为提高多无人船编队系统的导航能力,提出了一种基于注意力机制的多智能体深度确定性策略梯度(ATMADDPG:Attention Mechanism based Multi-Agent Deep Deterministic Policy Gradient)算法。该算法在训练阶段,通过大量试验训练出最佳策略...为提高多无人船编队系统的导航能力,提出了一种基于注意力机制的多智能体深度确定性策略梯度(ATMADDPG:Attention Mechanism based Multi-Agent Deep Deterministic Policy Gradient)算法。该算法在训练阶段,通过大量试验训练出最佳策略,并在实验阶段直接使用训练出的最佳策略得到最佳编队路径。仿真实验将4艘相同的“百川号”无人船作为实验对象。实验结果表明,基于ATMADDPG算法的队形保持策略能实现稳定的多无人船编队导航,并在一定程度上满足队形保持的要求。相较于多智能体深度确定性策略梯度(MADDPG:Multi-Agent Depth Deterministic Policy Gradient)算法,所提出的ATMADDPG算法在收敛速度、队形保持能力和对环境变化的适应性等方面表现出更优越的性能,综合导航效率可提高约80%,具有较大的应用潜力。展开更多
基于无人机集群智能攻防对抗构想,建立了无人机集群智能攻防对抗仿真环境。针对传统强化学习算法中难以通过奖励信号精准控制对抗过程中无人机的速度和攻击角度等问题,提出一种规则与智能耦合约束训练的多智能体深度确定性策略梯度(rule...基于无人机集群智能攻防对抗构想,建立了无人机集群智能攻防对抗仿真环境。针对传统强化学习算法中难以通过奖励信号精准控制对抗过程中无人机的速度和攻击角度等问题,提出一种规则与智能耦合约束训练的多智能体深度确定性策略梯度(rule and intelligence coupling constrained multi-agent deep deterministic policy gradient,RIC-MADDPG)算法,该算法采用规则对强化学习中无人机的动作进行约束。实验结果显示,基于RIC-MADDPG方法训练的无人机集群对抗模型能使得红方无人机集群在对抗中的胜率从53%提高至79%,表明采用“智能体训练—发现问题—编写规则—再次智能体训练—再次发现问题—再次编写规则”的方式对优化智能体对抗策略是有效的。研究结果对建立无人机集群智能攻防策略训练体系、开展规则与智能相耦合的集群战法研究具有一定参考意义。展开更多
文摘基于无人机集群智能攻防对抗构想,建立了无人机集群智能攻防对抗仿真环境。针对传统强化学习算法中难以通过奖励信号精准控制对抗过程中无人机的速度和攻击角度等问题,提出一种规则与智能耦合约束训练的多智能体深度确定性策略梯度(rule and intelligence coupling constrained multi-agent deep deterministic policy gradient,RIC-MADDPG)算法,该算法采用规则对强化学习中无人机的动作进行约束。实验结果显示,基于RIC-MADDPG方法训练的无人机集群对抗模型能使得红方无人机集群在对抗中的胜率从53%提高至79%,表明采用“智能体训练—发现问题—编写规则—再次智能体训练—再次发现问题—再次编写规则”的方式对优化智能体对抗策略是有效的。研究结果对建立无人机集群智能攻防策略训练体系、开展规则与智能相耦合的集群战法研究具有一定参考意义。
文摘针对城市场景下巡飞弹自主协同饱和攻击问题,将其建模为分布式部分可观测马尔可夫决策过程(Dec-POMDPs),设计了确保巡飞弹在极小时间间隔内到达的专用奖励函数,并结合使用联合权重参数的奖励函数,采用循环多智能体深度确定性策略梯度算法(R-MADDPG)训练巡飞弹自主协同饱和攻击策略,使用蒙特卡罗方法分析指标成功率.仿真实验结果表明,在训练后的决策模型引导下,巡飞弹执行自主协同饱和攻击的任务成功率为93.2%,其中,机间避撞率为94.4%、空中突防成功率为99.5%,95.3%回合到达最大时间间隔小于0.4 s.