and other advantages,such as anti-inflammatory and anti-tumor properties.The research on biliary stents made of magnesium metals(BSMM)has also made significant progress and a series of experiments in vitro and vivo has proved their possibility.However,there are still some problems holding back BSMM’s clinical use,including rapid corrosion rate and potential harmful reaction.In this review,we would summarize the current research of BSMM,evaluate their clinical benefits,find the choke points,and discuss the solving method.展开更多
A comprehensive analysis of the microstructure and defects of a thixomolded AZ91D alloy was conducted to elucidate their influences on mechanical properties.Samples were made at injection temperatures ranging from 580...A comprehensive analysis of the microstructure and defects of a thixomolded AZ91D alloy was conducted to elucidate their influences on mechanical properties.Samples were made at injection temperatures ranging from 580 to 640℃.X-ray computed tomography was used to visualize pores,and crystal plasticity finite element simulation was adopted for deformation analysis.The microstructure characterizations reveal a hierarchical cell feature composed of α-Mg and eutectic phases.With the increase of injection temperature,large cell content in the material decreases,while the strength of the alloy increases.The underlying mechanism about strength change is that coarse-grained solids experience smaller stress even in hard orientations.The sample fabricated at a moderate temperature of 620℃ exhibits the highest elongation,least quantity and lower local concentration of pores.The detachment and tearing cracks formed at lower injection temperature and defect bands formed at higher injection temperature add additional crack sources and deteriorate the ductility of the materials.展开更多
The aim of this study is to investigate the mechanism of magnesium isoglycyrrhizinate(MgIG)in the treatment of myocardial remodeling induced by isoproterenol(ISO)in mice.We assessed the impact of MgIG on ISO-induced m...The aim of this study is to investigate the mechanism of magnesium isoglycyrrhizinate(MgIG)in the treatment of myocardial remodeling induced by isoproterenol(ISO)in mice.We assessed the impact of MgIG on ISO-induced myocardial remodeling by activating the PI3K/AKT1 pathway.The cardiac function of mice was evaluated by echocardiography,revealing that MgIG could improve left ventricular function.Pathological staining analysis showed that MgIG could reduce the degree of myocardial injury caused by ISO.Serum data detected by ELISA demonstrated that MgIG could decrease the levels of CK-MB,MDA,and LDH while increasing the activity of GSH-Px.Western blotting analysis revealed that protein expression levels of Collagen I,BNP,Bax,cleaved caspase-3,p-PI3K,and p-AKT1 were decreased,whereas the protein expressions of Bcl-2,COX2,and SOD1 were increased upon MgIG treatment.However,the activation of the PI3K pathway reversed the cardioprotective effects of MgIG,as evidenced by the addition of PI3K activators.Taken together,our comprehensive results suggested that MgIG could improve ISO-induced myocardial remodeling,potentially through its mechanism of inhibiting the PI3K/AKT1 pathway to regulate apoptosis and oxidative stress.展开更多
In this study,a phosphate-based conversion coating(PCC)was applied as a precursor before forming silicate-fluoride(SiF)and silicate-phosphate-fluoride(SiPF)based flash-plasma electrolytic oxidation(Flash-PEO)coatings ...In this study,a phosphate-based conversion coating(PCC)was applied as a precursor before forming silicate-fluoride(SiF)and silicate-phosphate-fluoride(SiPF)based flash-plasma electrolytic oxidation(Flash-PEO)coatings on AZ31B magnesium alloy.The main novelty is the successful incorporation of calcium,zinc,manganese and phosphate species into the Flash-PEO coatings via a precursor layer rather than using the electrolyte.The precursor also led to longer lasting and more intense discharges during the PEO process,resulting in increased pore size.Corrosion studies revealed similar short-term performance for all coatings,with impedance modulus at low frequencies above 10^(7)Ωcm^(2),and slightly better performance for the SiPF-based coating.Nonetheless,the enlarged pores in the PEO coatings functionalized with the PCC precursor compromised the effectiveness of self-healing mechanisms by creating diffusion pathways for corrosive species,leading to earlier failure.These phenomena were effectively monitored by recording the open circuit potential during immersion in 0.5 wt.%NaCl solution.In summary,this study demonstrates that conversion coatings are a viable option for the functionalization of PEO coatings on magnesium alloys,as they allow for the incorporation of cationic and other species.However,it is crucial to maintain a small pore size to facilitate effective blockage through self-healing mechanisms.展开更多
基金supported by the National Natural Science Foundation of China(Nos.32300413 and 32371563)the Natural Science Basic Research Program of Shaanxi Province(No.2023-JCQN-0206)+1 种基金the Shaanxi Fundamental Science Research Project for Chemistry&Biology(No.22JHQ037)the National Key R&D Program of China(No.2024YFF1307302).
