期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multi-Agent Few-Shot Meta Reinforcement Learning for Trajectory Design and Channel Selection in UAV-Assisted Networks 被引量:1
1
作者 Shiyang Zhou Yufan Cheng +1 位作者 Xia Lei Huanhuan Duan 《China Communications》 SCIE CSCD 2022年第4期166-176,共11页
Unmanned aerial vehicle(UAV)-assisted communications have been considered as a solution of aerial networking in future wireless networks due to its low-cost, high-mobility, and swift features. This paper considers a U... Unmanned aerial vehicle(UAV)-assisted communications have been considered as a solution of aerial networking in future wireless networks due to its low-cost, high-mobility, and swift features. This paper considers a UAV-assisted downlink transmission,where UAVs are deployed as aerial base stations to serve ground users. To maximize the average transmission rate among the ground users, this paper formulates a joint optimization problem of UAV trajectory design and channel selection, which is NP-hard and non-convex. To solve the problem, we propose a multi-agent deep Q-network(MADQN) scheme.Specifically, the agents that the UAVs act as perform actions from their observations distributively and share the same reward. To tackle the tasks where the experience is insufficient, we propose a multi-agent meta reinforcement learning algorithm to fast adapt to the new tasks. By pretraining the tasks with similar distribution, the learning model can acquire general knowledge. Simulation results have indicated the MADQN scheme can achieve higher throughput than fixed allocation. Furthermore, our proposed multiagent meta reinforcement learning algorithm learns the new tasks much faster compared with the MADQN scheme. 展开更多
关键词 UAV trajectory design channel selection madqn meta reinforcement learning
在线阅读 下载PDF
基于多智能体深度Q网络交互的板壳加强筋生长式设计
2
作者 钟意 杨勇 +3 位作者 姜学涛 潘顺洋 朱其新 王磊 《中国机械工程》 EI CAS CSCD 北大核心 2024年第8期1397-1404,共8页
基于板壳加强筋生长步序列的马尔可夫性质,提出了板壳加强筋生长式设计的强化学习驱动策略。以结构整体应变能最小化为目标,运用马尔可夫决策过程对板壳加强筋的生长过程进行建模。通过引入多智能体系统,共享加强筋生长式过程的状态奖... 基于板壳加强筋生长步序列的马尔可夫性质,提出了板壳加强筋生长式设计的强化学习驱动策略。以结构整体应变能最小化为目标,运用马尔可夫决策过程对板壳加强筋的生长过程进行建模。通过引入多智能体系统,共享加强筋生长式过程的状态奖励并记忆特定动作,降低学习复杂度,实现了加强筋生长式过程奖励值的波动收敛,达成板壳加强筋生长式设计策略。最后给出算例并将平滑处理后的加强筋布局与经典算法的设计结果进行对比,验证了基于多智能体深度Q网络交互的板壳加强筋生长式设计的有效性。 展开更多
关键词 板壳加强筋 生长式 多智能体深度Q网络 布局设计 强化学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部