Used extensively in the aerospace industry,the superalloy Inconel 718 is deemed hard to cut because of its rapid work hardening,low thermal conductivity,and excessive shear strength.Proposed here is patterning Inconel...Used extensively in the aerospace industry,the superalloy Inconel 718 is deemed hard to cut because of its rapid work hardening,low thermal conductivity,and excessive shear strength.Proposed here is patterning Inconel 718 with micro-dimples using electrochemical machining and electrical discharge machining prior to conventional cutting.How this micro-dimple patterning influences the machinability of Inconel 718 is analyzed via orthogonal cutting experiments,and with the optimal parameters,the cutting temperature is lowered by 45.5%and the cutting forces are reduced significantly,i.e.,the tangential cutting force and the thrust force are reduced by 61.1% and 47.1%,respectively.The predictions of finite-element simulations agree with experimental observations,and it is concluded that dimpled Inconel 718 offers significantly improved tool wear and surface integrity.展开更多
A novel machining technology,namely ultrasonic assisted jet plasma oxidation modifi-cation face grinding(UAJPMG),was proposed to improve the machinability of the titanium alloy,in which the titanium alloy materials ar...A novel machining technology,namely ultrasonic assisted jet plasma oxidation modifi-cation face grinding(UAJPMG),was proposed to improve the machinability of the titanium alloy,in which the titanium alloy materials are modified by plasma oxidation followed by face grinding.This paper introduced the processing principle of UAJPMG and the design of an ultrasonic jet noz-zle to promote plasma oxidation.Using the ultrasonic jet nozzle produced in-house,the effect of theultrasonic vibration on the plasma intensity was experimentally investigated.The results revealedthat the application of ultrasonic vibration can diminish the thickness of the gas film by elevatingthe jet flow rate,thereby reducing the generation delay time and enhancing the plasma intensity.Subsequently,a scratch test was performed to assess the difference in the mechanical strengthbetween the plasma oxide layer and the titanium alloy substrate.It was found that the plasma oxidelayer with a reduced mechanical strength exhibited a deeper scratch depth under the same normalload.Based on these,the machining performance under different conditions was examined consid-ering the removed material of the abrasive grains.Compared with the removed material was Ti-6Al-4V substrate in conventional face grinding,the ultrasonic assisted plasma oxidized material caninhibit the chip adhesion on the wheel working surface,resulting in a reduction of the grinding forceand the surface roughness and an improvement of the groove shape accuracy.The novel machiningtechnology,i.e.,UAJPMG,proposed in this paper might provide a new approach for the precisionmachining of critical components made from titanium alloy.展开更多
Owing to its outstanding mechanical properties,γ-TiAl is desirable materials for crossgeneration aero-engines.Nearly 70 years of exploration have made it into the initial application.However,the intrinsic brittleness...Owing to its outstanding mechanical properties,γ-TiAl is desirable materials for crossgeneration aero-engines.Nearly 70 years of exploration have made it into the initial application.However,the intrinsic brittleness ofγ-TiAl is still a critical obstacle to its large-scale applications.In this context,researchers have made many attempts to study the machinability ofγ-TiAl.At present,existing relevant reviews have mostly discussed the processing methods ofγ-TiAl.Hence,there is still a lack of a perspective on material properties to analyze the cutting mechanism.Herein,this paper provides the systematic review of such perspectives.Above all,the developmental process,phase transformation,and microstructural evolution ofγ-TiAl are discussed,as well as its deformation mechanism at quasi-static.These topics can provide a materials science foundation for the machining ofγ-TiAl.And then,the review focuses on the cutting mechanism and surface integrity ofγ-TiAl.Moreover,special attention is paid to the microscope deformation mechanism and surface defects evolution ofγ-TiAl during cutting.Finally,the review indicates that the highperformance machining technology ofγ-TiAl faces challenges and proposes potential future research directions.Solving the difficulties during machiningγ-TiAl aero-engine components will accelerate the development of new aero-engines.展开更多
In-situ ceramics particle reinforced aluminum matrix composites are favored in the aerospace industry due to excellent properties.However,the hard ceramic particles as the reinforcement phase bring challenges to machi...In-situ ceramics particle reinforced aluminum matrix composites are favored in the aerospace industry due to excellent properties.However,the hard ceramic particles as the reinforcement phase bring challenges to machining.To study the effect of in-situ TiB_(2)particles on machinability and surface integrity of TiB_(2)/2024 composite and TiB_(2)/7075 composite,milling experiments were performed,and compared with conventional 2024 and 7075 aluminum alloys.In-situ TiB_(2)particles clustered at the grain boundaries and dispersed inside the matrix alloy grains hinder the dislocation movement of the matrix alloy.Therefore,the milling force and temperature of the composites are higher than those of the aluminum alloys due to the increase of the strength and the decrease of the plasticity.In the milling of composites,abrasive wear is the main wear form of carbide tools,due to the scratching of hard nano-TiB_(2)particles.The composites containing in-situ TiB_(2)particles have machining defects such as smearing,micro-scratches,micro-pits and tail on the machined surface.However,in-situ TiB_(2)particles impede the plastic deformation of the composites,which greatly reduces cutting edge marks on the machined surface.Therefore,under the same milling parameters,the surface roughness of TiB_(2)/2024 composite and TiB_(2)/7075 composite is much less than that of2024 and 7075 aluminum alloy respectively.Under the milling conditions of this experiment,the machined subsurface has no metamorphic layer,and the microhardness of the machined surface is almost the same as that of the material.Besides,compared with 2024 and 7075 aluminum alloy,machined surfaces of TiB_(2)/2024 composite and TiB_(2)/7075 composite both show tensile residual stress or low magnitude of compressive residual stress.展开更多