文摘Diabetic wound healing remains a major clinical challenge,primarily due to excessive inflammation,bacterial infection,and impaired angiogenesis.Although various biomaterial-based strategies have been explored,coordinating the complex diabetic wound microenvironment remains difficult to achieve.This study proposes a novel multifunctional hydrogel dressing designed to synergistically address multiple issues.Its key innovation lies in dynamically crosslinking deer antler decellularized matrix(dECM)with oxidized dextran via imine bonds,creating a self-healing hydrogel(dECMH).The deer antler dECM,rich in pro-regenerative components,provides a biomimetic scaffold,while Schiff base crosslinking confers mechanical self-healing and injectability.To further address the complexity of diabetic wounds,magnesium gallate metalorganic frameworks(Mg-EGCG)were embedded within the dECMH network,forming Mg-EGCG@dECMH.This innovative combination enables sustained co-delivery of epigallocatechin gallate(EGCG)—possessing antibacterial,anti-inflammatory,and antioxidant properties—alongside magnesium ions that actively promote cell proliferation and vascular regeneration.In vitro analyses confirmed the hydrogel's capacity to enhance endothelial cell proliferation,boost angiogenesis,and mitigate oxidative stress.In vivo evaluations demonstrated accelerated wound healing,manifested by rapid inflammation resolution,ordered collagen deposition,and stimulated neovascularization.Additionally,the material exhibited excellent biocompatibility,hemostatic effects,and antimicrobial activity.This multifunctional dressing synergistically integrates the inherent bioactivity of unique antler decellularized matrix with the multimodal therapeutic effects of metal-organic nanocomposites,offering an innovative and effective strategy for diabetic wound management.
基金supported by the National Key R&D Program of China(No.2023YFB3809500)the Fundamental Research Funds for the Central Universities(No.2024CDJXY003)+1 种基金the Venture&Innovation Support Program for Chongqing Overseas Returnees(cx2023087)The Chongqing Technology Innovation and Application Development Project(No.2024TIAD-KPX0003).
文摘Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosized anatase TiO_(2) exposed(001)facet doubles the capacity compared to the micro-sized sample ascribed to the interfacial Mg^(2+)ion storage.First-principles calculations reveal that the diffusion energy barrier of Mg^(2+)on the(001)facet is significantly lower than those in the bulk phase and on(100)facet,and the adsorption energy of Mg^(2+)on the(001)facet is also considerably lower than that on(100)facet,which guarantees superior interfacial Mg^(2+)storage of(001)facet.Moreover,anatase TiO_(2) exposed(001)facet displays a significantly higher capacity of 312.9 mAh g^(−1) in Mg-Li dual-salt electrolyte compared to 234.3 mAh g^(−1) in Li salt electrolyte.The adsorption energies of Mg^(2+)on(001)facet are much lower than the adsorption energies of Li+on(001)facet,implying that the Mg^(2+)ion interfacial storage is more favorable.These results highlight that controlling the crystal facet of the nanocrystals effectively enhances the interfacial storage of multivalent ions.This work offers valuable guidance for the rational design of high-capacity storage systems.
基金supported by the National Natural Science Foundation of China(No.U2037601)the National Key Research and Development Program(No.2023YFB3809500)the Chongqing Technology Innovation and Application Development Project(No.CSTB2022TIAD-KPX0028).