In the present study,AZ91 Mg alloy was heat treated at 410℃ for 6,12 and 24 h to investigate the influence of heat treatment on machinability and corrosion behavior.The effect of soaking time on the amount and distri...In the present study,AZ91 Mg alloy was heat treated at 410℃ for 6,12 and 24 h to investigate the influence of heat treatment on machinability and corrosion behavior.The effect of soaking time on the amount and distribution of Mg 17 Al 12(β-phase)was analyzed under the optical microscope.Microhardness measurements demonstrated the increased hardness with increased heat treatment soaking time,which can be attributed to the solid solution strengthening.The influence of super saturatedα-grains on reducing the cutting force(F z)with respect to increased cutting speed was observed as prominent.The corrosion behavior of the heat treated specimens was studied by conducting electrochemical tests.Surprisingly,corrosion rate of heat treated samples was observed as increased compared with the base material.From the results,it is evident that the machinability of AZ91 Mg alloy can be improved by producing super saturatedα-grains through heat treatment but at the cost of losing corrosion resistance.展开更多
Influence of A1 content on the machinability of AZ series cast Mg alloys was investigated. In order to evaluate the machinability of the alloys, measurements of the cutting forces during turning operations and surface...Influence of A1 content on the machinability of AZ series cast Mg alloys was investigated. In order to evaluate the machinability of the alloys, measurements of the cutting forces during turning operations and surface roughness were carried out as well as considering the microstructure and tensile properties. The results show that maximum tensile properties are observed with 2% (mass fraction) A1 addition to Mg. As the A1 content of the alloy increases above 2%, the cutting forces tend to reduce along with the ductility owing to the grain boundary precipitation of intermetallic phase (fl-Mgl7All2). Cutting forces are able to increase as the cutting speed increases for all the alloys studied, and it's attributed to flank built up at the tip of the cutting tool during machining.展开更多
Gray cast irons were inoculated with FeSi75+RE and FeSi75+Sr inoculants. The changes of apex angle of the drills before and after being used were used to evaluate machinability of gray cast irons. Effect of FeSi75+...Gray cast irons were inoculated with FeSi75+RE and FeSi75+Sr inoculants. The changes of apex angle of the drills before and after being used were used to evaluate machinability of gray cast irons. Effect of FeSi75+RE and FeSi75+Sr inoculants on mechanical properties, machinability and sensibility of gray cast iron used in cylinder block were investigated. Experimental results showed that gray cast iron treated with 60%FeSi75+40% RE inoculants exhibited tensile strength consistently at about 295 MPa along with good hardness and improved metallurgical quality. While gray cast iron inoculated with 20%FeSi75+80% Sr inoculants exhibited the best machinability, the lowest cross-section sensibility and the least microhardness difference. The tool flank wear of the drill increased correspondingly with the increase of the microhardness difference of the matrix, indicating the great effect of homogeneity of the matrix on the machinability of gray cast iron.展开更多
Ti2AlNb intermetallic alloy is a newly developed high-temperature resistant structural material due to its excellent material and mechanical properties,which also make it to be one of the most difficult-to-cut materia...Ti2AlNb intermetallic alloy is a newly developed high-temperature resistant structural material due to its excellent material and mechanical properties,which also make it to be one of the most difficult-to-cut materials.In order to study the machinability of Ti2AlNb alloy,a series of turning experiments of Ti2AlNb alloy with varying cutting speed and feed rate using coated carbide tools are carried out.The results associated with cutting forces,cutting temperature and tool wear are presented and discussed.Moreover,the cutting performance of Ti2AlNb alloy is evaluated in comparison with that of most commonly used Ti6Al4 Vand Inconel 718 alloys in terms of the cutting forces and cutting temperature.The comparison results show that there is a correlation between the machinability and the mechanical properties of work material properties.Additionally,considering material removal rate and tool life,the optimized machining parameters for cutting Ti2AlNb alloys using coated carbide tools are recommended.展开更多
The precipitation and control of boron nitrogen (BN) inclusions in 42CrMo steel were investigated and their effect on machinability was analyzed. First, the precipitation regularity of BN in 42CrMo steel was studied...The precipitation and control of boron nitrogen (BN) inclusions in 42CrMo steel were investigated and their effect on machinability was analyzed. First, the precipitation regularity of BN in 42CrMo steel was studied by theoretical calculation. Then, the machinability of the steel was investigated through contrast cutting experiments, and the composition and cooling rate of the steel were controlled to analyze the variation laws of the size, distribution, and area ratio of BN inclusions. Finally, the results were combined with the machinability of the steel to analyze the relationship among them. It is found that the machinability of the steel is mainly influenced by the diameter and quantity of BN inclusions. Fine and dispersedly distributed BN inclusions are more beneficial for the improvement in machinability of 42CrMo steel than coarse and sparse BN inclusions.展开更多
In situ formed TiB2 particle reinforced aluminum matrix composites (TiB2/Al MMCs) have some extraordinary properties which make them be a promising material for high performance aero-engine blade. Due to the influen...In situ formed TiB2 particle reinforced aluminum matrix composites (TiB2/Al MMCs) have some extraordinary properties which make them be a promising material for high performance aero-engine blade. Due to the influence of TiB2 particles, the machinability is still a problem which restricts the application of TiB2/Al MMCs. In order to meet the industrial requirements, the influence of TiB2 particles on the machinability of TiB2/Al MMCs was investigated experimentally. Moreover, the optimal machining conditions for this kind of MMCs were investigated in this study. The major conclusions are: (1) the machining force of TiB2/Al MMCs is bigger than that of non- reinforced alloy and mainly controlled by feed rate; (2) the residual stress of TiB2/AI MMCs is compressive while that of non-reinforced alloy is nearly neutral; (3) the surface roughness of TiB2/Al MMCs is smaller than that of non-reinforced alloy under the same cutting speed, but reverse result was observed when the feed rate increased; (4) a multi-objective optimization model for surface roughness and material removal rate (MRR) was established, and a set of optimal parameter combinations of the machining was obtained. The results show a great difference from SiC particle reinforced MMCs and provide a useful guide for a better control of machining process of this material.展开更多