文摘Rechargeable magnesium batteries(RMBs)have attracted much attention due to the high theoretical capacity(3833 mAh cm−3)of magnesium metal negative electrode and abundant resources.However,the preparation of ultra-thin magnesium foils faces the problems of rolling difficulty and high processing cost,while the use of thick magnesium foils leads to low utilization of magnesium and reduces the energy density.To tackle the above problems,we successfully prepared ultra-thin magnesium foils based on electrolytic process and investigated the effect of different substrates.The magnesium foils prepared using Mo substrate have more uniform surface morphology and lower surface roughness,which is attributed to the lower magnesium nucleation overpotential of Mo substrate.Meanwhile,density functional theory calculations show that the adsorption energy of Mo on Mg is more negative,which is conducive to achieving uniform nucleation and deposition of Mg.The Mg deposition on Mo substrate undergoes the characteristic stages of transient nucleation,nucleus accretion,multidirectional heterotopic growth,and columnar crystal stacking,and ultimately the formation of a dense deposited layer.In addition,the prepared ultra-thin Mg foil with Mo substrate can stably cycle for 1000 h at 3 mA cm^(-2) with high utilization of 50% in the symmetric cell.This study develops a facile method for the preparation of ultra-thin Mg foils,which opens up a new path for developing high-performance ultra-thin negative electrodes for RMBs.
基金financially supported by the National Natural Science Foundation of China(52274295)Hebei Province Science and Technology Research and Development Platform Special Innovation Capability Enhancement Plan Project(24464402D)+3 种基金the Fundamental Research Funds for the Central Universities(N2423051,N2423005)the Science and Technology Project of Hebei Education Department(QN2024238)The Basic Research Program Project of Shijiazhuang City for Universities Stationed in Hebei Province(241790937A)2025 Hebei Provincial Post-graduate Student Innovation Ability Training Funding Project(CXZZBS2025202,CXZZSS2025157).
文摘Rechargeable magnesium batteries(RMBs)are considered promising candidates for next-generation energy storage systems due to their high theoretical capacity.However,the non-uniform deposition/stripping behavior of Mg metal hinders the practical application of RMBs.This study demonstrates that the designed interfacial electric field effect,driven by a copper phthalocyanine(CuPc)conductive interlayer,enhances the kinetics and stability of the Mg anode.In situ electrochemical impedance spectroscopy coupled with distribution of relaxation times analysis reveals that the highly delocalized electron cloud network of CuPc establishes a low-energy-barrier electron transport pathway,significantly reducing charge transfer resistance.Electrochemical characterization and density functional theory calculations indicate that the interfacial electric field effect effectively improves interfacial Mg^(2+)diffusion by enhancing electron delocalization and reducing the Mg^(2+)migration energy barrier.Furthermore,finite element simulations substantiate that the interfacial electric field imparts uniform interfacial charge distribution and homogeneous Mg deposition during plating/stripping processes.Consequently,the symmetric cell with CuPc@Mg achieves an ultra-long lifetime(1,400h at 5mAcm^(−2))and a high Coulombic efficiency(99.3%).Furthermore,the CuPc@Mg||Mo6S8 cell achieves high capacity retention(92%).This work highlights the potential of metal phthalocyanines in stabilizing Mg anodes.
基金support from the National Natural Science Foundation of China(grant number 52075544)Innovation Funds of Jihua Laboratory(X220971UZ230)+1 种基金Basic and Applied Basic Research Foundation of Guangdong Province(2022A1515110649)Funds from Research Platforms of Guangdong Higher Education Institutes(2022ZDJS038).
文摘Efficient lubrication of magnesium alloys is a highly challenging topic in the field of tribology.In this study,magnesium silicate hydroxide(MSH)nanotubes with serpentine structures were synthesized.The tribological behavior of AZ91D magnesium alloy rubbed against GCr15 steel was studied under lubricating oil with surface-modified MSH nanotubes as additives.The effects of the concentration,applied load,and reciprocating frequency on the friction and wear of the AZ91D alloy were studied using an SRV-4 sliding wear tester.Results show a decrease of 18.7–68.5%in friction coefficient,and a reduction of 19.4–54.3%in wear volume of magnesium alloy can be achieved by applying the synthetic serpentine additive under different conditions.A suspension containing 0.3 wt.%MSH was most efficient in reducing wear and friction.High frequency and medium load were more conducive to improving the tribological properties of magnesium alloys.A series of beneficial physical and chemical processes occurring at the AZ91D alloy/steel interface can be used to explain friction and wear reduction based on the characterization of the morphology,chemical composition,chemical state,microstructure,and nanomechanical properties of the worn surface.The synthetic MSH,with serpentine structure and nanotube morphology,possesses excellent adsorbability,high chemical activity,and good self-lubrication and catalytic activity.Therefore,physical polishing,tribochemical reactions,and physicalchemical depositions can occur easily on the sliding contacts.A dense tribolayer with a complex composition and composite structure was formed on the worn surface.Its high hardness,good toughness and plasticity,and prominent lubricity resulted in the improvement of friction and wear,making the synthetic MSH a promising efficient oil additive for magnesium alloys under boundary and mixed lubrication.
文摘Magnesium-based materials,including magnesium alloys,have emerged as a promising class of biodegradable materials with potential applications in cancer therapy due to their unique properties,including biocompatibility,biodegradability,and the ability to modulate the tumor microenvironment.The main degradation products of magnesium alloys are magnesium ions(Mg^(2+)),hydrogen(H_(2)),and magnesium hydroxide(Mg(OH)_(2)).Magnesium ions can regulate tumor growth and metastasis by mediating the inflammatory response and oxidative stress,maintaining genomic stability,and affecting the tumor microenvironment.Similarly,hydrogen can inhibit tumorigenesis through antioxidant and anti-inflammatory properties.Moreover,Mg(OH)_(2) can alter the pH of the microenvironment,impacting tumorigenesis.Biodegradable magnesium alloys serve various functions in clinical applications,including,but not limited to,bonefixation,coronary stents,and drug carriers.Nonetheless,the anti-tumor mechanism associated with magnesium-based materials has not been thoroughly investigated.This review provides a comprehensive overview of the current state of magnesium-based therapies for cancer.It highlights the mechanisms of action,identifies the challenges that must be addressed,and discusses prospects for oncological applications.
基金supported by the National Natural Science Foundation of China(No.22172148).
文摘Metallic magnesium and its alloys,as new types of metallic structural materials,show great application potential in fields such as aerospace,electronics,and biomedicine.However,magnesium is chemically active and highly susceptible to oxidation and corrosion in various environmental conditions,which can compromise its structural integrity and significantly reduce its service life.Therefore,it is of great significance to strengthen the development and application of corrosion protection technology for magnesium materials.At present,the nitridation of magnesium and its alloys is regarded as an effective surface treatment method to enhance corrosion resistance.To create durable nitrided layers on magnesium substrates with long-term stability,it is essential to thoroughly comprehend the influence of various techniques and processing conditions,as well as the resulting layer composition and microstructure.Additionally,a detailed understanding of how these fabricated layers behave in corrosive environments is crucial for optimizing their performance.This paper systematically reviews the research achievements and latest progress in the surface nitridation on magnesium alloys.The principles,advantages,drawbacks of different nitridation process,as well as their applications in enhancing the corrosion resistance of magnesium alloys are discussed.Furthermore,the paper summarizes the main technologies in the fabrication of magnesium nitride films,such as pulsed laser deposition,low-pressure chemical vapor deposition,reactive magnetron sputtering,thermal plasma synthesis,and molecular beam epitaxy,which offers a valuable reference for experimental research on magnesium nitride film.Finally,it also discusses the challenges and prospects of the research on the surface nitriding of magnesium and its alloys.
基金supported by Fonds Wetenschappelijk Onderzoek-Vlaanderen(FWO).D.M.acknowledges support from FWO in the form of strategic basic research fellowships(File number:1S13924N).
文摘This study investigates the leaching and purification processes for dunite slurry,a common mining waste material,and the carbonation processes for the mineralization of CO_(2) with Mg^(2+).Results indicate that HCl is a promising leaching agent,and pH and temperature are major factors in controlling the efficiency of the leaching process,with leaching efficiencies of 82%achieved after 4 h using 2 M HCl solution at 75℃.The removal of other ions like Fe^(3+),Fe^(2+),and Al^(3+)through the purification of the leachate using ammonium hydroxide was also proven to be effective,completely removing iron and aluminum from the leachate from starting concentrations of 3.10 and 0.40 g/L,respectively.The carbonation of magnesium at room temperature was investigated with both purified leachate and pure MgCl_(2) aqueous solution.Nesquehonite crystals began to form after 1.5 h with a conversion of Mg^(2+)to nesquehonite of approximately 5%.The produced crystals possess a needle-like shape,which could be modified using the biopolymers pectin and xanthan.Pectin had a limited influence on the length of the crystals,reducing the needle length with increasing pectin concentration.Xanthan,on the other hand,shortened and widened the needle-like structure into a column shape as more xanthan was added.This study demonstrates the potential for this process to utilize mining wastes and sequester CO_(2),producing useful mineral products in the process.