The strategy that replacing part of MnS with BN was proposed in order to decrease the sulfur content in sulfur based free-cutting steel. The effects of BN and MnS inclusions on the microstructure and machinability of ...The strategy that replacing part of MnS with BN was proposed in order to decrease the sulfur content in sulfur based free-cutting steel. The effects of BN and MnS inclusions on the microstructure and machinability of the steel were systematically investigated. The results show that most of the BN and MnS inclusions exist individually in the steel and only a small amount of them are in a composite state form- ing either isolated particles or clusters of particles. In the case of multi-phased steel, the theoretical calculation predicts that the volume of large BN particles should be 0.7 times of the volume of large MnS particles. The machinability of this type of BN and MnS alloy steel over a wide range of cutting speeds ranging from a low speed appropriate for drilling to a high speed appropriate for turning is confirmed as being equal to or superior to that of an MnS reference steel, even though the sulfur content in the composite steel is only half that of the MnS steel. The aptitude for cutting effect of 240 ppm nitrogen and 115 ppm boron in the composite steel is demonstrated to be equivalent or even better than 1000 ppm sulfur in MnS free-cutting steel.展开更多
The milling machinabilities of titanium matrix composites were comprehensively evaluated to provide a theoretical basis for cutting parameter determination. Polycrystalline diamond (PCD) tools with different grain s...The milling machinabilities of titanium matrix composites were comprehensively evaluated to provide a theoretical basis for cutting parameter determination. Polycrystalline diamond (PCD) tools with different grain sizes and geometries, and carbide tools with and without coatings were used in the experiments. Milling forces, milling temperatures, tool lifetimes, tool wear, and machined surface integrities were investigated. The PCD tool required a primary cutting force 15 % smaller than that of the carbide tool, while the uncoated carbide tool required a primary cutting force 10% higher than that of the TiA1N-eoated tool. A cutting force of 300 N per millimeter of the cutting edge (300 N/mm) was measured. This caused excessive tool chipping. The cutting temperature of the PCD tool was 20%-30% lower than that of the carbide tool, while that of the TiA1N-coated tool was 12% lower than that of the uncoated carbide tool. The cutting temperatures produced when using water-based cooling and minimal quantity lubrication (MQL) were reduced by 100 ~C and 200 ~C, compared with those recorded with dry cutting, respectively. In general, the PCD tool lifetimes were 2--3 times longer than the carbide tool lifetimes. The roughness Ra of the machined surface was less than 0.6μm, and the depth of the machined surface hardened layer was in the range of 0.15-0.25 mm for all of the PCD tools before a flank wear land of 0.2 mm was reached. The PCD tool with a 0.8 mm tool nose radius, 0% rake angle, 10% flank angle, and grain size of (30+2) μm exhibited the best cutting performance. For this specific tool, a lifetime of 16 rain can be expected.展开更多
To improve the machinability of optical glass and achieve optical parts with satisfied surface quality and dimensional accuracy, scratching experiments with increasing cutting depth were conducted on glass SF6 to eval...To improve the machinability of optical glass and achieve optical parts with satisfied surface quality and dimensional accuracy, scratching experiments with increasing cutting depth were conducted on glass SF6 to evaluate the influence of cutting fluid properties on the machinability of glass. The sodium carbonate solution of 10.5% concentration was chosen as cutting fluid. Then the critical depths in scratching experiments with and without cutting fluid were examined. Based on this, turning experiments were carried out, and the surface quality of SF6 was assessed. Compared with the process of dry cutting, the main indexes of surface roughness decrease by over 70% totally. Experimental results indicated that the machinability of glass SF6 can be improved by using the sodium carbonate solution as cutting fluid.展开更多
C-276 nickel-based alloy is a difficult-to-cut material. In high-speed machining of Hastelloy C-276, notching is a prominent failure mode due to high mechanical properties of work piece, which results in the short too...C-276 nickel-based alloy is a difficult-to-cut material. In high-speed machining of Hastelloy C-276, notching is a prominent failure mode due to high mechanical properties of work piece, which results in the short tool life and low productivity. In this paper, a newly developed Ti(C7N3)-based cermet insert manufactured by a hot-pressing method is used to machine the C-276 nickel-based alloy, and its cutting performances are studied. Based on orthogonal experiment method, the influence of cutting parameters on tool life, material removal rates and surface roughness are investigated. Experimental research results indicate that the optimal cutting condition is a cutting speed of 50 m/min, depth of cut of 0.4 mm and feed rate of 0.15 mm/r if the tool life and material removal rates are considered comprehensively. In this case, the tool life is 32 min and material removal rates are 3000 mm^3/min, which is appropriate to the rough machining. If the tool life and surface roughness are considered, the better cutting condition is a cutting speed of 75 m/min, depth of cut of 0.6 mm and feed rate of 0.1 mm/r. In this case, the surface roughness is 0.59μm. Notch wear, flank wear, chipping at the tool nose, built-up edge(BUE) and micro-cracks are found when Ti(C7N3)-based cermet insert turned Hastelloy C-276. Oxidation, adhesive, abrasive and diffusion are the wear mechanisms, which can be investigated by the observations of scanning electron microscope and energy-dispersive spectroscopy. This research will help to guide studies on the evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy C-276 machining.展开更多
An attempt was made to investigate the machinability of Si Cp/Al composites based on the experimental study using mill-grinding processing method. The experiments were carried out on a high-speed CNC machining center ...An attempt was made to investigate the machinability of Si Cp/Al composites based on the experimental study using mill-grinding processing method. The experiments were carried out on a high-speed CNC machining center using integrated abrasive cutting tool. The effects of combined machining parameters, e g, cutting speed(vs), feed rate(vf), and depth of cut(ap), with the same change of material removal rate(MRR) on the mill-grinding force and surface roughness(Ra) were investigated. The formation mechanism of typical machined surface defects was analyzed by SEM. The experimental results reveal that with the same change of material removal rate, lower mill-grinding force values can be gained by increasing depth of cut and feed rate simultaneously at higher cutting speed. With the same change of MRR value, lower surface roughness values can be gained by increasing the feed rate at higher cutting speed, rather than just increasing the depth of cut, or increasing the feed rate and depth of cut simultaneously. The machined surface of Si Cp/Al composites reveals typical defects which can influence surface integrity.展开更多