基金funded by Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01F60)Tianshan Talents Plan of Xinjiang Uygur Autonomous Region(2022TSYCJC0001)+2 种基金National Natural Science Foundation of China(22368051)Science and Technology Plan Project of Karamay(20232023hjcxrc0038 and 2024hjcxrc0118)Projects of Talents Recruitment of GDUPT(2023rcyj2005)。
文摘In the extraction of potassium from salt lakes,Mg is abundant in the form of bischofite(MgCl_(2)·6H_(2)O),which is not utilized effectively,resulting in the waste of resources and environmental pressure.Anhydrous MgCl_(2) prepared by the dehydration of bischofite is a high-quality raw material for the production of Mg.However,direct calcination of MgCl_(2)·6H_(2)O in industrial dehydration processes leads to a large amount of hydrolysis.The by-products are harmful to the electrolysis process of Mg,causing problems such as sludge formation,low current efficiency,and corrosion in the electrodes.To obtain high-purity anhydrous MgCl_(2),different advanced dehydration processes have been proposed.In this review,we focus on the recent progress of the dehydration process.Firstly,we discuss the molecular structure of MgCl_(2)·6H_(2)O and explain the reason why much hydrolysis occurs in dehydration.Secondly,we introduce the specific dehydration processes,mainly divided into direct dehydration processes and indirect dehydration processes.The direct dehydration processes are classified into gas protection heating and molecular sieve dehydration process.Indirect dehydration processes are classified into thermal dehydration of ammonium carnallite(NH_(4)Cl·MgCl_(2)·6H_(2)O),thermal dehydration of potassium carnallite(KCl·MgCl_(2)·6H_(2)O),thermal decomposition of the[HAE]Cl·MgCl_(2)·6H_(2)O,organic solvent distillation,ionic liquid dehydration process and ammonia complexation process.In the meanwhile,purity of anhydrous MgCl_(2) of each dehydration process,as well as the advantages and disadvantages,is discussed.The characteristics of different processes with a simple economic budget are also given in this paper.Finally,the main challenges are evaluated with suggested directions in the future,aiming to guide the synthesis of high-purity anhydrous MgCl_(2).
基金financially supported by the Natural Science and Engineering Technology in Qinghai Province(2023)the Qinghai Province"Kunlun Talents"High end Innovation and Entrepreneurship Talent Project(2023)+4 种基金the Western Young Scholars Program of Chinese Academy of Sciences(20242022000018)the National Natural Science Foundation of China(52404189)the Open Fund of Key Laboratory of Green and High-end Utilization of Salt Lake Resources(ISL2024-15)the Independent deployment project of the Qinghai Salt Lake Research Institute,CAS(E455HX3501)。
文摘Magnesium phosphate cements(MPC)have shown promising applications in many fields,but high raw material prices hinder their development.The production of salt lake MPC(SLMPC)from magnesium slag(MS),a byproduct of lithium extraction from salt lakes,offers significant environmental and economic advantages.In this study,a low-cost magnesia raw material was obtained through the calcination of MS,which was subsequently utilized in conjunction with KH_(2)PO_(4) to prepare SLMPC.The changes in hydration products,microscopic morphology,solution pH value,and TG content during the SLMPC curing process,and the hydration kinetics equation and model were used to study the hydration processes of SLMPC.The results show that the outcome indicates that the SLMPC system entered the accelerated reaction stage within 6 min after mixing,where the highest heat release rate was 6.29 J·g^(-1)·min^(-1),the maximum heat release was 205.3 J·g^(-1),and the main hydration product appeared at 50-60 min.The hydration behavior of SLMPC exhibits similarities to that of traditional MPC.Specifically,the acceleration phase is governed by an autocatalytic reaction,the deceleration phase is influenced by both autocatalytic reactions and diffusion processes,and the stabilization phase is predominantly controlled by diffusion mechanisms.This paper aims to establish the theoretical foundation for the industrial application of MS and the cost-effective production of MPC.
基金supported by the Global Joint Research Program funded by the Pukyong National University(202411790001)the Nano&Material Technology Development Program through the National Research Foundation of Korea(NRF)+2 种基金funded by the Ministry of Science and ICT(RS-2024-00446825)the Technology Innovation Program(RS-2024-00418815)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea)。
文摘Rechargeable magnesium batteries are promising alternatives to traditional lithium batteries because of the high abundance of Mg compounds in earth crust,their low toxicity,and possible favorable properties as electrodes'material.However,Mg metal anodes face several challenges,notably the natively existence of an inactive oxide layer on their surfaces,which reduces their effectiveness.Additionally,interactions of Mg electrodes with electrolyte solutions'components can lead to the formation of insulating surface layers,that can fully block them for ions transport.This review addresses these issues by focusing on surface treatments strategies to enhance electrochemical performance of Mg anodes.It highlights chemical and physical modification techniques to prevent oxidation and inactive-layers formation,as well as their practical implications for MIBs.We also examined the impact of Mg anodes'surface engineering on their electrochemical reversibility and cycling efficiency.Finally,future research directions to improve the performance and commercial viability of magnesium anodes and advance development of high-capacity,safe,and cost-effective energy storage systems based on magnesium electrochemistry are discussed.
基金financially supported by the Federal Ministry for Education and Research of Germany(Bundesminis-terium für Bildung und Forschung,BMBF)and the European Commission within the projects“MagSiMal”(03XP0208)“E-MAGIC”(824066),respectively。
文摘The development of magnesium batteries strongly relies on the use of a Mg metal anode and its benefits of high volumetric capacity,reduction potential,low cost and improved safety,however,to date,it still lacks sufficient cycling stability and reversibility.Along with the electrolyte selection,the interfacial processes can be affected by the anode itself applying electrode engineering strategies.In this study,six different Mg anode approaches–namely bare Mg metal,Mg foil with an organic and inorganic artificial solid electrolyte interphase,Mg alloy,Mg pellet and a tape-casted Mg slurry–are selected to be investigated by means of electrochemical impedance spectroscopy in Mg|Mg and Mg|S cells.While a plating/stripping overpotential asymmetry was observed and assigned to the desolvation during Mg plating,the impedance spectra of stripping and plating hardly differ for all applied anodes.In contrast,the sulfur species significantly influence the impedance response by altering the surface layer composition.By systematic process assignment of the gained spectra in Mg|Mg and Mg|S cells,specific equivalent circuit models for different anodes and cell conditions are derived.Overall,the study aims to give valuable insights into the interfacial processes of Mg anodes to support their further development toward long-lasting Mg batteries.
基金support from the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030006)National Natural Science Foundation of China(NSFC)(No.52071036)+1 种基金Key Research and Development Program of Zhejiang Province(No.2021C01086)the Fundamental Research Funds for the Central Universities Project(Nos.2021CDJCGJ009,SKLMT-ZZKT-2021M11)is also gratefully acknowledged.
文摘More than 4000 papers in the field of Mg and Mg alloys were published and indexed in Web of Science(WoS)Core Collection database in 2021.The bibliometric analyses indicate that the microstructure,mechanical properties,and corrosion of Mg alloys still are the main research focus.Mg ion batteries and hydrogen storage Mg materials have attracted much attention.Significant contributions to the research and development of magnesium alloys were made by Chongqing University,Shanghai Jiaotong University,and Chinese Academy of Sciences in China,Helmholtz Zentrum Hereon in Germany,Ohio State University in the United States,the University of Queensland in Australia,Kumanto University in Japan,and Seoul National University in Korea,University of Tehran in Iran,etc..This review is aimed to summarize the progress in the development of structural and functional Mg and Mg alloys in 2021.Based on the issues and challenges identified here,some future research directions are suggested.
基金This work was financially supported by the National Key Research and Development Program of China(No.2021YFB3701100)the National Natural Science Foundation of China(Nos.52171104 and U20A20234)+1 种基金the Chongqing Research Program of Basic Research and Frontier Technology,China(Nos.cstc2021ycjh-bgzxm0086 and 2019jcyj-msxmX0306)the fundamental Research funds for Central Universities,China(Nos.SKLMT-ZZKT-2022R04,2021CDJJMRH-001,and SKLMT-ZZKT-2022M12).