Additively manufactured bimetallic structures combine the advantages of dissimilar materials and can achieve localized properties through a customized composition distribution.However,additively manufactured parts may...Additively manufactured bimetallic structures combine the advantages of dissimilar materials and can achieve localized properties through a customized composition distribution.However,additively manufactured parts may still lack the dimensional accuracy and surface integrity essential for precision mechanical assemblies that the post-machining process can address.Therefore,this study aims to systematically investigate the microstructure and machinability of 316L/CuSn10 bimetallic structures fabricated using laser powder bed fusion.The results show that the fusion zone of the bimetallic structure had refined grains of microscale size owing to the mixture of the primary elements of the bimetals,which resulted in the highest microhardness of 3.4 GPa.The difference in microstructure and microhardness between the single-material and fusion zones also causes significant differences in the cutting response during the ultraprecision process.The 316L stainless steel side exhibited the highest cutting force and more severe material accumulation in the chips.The cutting force drops when cutting through the fusion zone,with an observable fracture in the chips and separation of dissimilar materials on the machined grooves,indicating that the heterogeneous properties of additively manufactured 316L/CuSn10 bimetallic structures pose challenges to the improvement of surface quality.The simulation results also showed that stress accumulation occurred in the tool path through the fusion zone owing to the higher yield strength and hardness of stainless steel,indicating that lower cutting speeds and depths of cut are favorable for reducing cutting force and improving surface quality.This study provides deep insight into the microstructure evolution mechanism and a theoretical basis for improving the surface quality of additively manufactured bimetallic structures using an ultraprecision machining process.展开更多
The sintering and machinability of monazite-type CePO_4 ceramics were investigated. Relative density ≥98% and apparent porosity <2% were achieved when the monazite-type CePO_4 were sintered at 1500 ℃/1 h in air,a...The sintering and machinability of monazite-type CePO_4 ceramics were investigated. Relative density ≥98% and apparent porosity <2% were achieved when the monazite-type CePO_4 were sintered at 1500 ℃/1 h in air,and the maximal bending strength value (184 MPa) was achieved at this temperature. CePO_4 ceramics has a multilayer structure and an exciting 'ductility',so it can be drilled and cut with WC cutter with a small machining damage.展开更多
Machinability can sometimes be difficult to predict and be impacted by different characteristics of the castings.Inoculation,a key step in foundry process,is well-known to be a powerful tool to adjust the characterist...Machinability can sometimes be difficult to predict and be impacted by different characteristics of the castings.Inoculation,a key step in foundry process,is well-known to be a powerful tool to adjust the characteristics of castings in both grey and ductile irons.Some metallurgical cases were investigated to understand different machinability behaviors in correlation to their metallographic characteristics.Thus,two examples taken from grey iron processes are analyzed to illustrate how inoculation is required to adjust characteristics of iron castings,especially the modification of graphite characteristics and the prevention of micro-shrinkage,both parameters are well-known to have an impact on iron machinability.The study also illustrates the importance of the ratio Mn/S to guarantee the presence of manganese sulfides in the matrix,beneficial for iron machinability.展开更多
Processing microchannels inside laminated aluminum nitride high-temperature co-fired ceramics(AlN HTCC) packaging, a typical difficult-to-cut ceramic, can effectively solve the heatdissipation problem of integrated ch...Processing microchannels inside laminated aluminum nitride high-temperature co-fired ceramics(AlN HTCC) packaging, a typical difficult-to-cut ceramic, can effectively solve the heatdissipation problem of integrated chips used in smart skin. In order to improve the processing efficiency and quality of AlN, the machinability of AlN after laser chemical milling(LCM) was studied through the milling force, machined surface quality, surface defects, formation mechanism, and tool wear. This study established a milling force model that can predict the milling forces of AlN and analyses the reasons for the improvements in the milling force based on experimental data and predicted data. The results from the model and experiments demonstrated that the milling force of the laser chemical milling assisted micro milling(LCAMM) decreased by 85%–90% and 85%–95%, respectively, due to the amount of removal of a single edge was more uniform and the actual inclination angle increased during the cutting process in LCAMM. Moreover, the machined surface quality improved by 65%–76% after LCM because of less tool wear, fewer downward-propagating cracks generated during each feed, and the surface removal mode transformed from intergranular fracture to transgranular fracture, which effectively reducing tool wear and improving tool life. Finally, when feed per tooth and depth of cut were 0.4 μm/z and 5 μm, the optimal machined surface quality was obtained, with a roughness of 64.6 nm Therefore, milling after LCM can improve the machinability of AlN and providing a feasibility for the high-quality and efficient machining of microchannels.展开更多
The influence of Al content on machinability of AS series cast Mg alloys was studied. The assessment of machinability of Mg alloys was performed by measuring the cutting forces and surface roughness. The microstructur...The influence of Al content on machinability of AS series cast Mg alloys was studied. The assessment of machinability of Mg alloys was performed by measuring the cutting forces and surface roughness. The microstructure and the tensile properties were also studied. The results reveal that cutting forces are increased with the increase of the Al content. Surface roughness and mechanical properties are the highest for AS91 Mg alloy. It is assumed that the main mechanism, which has an influence on the mechanical properties, is the presence of intermetallic phases(Mg2Si and Mg17Al12). Cutting forces increase with the increase of the cutting speed in machining of all Mg alloys. These measured data are in accordance with the mechanical properties of the machined alloys.展开更多
基金This work was supported financially by Portescap India Pvt.Ltd. via its CSR fund.
文摘Used extensively in the aerospace industry,the superalloy Inconel 718 is deemed hard to cut because of its rapid work hardening,low thermal conductivity,and excessive shear strength.Proposed here is patterning Inconel 718 with micro-dimples using electrochemical machining and electrical discharge machining prior to conventional cutting.How this micro-dimple patterning influences the machinability of Inconel 718 is analyzed via orthogonal cutting experiments,and with the optimal parameters,the cutting temperature is lowered by 45.5%and the cutting forces are reduced significantly,i.e.,the tangential cutting force and the thrust force are reduced by 61.1% and 47.1%,respectively.The predictions of finite-element simulations agree with experimental observations,and it is concluded that dimpled Inconel 718 offers significantly improved tool wear and surface integrity.
基金Shenzhen Science and Technology Program(No.JSGG20220831093200001)Shenzhen Science and Technology Program(No.KQTD20170810110250357)+1 种基金Shenzhen Engineering Research Center for Semiconductor-specific Equipment,National Natural Science Foundation of China(No.52105479)Special Funds for the Cultivation of Guangdong College Students’Scientific and Technological Innovation(No.pdjh2024c10804)for their financial support。
文摘A novel machining technology,namely ultrasonic assisted jet plasma oxidation modifi-cation face grinding(UAJPMG),was proposed to improve the machinability of the titanium alloy,in which the titanium alloy materials are modified by plasma oxidation followed by face grinding.This paper introduced the processing principle of UAJPMG and the design of an ultrasonic jet noz-zle to promote plasma oxidation.Using the ultrasonic jet nozzle produced in-house,the effect of theultrasonic vibration on the plasma intensity was experimentally investigated.The results revealedthat the application of ultrasonic vibration can diminish the thickness of the gas film by elevatingthe jet flow rate,thereby reducing the generation delay time and enhancing the plasma intensity.Subsequently,a scratch test was performed to assess the difference in the mechanical strengthbetween the plasma oxide layer and the titanium alloy substrate.It was found that the plasma oxidelayer with a reduced mechanical strength exhibited a deeper scratch depth under the same normalload.Based on these,the machining performance under different conditions was examined consid-ering the removed material of the abrasive grains.Compared with the removed material was Ti-6Al-4V substrate in conventional face grinding,the ultrasonic assisted plasma oxidized material caninhibit the chip adhesion on the wheel working surface,resulting in a reduction of the grinding forceand the surface roughness and an improvement of the groove shape accuracy.The novel machiningtechnology,i.e.,UAJPMG,proposed in this paper might provide a new approach for the precisionmachining of critical components made from titanium alloy.
基金co-supported by the Science Center for Gas Turbine Project,China(No.P2022-A-IV-001-002)the National Natural Science Foundation of China(Nos.51875473 and 91960203).
文摘Owing to its outstanding mechanical properties,γ-TiAl is desirable materials for crossgeneration aero-engines.Nearly 70 years of exploration have made it into the initial application.However,the intrinsic brittleness ofγ-TiAl is still a critical obstacle to its large-scale applications.In this context,researchers have made many attempts to study the machinability ofγ-TiAl.At present,existing relevant reviews have mostly discussed the processing methods ofγ-TiAl.Hence,there is still a lack of a perspective on material properties to analyze the cutting mechanism.Herein,this paper provides the systematic review of such perspectives.Above all,the developmental process,phase transformation,and microstructural evolution ofγ-TiAl are discussed,as well as its deformation mechanism at quasi-static.These topics can provide a materials science foundation for the machining ofγ-TiAl.And then,the review focuses on the cutting mechanism and surface integrity ofγ-TiAl.Moreover,special attention is paid to the microscope deformation mechanism and surface defects evolution ofγ-TiAl during cutting.Finally,the review indicates that the highperformance machining technology ofγ-TiAl faces challenges and proposes potential future research directions.Solving the difficulties during machiningγ-TiAl aero-engine components will accelerate the development of new aero-engines.
基金the National Natural Science Foundation of China(No.51875356)。
文摘In-situ ceramics particle reinforced aluminum matrix composites are favored in the aerospace industry due to excellent properties.However,the hard ceramic particles as the reinforcement phase bring challenges to machining.To study the effect of in-situ TiB_(2)particles on machinability and surface integrity of TiB_(2)/2024 composite and TiB_(2)/7075 composite,milling experiments were performed,and compared with conventional 2024 and 7075 aluminum alloys.In-situ TiB_(2)particles clustered at the grain boundaries and dispersed inside the matrix alloy grains hinder the dislocation movement of the matrix alloy.Therefore,the milling force and temperature of the composites are higher than those of the aluminum alloys due to the increase of the strength and the decrease of the plasticity.In the milling of composites,abrasive wear is the main wear form of carbide tools,due to the scratching of hard nano-TiB_(2)particles.The composites containing in-situ TiB_(2)particles have machining defects such as smearing,micro-scratches,micro-pits and tail on the machined surface.However,in-situ TiB_(2)particles impede the plastic deformation of the composites,which greatly reduces cutting edge marks on the machined surface.Therefore,under the same milling parameters,the surface roughness of TiB_(2)/2024 composite and TiB_(2)/7075 composite is much less than that of2024 and 7075 aluminum alloy respectively.Under the milling conditions of this experiment,the machined subsurface has no metamorphic layer,and the microhardness of the machined surface is almost the same as that of the material.Besides,compared with 2024 and 7075 aluminum alloy,machined surfaces of TiB_(2)/2024 composite and TiB_(2)/7075 composite both show tensile residual stress or low magnitude of compressive residual stress.