文摘More than 4600 papers in the field of Mg and Mg alloys were published and indexed in the Web of Science(WoS)Core Collection database in 2022.The bibliometric analyses indicate that the microstructure,mechanical properties,and corrosion of Mg alloys are still the main research focus.Bio-Mg materials,Mg ion batteries and hydrogen storage Mg materials have attracted much attention.Notable contributions to the research and development of magnesium alloys were made by Chongqing University(>200 papers),Chinese Academy of Sciences,Shanghai Jiao Tong University,and Northeastern University(>100 papers)in China,Helmholtz Zentrum Hereon in Germany,Ohio State University in the USA,the University of Queensland in Australia,Kumanto University in Japan,and Seoul National University in Korea,University of Tehran in Iran,and National University of Singapore in Singapore,etc.This review is aimed to summarize the progress in the development of structural and functional Mg and Mg alloys in 2022.Based on the issues and challenges identified here,some future research directions are suggested.
文摘Magnesium(Mg)-based bioresorbable stents represent a potentially groundbreaking advancement in cardiovascular therapy;offering tem-porary vessel support and complete biodegradability—addressing limitations of traditional stents like in-stent restenosis and long-term com-plications.However,challenges such as rapid corrosion and suboptimal endothelialisation have hindered their clinical adoption.This review highlights the latest breakthroughs in surface modification,alloying,and coating strategies to enhance the mechanical integrity,corrosion resistance,and biocompatibility of Mg-based stents.Key surface engineering techniques,including polymer and bioactive coatings,are ex-amined for their role in promoting endothelial healing and minimising inflammatory responses.Future directions are proposed,focusing on personalised stent designs to optimize efficacy and long-term outcomes,positioning Mg-based stents as a transformative solution in interventional cardiology.
基金supported by the Key Research and Development Program of Heilongjiang (2022ZX01A01)National Natural Science Foundation of China (51975167)Natural Science Foundation of Heilongjiang Province(LH2022E080)。
文摘Rare-earth(RE) magnesium alloys have attracted lots of attention due to their excellent mechanical properties.In this work,the microstructure and mechanical properties of as-extruded 8.5Gd-4.5Y-0.8Zn-0.4Zr magnesium alloy under different solution treatment were examined with the optical microscope(OM),scanning electron microscope(SEM),high resolution transmission electron microscope(HRTEM),electron back-scattered diffraction(EBSD) and Instron testing machine.The results show that the ES12alloy(solution treatment for 12 h at 520℃) has the highest ultimate tensile strength(UTS) of 390 MPa with a fracture elongation of 24.5% at the co st of a minor drop in yielding strength(YS) compared to the asextruded alloy.During solution treatment,the block-shaped long period stacking ordered(LPSO) in asextruded alloy evolves into plate-shaped LPSO,which disperses at grain boundaries(GBs),and lamellar LPSO,which distributes in grains.The coexistence of plate-shaped and lamellar LPSO,which impedes the dislocations movement,and the activated dislocations are regarded as the primary reasons for mechanical properties improvement.Furthermore,the(11-21) <1-100> texture in as-extruded alloy transforms into the(11-20) <0001> texture in ES12 alloy.The average grain size increases from 3.45 μm in as-extruded alloy to 18.70 μm in ES12 alloy.The Schmid factors of {0001} <11-20>,{10-10} <11-20>,{10-11} <11-20>,and {11-22} <11-23> increase,which indicate that slip systems are more easily activated in plastic deformation.The dynamic recrystallization(DRX) grains fraction increase to 92.8% for ES12 alloy due to the particle-stimulated nucleation(PSN) mechanism triggered by block-shaped and plate-shaped LPSO.The freshly DRXed grains further weaken the texture,and reduce the dislocation density.All of these factors increase elongation of RE magnesium alloy.
基金supported by Natural Science Foundation of Hunan Province(2021JJ31081,2024JJ5619)the Science Fund of State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle(No 32215004).
文摘Biliary system,which is responsible for transporting bile from the liver into the intestine,is commonly damaged by inflammation or tumors eventually causing liver failure or death.The implantation of biliary stents can effectively alleviate both benign and malignant biliary strictures,but the plastic and metal stents that are currently used cannot degrade and nearly has no beneficial biological effects,therefore their long-term service can result into inflammation,the formation of sludges and re-obstruction of bile duct.In recent years,magnesium(Mg)metal has been received increasing attention in the field of biomedical application due to its excellent biocompatibility,adequate mechanical properties,biodegradability and other advantages,such as anti-inflammatory and anti-tumor properties.The research on biliary stents made of magnesium metals(BSMM)has also made significant progress and a series of experiments in vitro and vivo has proved their possibility.However,there are still some problems holding back BSMM’s clinical use,including rapid corrosion rate and potential harmful reaction.In this review,we would summarize the current research of BSMM,evaluate their clinical benefits,find the choke points,and discuss the solving method.