文摘In the present study,AZ91 Mg alloy was heat treated at 410℃ for 6,12 and 24 h to investigate the influence of heat treatment on machinability and corrosion behavior.The effect of soaking time on the amount and distribution of Mg 17 Al 12(β-phase)was analyzed under the optical microscope.Microhardness measurements demonstrated the increased hardness with increased heat treatment soaking time,which can be attributed to the solid solution strengthening.The influence of super saturatedα-grains on reducing the cutting force(F z)with respect to increased cutting speed was observed as prominent.The corrosion behavior of the heat treated specimens was studied by conducting electrochemical tests.Surprisingly,corrosion rate of heat treated samples was observed as increased compared with the base material.From the results,it is evident that the machinability of AZ91 Mg alloy can be improved by producing super saturatedα-grains through heat treatment but at the cost of losing corrosion resistance.
文摘Influence of A1 content on the machinability of AZ series cast Mg alloys was investigated. In order to evaluate the machinability of the alloys, measurements of the cutting forces during turning operations and surface roughness were carried out as well as considering the microstructure and tensile properties. The results show that maximum tensile properties are observed with 2% (mass fraction) A1 addition to Mg. As the A1 content of the alloy increases above 2%, the cutting forces tend to reduce along with the ductility owing to the grain boundary precipitation of intermetallic phase (fl-Mgl7All2). Cutting forces are able to increase as the cutting speed increases for all the alloys studied, and it's attributed to flank built up at the tip of the cutting tool during machining.
基金supported by Program for Scientific and Technological Renovation Talents in University of Henan Province (2009HASTIT023)the National Natural Science Foundation of China (50771042)
文摘Gray cast irons were inoculated with FeSi75+RE and FeSi75+Sr inoculants. The changes of apex angle of the drills before and after being used were used to evaluate machinability of gray cast irons. Effect of FeSi75+RE and FeSi75+Sr inoculants on mechanical properties, machinability and sensibility of gray cast iron used in cylinder block were investigated. Experimental results showed that gray cast iron treated with 60%FeSi75+40% RE inoculants exhibited tensile strength consistently at about 295 MPa along with good hardness and improved metallurgical quality. While gray cast iron inoculated with 20%FeSi75+80% Sr inoculants exhibited the best machinability, the lowest cross-section sensibility and the least microhardness difference. The tool flank wear of the drill increased correspondingly with the increase of the microhardness difference of the matrix, indicating the great effect of homogeneity of the matrix on the machinability of gray cast iron.
基金supported by the National Natural Science Foundation of China(No.51475233)
文摘Ti2AlNb intermetallic alloy is a newly developed high-temperature resistant structural material due to its excellent material and mechanical properties,which also make it to be one of the most difficult-to-cut materials.In order to study the machinability of Ti2AlNb alloy,a series of turning experiments of Ti2AlNb alloy with varying cutting speed and feed rate using coated carbide tools are carried out.The results associated with cutting forces,cutting temperature and tool wear are presented and discussed.Moreover,the cutting performance of Ti2AlNb alloy is evaluated in comparison with that of most commonly used Ti6Al4 Vand Inconel 718 alloys in terms of the cutting forces and cutting temperature.The comparison results show that there is a correlation between the machinability and the mechanical properties of work material properties.Additionally,considering material removal rate and tool life,the optimized machining parameters for cutting Ti2AlNb alloys using coated carbide tools are recommended.
基金financially supported by the National Natural Science Foundation of China(No.51274029)the China Postdoctoral Science Foundation of China(No.2012M510319)
文摘The precipitation and control of boron nitrogen (BN) inclusions in 42CrMo steel were investigated and their effect on machinability was analyzed. First, the precipitation regularity of BN in 42CrMo steel was studied by theoretical calculation. Then, the machinability of the steel was investigated through contrast cutting experiments, and the composition and cooling rate of the steel were controlled to analyze the variation laws of the size, distribution, and area ratio of BN inclusions. Finally, the results were combined with the machinability of the steel to analyze the relationship among them. It is found that the machinability of the steel is mainly influenced by the diameter and quantity of BN inclusions. Fine and dispersedly distributed BN inclusions are more beneficial for the improvement in machinability of 42CrMo steel than coarse and sparse BN inclusions.
基金co-supported by the National Natural Science Foundation of China(No.51505387)the China Postdoctoral Science Foundation funded project(No.2016M602860)the 111 project(No.B13044)
文摘In situ formed TiB2 particle reinforced aluminum matrix composites (TiB2/Al MMCs) have some extraordinary properties which make them be a promising material for high performance aero-engine blade. Due to the influence of TiB2 particles, the machinability is still a problem which restricts the application of TiB2/Al MMCs. In order to meet the industrial requirements, the influence of TiB2 particles on the machinability of TiB2/Al MMCs was investigated experimentally. Moreover, the optimal machining conditions for this kind of MMCs were investigated in this study. The major conclusions are: (1) the machining force of TiB2/Al MMCs is bigger than that of non- reinforced alloy and mainly controlled by feed rate; (2) the residual stress of TiB2/AI MMCs is compressive while that of non-reinforced alloy is nearly neutral; (3) the surface roughness of TiB2/Al MMCs is smaller than that of non-reinforced alloy under the same cutting speed, but reverse result was observed when the feed rate increased; (4) a multi-objective optimization model for surface roughness and material removal rate (MRR) was established, and a set of optimal parameter combinations of the machining was obtained. The results show a great difference from SiC particle reinforced MMCs and provide a useful guide for a better control of machining process of this material.