基金supported by the National Natural Science Foundation of China(Nos.51825101,52001202)the National Key Research and Development Program of China(No.2021YFA1600900)。
文摘A comprehensive analysis of the microstructure and defects of a thixomolded AZ91D alloy was conducted to elucidate their influences on mechanical properties.Samples were made at injection temperatures ranging from 580 to 640℃.X-ray computed tomography was used to visualize pores,and crystal plasticity finite element simulation was adopted for deformation analysis.The microstructure characterizations reveal a hierarchical cell feature composed of α-Mg and eutectic phases.With the increase of injection temperature,large cell content in the material decreases,while the strength of the alloy increases.The underlying mechanism about strength change is that coarse-grained solids experience smaller stress even in hard orientations.The sample fabricated at a moderate temperature of 620℃ exhibits the highest elongation,least quantity and lower local concentration of pores.The detachment and tearing cracks formed at lower injection temperature and defect bands formed at higher injection temperature add additional crack sources and deteriorate the ductility of the materials.
基金Jiangxi Provincial Department of Education Science and Technology Project(Grant No.GJJ2401615)Jiangxi Provincial Department of Education Teaching Reform Project(Grant No.JXJG-24-15-15).
文摘The aim of this study is to investigate the mechanism of magnesium isoglycyrrhizinate(MgIG)in the treatment of myocardial remodeling induced by isoproterenol(ISO)in mice.We assessed the impact of MgIG on ISO-induced myocardial remodeling by activating the PI3K/AKT1 pathway.The cardiac function of mice was evaluated by echocardiography,revealing that MgIG could improve left ventricular function.Pathological staining analysis showed that MgIG could reduce the degree of myocardial injury caused by ISO.Serum data detected by ELISA demonstrated that MgIG could decrease the levels of CK-MB,MDA,and LDH while increasing the activity of GSH-Px.Western blotting analysis revealed that protein expression levels of Collagen I,BNP,Bax,cleaved caspase-3,p-PI3K,and p-AKT1 were decreased,whereas the protein expressions of Bcl-2,COX2,and SOD1 were increased upon MgIG treatment.However,the activation of the PI3K pathway reversed the cardioprotective effects of MgIG,as evidenced by the addition of PI3K activators.Taken together,our comprehensive results suggested that MgIG could improve ISO-induced myocardial remodeling,potentially through its mechanism of inhibiting the PI3K/AKT1 pathway to regulate apoptosis and oxidative stress.
基金support of the PID2021-124341OB-C22/AEI/10.13039/501100011033/FEDER,UE(MICIU)J.M.Vega also acknowledges the Grant RYC2021-034384-I funded by MICIU/AEI/10.13039/501100011033 and by“European Union Next Generation EU/PRTR”.
文摘In this study,a phosphate-based conversion coating(PCC)was applied as a precursor before forming silicate-fluoride(SiF)and silicate-phosphate-fluoride(SiPF)based flash-plasma electrolytic oxidation(Flash-PEO)coatings on AZ31B magnesium alloy.The main novelty is the successful incorporation of calcium,zinc,manganese and phosphate species into the Flash-PEO coatings via a precursor layer rather than using the electrolyte.The precursor also led to longer lasting and more intense discharges during the PEO process,resulting in increased pore size.Corrosion studies revealed similar short-term performance for all coatings,with impedance modulus at low frequencies above 10^(7)Ωcm^(2),and slightly better performance for the SiPF-based coating.Nonetheless,the enlarged pores in the PEO coatings functionalized with the PCC precursor compromised the effectiveness of self-healing mechanisms by creating diffusion pathways for corrosive species,leading to earlier failure.These phenomena were effectively monitored by recording the open circuit potential during immersion in 0.5 wt.%NaCl solution.In summary,this study demonstrates that conversion coatings are a viable option for the functionalization of PEO coatings on magnesium alloys,as they allow for the incorporation of cationic and other species.However,it is crucial to maintain a small pore size to facilitate effective blockage through self-healing mechanisms.