基金financially supported by the National Natural Science Foundation of China(No.51274029)the China Postdoctoral Science Foundation(No.2012M 510319)the State Key Laboratory of Advanced Metallurgy Foundation(No.41602014)
文摘The strategy that replacing part of MnS with BN was proposed in order to decrease the sulfur content in sulfur based free-cutting steel. The effects of BN and MnS inclusions on the microstructure and machinability of the steel were systematically investigated. The results show that most of the BN and MnS inclusions exist individually in the steel and only a small amount of them are in a composite state form- ing either isolated particles or clusters of particles. In the case of multi-phased steel, the theoretical calculation predicts that the volume of large BN particles should be 0.7 times of the volume of large MnS particles. The machinability of this type of BN and MnS alloy steel over a wide range of cutting speeds ranging from a low speed appropriate for drilling to a high speed appropriate for turning is confirmed as being equal to or superior to that of an MnS reference steel, even though the sulfur content in the composite steel is only half that of the MnS steel. The aptitude for cutting effect of 240 ppm nitrogen and 115 ppm boron in the composite steel is demonstrated to be equivalent or even better than 1000 ppm sulfur in MnS free-cutting steel.
基金supported by the National Natural Science Foundation of China(No.51275227)the Funding of Jiangsu Innovation Program for Graduate Education(No.CXLX11_0175)the Shanghai Aerospace Science and Technology Innovation Fund(No.SAST201326)
文摘The milling machinabilities of titanium matrix composites were comprehensively evaluated to provide a theoretical basis for cutting parameter determination. Polycrystalline diamond (PCD) tools with different grain sizes and geometries, and carbide tools with and without coatings were used in the experiments. Milling forces, milling temperatures, tool lifetimes, tool wear, and machined surface integrities were investigated. The PCD tool required a primary cutting force 15 % smaller than that of the carbide tool, while the uncoated carbide tool required a primary cutting force 10% higher than that of the TiA1N-eoated tool. A cutting force of 300 N per millimeter of the cutting edge (300 N/mm) was measured. This caused excessive tool chipping. The cutting temperature of the PCD tool was 20%-30% lower than that of the carbide tool, while that of the TiA1N-coated tool was 12% lower than that of the uncoated carbide tool. The cutting temperatures produced when using water-based cooling and minimal quantity lubrication (MQL) were reduced by 100 ~C and 200 ~C, compared with those recorded with dry cutting, respectively. In general, the PCD tool lifetimes were 2--3 times longer than the carbide tool lifetimes. The roughness Ra of the machined surface was less than 0.6μm, and the depth of the machined surface hardened layer was in the range of 0.15-0.25 mm for all of the PCD tools before a flank wear land of 0.2 mm was reached. The PCD tool with a 0.8 mm tool nose radius, 0% rake angle, 10% flank angle, and grain size of (30+2) μm exhibited the best cutting performance. For this specific tool, a lifetime of 16 rain can be expected.
基金Supported by National Natural Science Foundation of China (No. 50775057)
文摘To improve the machinability of optical glass and achieve optical parts with satisfied surface quality and dimensional accuracy, scratching experiments with increasing cutting depth were conducted on glass SF6 to evaluate the influence of cutting fluid properties on the machinability of glass. The sodium carbonate solution of 10.5% concentration was chosen as cutting fluid. Then the critical depths in scratching experiments with and without cutting fluid were examined. Based on this, turning experiments were carried out, and the surface quality of SF6 was assessed. Compared with the process of dry cutting, the main indexes of surface roughness decrease by over 70% totally. Experimental results indicated that the machinability of glass SF6 can be improved by using the sodium carbonate solution as cutting fluid.
基金Supported by Program for New Century Excellent Talents in University of China(Grant No.NCET-13-0357)Shandong Provincial Natural Science Foundation of China(Grant No.ZR2014EEM026)Tai Shan Scholar Foundation of China
文摘C-276 nickel-based alloy is a difficult-to-cut material. In high-speed machining of Hastelloy C-276, notching is a prominent failure mode due to high mechanical properties of work piece, which results in the short tool life and low productivity. In this paper, a newly developed Ti(C7N3)-based cermet insert manufactured by a hot-pressing method is used to machine the C-276 nickel-based alloy, and its cutting performances are studied. Based on orthogonal experiment method, the influence of cutting parameters on tool life, material removal rates and surface roughness are investigated. Experimental research results indicate that the optimal cutting condition is a cutting speed of 50 m/min, depth of cut of 0.4 mm and feed rate of 0.15 mm/r if the tool life and material removal rates are considered comprehensively. In this case, the tool life is 32 min and material removal rates are 3000 mm^3/min, which is appropriate to the rough machining. If the tool life and surface roughness are considered, the better cutting condition is a cutting speed of 75 m/min, depth of cut of 0.6 mm and feed rate of 0.1 mm/r. In this case, the surface roughness is 0.59μm. Notch wear, flank wear, chipping at the tool nose, built-up edge(BUE) and micro-cracks are found when Ti(C7N3)-based cermet insert turned Hastelloy C-276. Oxidation, adhesive, abrasive and diffusion are the wear mechanisms, which can be investigated by the observations of scanning electron microscope and energy-dispersive spectroscopy. This research will help to guide studies on the evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy C-276 machining.
基金Funded by the National Defense Basic Scientific ResearchAerospace Science and Technology Corporation Commonality Technology Research Project
文摘An attempt was made to investigate the machinability of Si Cp/Al composites based on the experimental study using mill-grinding processing method. The experiments were carried out on a high-speed CNC machining center using integrated abrasive cutting tool. The effects of combined machining parameters, e g, cutting speed(vs), feed rate(vf), and depth of cut(ap), with the same change of material removal rate(MRR) on the mill-grinding force and surface roughness(Ra) were investigated. The formation mechanism of typical machined surface defects was analyzed by SEM. The experimental results reveal that with the same change of material removal rate, lower mill-grinding force values can be gained by increasing depth of cut and feed rate simultaneously at higher cutting speed. With the same change of MRR value, lower surface roughness values can be gained by increasing the feed rate at higher cutting speed, rather than just increasing the depth of cut, or increasing the feed rate and depth of cut simultaneously. The machined surface of Si Cp/Al composites reveals typical defects which can influence surface integrity.
基金supported by Guangdong Basic and Applied Basic Research Foundation(Grant.Nos.2023A1515110594,2024A1515012049)GDA Project of Science and Technology De-velopment(Grant.Nos.2022GDASZH-2022010107,2022GDASZH-2022010108)the China Postdoctoral Science Foundation(Grant.No.2022M711807)。
文摘Additively manufactured bimetallic structures combine the advantages of dissimilar materials and can achieve localized properties through a customized composition distribution.However,additively manufactured parts may still lack the dimensional accuracy and surface integrity essential for precision mechanical assemblies that the post-machining process can address.Therefore,this study aims to systematically investigate the microstructure and machinability of 316L/CuSn10 bimetallic structures fabricated using laser powder bed fusion.The results show that the fusion zone of the bimetallic structure had refined grains of microscale size owing to the mixture of the primary elements of the bimetals,which resulted in the highest microhardness of 3.4 GPa.The difference in microstructure and microhardness between the single-material and fusion zones also causes significant differences in the cutting response during the ultraprecision process.The 316L stainless steel side exhibited the highest cutting force and more severe material accumulation in the chips.The cutting force drops when cutting through the fusion zone,with an observable fracture in the chips and separation of dissimilar materials on the machined grooves,indicating that the heterogeneous properties of additively manufactured 316L/CuSn10 bimetallic structures pose challenges to the improvement of surface quality.The simulation results also showed that stress accumulation occurred in the tool path through the fusion zone owing to the higher yield strength and hardness of stainless steel,indicating that lower cutting speeds and depths of cut are favorable for reducing cutting force and improving surface quality.This study provides deep insight into the microstructure evolution mechanism and a theoretical basis for improving the surface quality of additively manufactured bimetallic structures using an ultraprecision machining process.
文摘The sintering and machinability of monazite-type CePO_4 ceramics were investigated. Relative density ≥98% and apparent porosity <2% were achieved when the monazite-type CePO_4 were sintered at 1500 ℃/1 h in air,and the maximal bending strength value (184 MPa) was achieved at this temperature. CePO_4 ceramics has a multilayer structure and an exciting 'ductility',so it can be drilled and cut with WC cutter with a small machining damage.
文摘Machinability can sometimes be difficult to predict and be impacted by different characteristics of the castings.Inoculation,a key step in foundry process,is well-known to be a powerful tool to adjust the characteristics of castings in both grey and ductile irons.Some metallurgical cases were investigated to understand different machinability behaviors in correlation to their metallographic characteristics.Thus,two examples taken from grey iron processes are analyzed to illustrate how inoculation is required to adjust characteristics of iron castings,especially the modification of graphite characteristics and the prevention of micro-shrinkage,both parameters are well-known to have an impact on iron machinability.The study also illustrates the importance of the ratio Mn/S to guarantee the presence of manganese sulfides in the matrix,beneficial for iron machinability.
基金supported by the National Natural Science Foundation of China(NSFC)[No.51905270]National Natural Science Foundation of Jiangsu Province(No.BK20231442)the China Postdoctoral Science Foundation(No.2023M731659).
文摘Processing microchannels inside laminated aluminum nitride high-temperature co-fired ceramics(AlN HTCC) packaging, a typical difficult-to-cut ceramic, can effectively solve the heatdissipation problem of integrated chips used in smart skin. In order to improve the processing efficiency and quality of AlN, the machinability of AlN after laser chemical milling(LCM) was studied through the milling force, machined surface quality, surface defects, formation mechanism, and tool wear. This study established a milling force model that can predict the milling forces of AlN and analyses the reasons for the improvements in the milling force based on experimental data and predicted data. The results from the model and experiments demonstrated that the milling force of the laser chemical milling assisted micro milling(LCAMM) decreased by 85%–90% and 85%–95%, respectively, due to the amount of removal of a single edge was more uniform and the actual inclination angle increased during the cutting process in LCAMM. Moreover, the machined surface quality improved by 65%–76% after LCM because of less tool wear, fewer downward-propagating cracks generated during each feed, and the surface removal mode transformed from intergranular fracture to transgranular fracture, which effectively reducing tool wear and improving tool life. Finally, when feed per tooth and depth of cut were 0.4 μm/z and 5 μm, the optimal machined surface quality was obtained, with a roughness of 64.6 nm Therefore, milling after LCM can improve the machinability of AlN and providing a feasibility for the high-quality and efficient machining of microchannels.
基金Ins. Telat TüRKYILMAZ and Ins. Ali Riza GüN for their support
文摘The influence of Al content on machinability of AS series cast Mg alloys was studied. The assessment of machinability of Mg alloys was performed by measuring the cutting forces and surface roughness. The microstructure and the tensile properties were also studied. The results reveal that cutting forces are increased with the increase of the Al content. Surface roughness and mechanical properties are the highest for AS91 Mg alloy. It is assumed that the main mechanism, which has an influence on the mechanical properties, is the presence of intermetallic phases(Mg2Si and Mg17Al12). Cutting forces increase with the increase of the cutting speed in machining of all Mg alloys. These measured data are in accordance with the mechanical properties of the machined alloys.