期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Fetal mice dermal mesenchymal stem cells promote wound healing by inducing M2 type macrophage polarization 被引量:3
1
作者 Zhen-Yu Xia Yi Wang +6 位作者 Nian Shi Mei-Qi Lu Yun-Xiang Deng Yong-Jun Qi Xing-Lei Wang Jie Zhao Du-Yin Jiang 《World Journal of Stem Cells》 2025年第2期96-104,共9页
BACKGROUND Mesenchymal stem cells,found in various tissues,possess significant healing and immunomodulatory properties,influencing macrophage polarization,which is essential for wound repair.However,chronic wounds pre... BACKGROUND Mesenchymal stem cells,found in various tissues,possess significant healing and immunomodulatory properties,influencing macrophage polarization,which is essential for wound repair.However,chronic wounds present significant therapeutic challenges,requiring novel strategies to improve healing outcomes.AIM To investigate the potential of fetal dermal mesenchymal stem cells(FDMSCs)in enhancing wound healing through modulation of macrophage polarization,specifically by promoting the M2 phenotype to address inflammatory responses in chronic wounds.METHODS FDMSCs were isolated from BalB/C mice and co-cultured with RAW264.7 macrophages to assess their effects on macrophage polarization.Flow cytometry,quantitative reverse transcriptase polymerase chain reaction,and histological analyses were employed to evaluate shifts in macrophage phenotype and wound healing in a mouse model.Statistical analysis was performed using GraphPad Prism.RESULTS FDMSCs induced macrophage polarization from the M1 to M2 phenotype,as demonstrated by a reduction in proinflammatory markers(inducible nitric oxide synthase,interleukin-6)and an increase in anti-inflammatory markers[mannose receptor(CD206),arginase-1]in co-cultured RAW264.7 macrophages.These shifts were confirmed by flow cytometry.In an acute skin wound model,FDMSC-treated mice exhibited faster wound healing,enhanced collagen deposition,and improved vascular regeneration compared to controls.Significantly higher expression of arginase-1 further indicated an enriched M2 macrophage environment.CONCLUSION FDMSCs effectively modulate macrophage polarization from M1 to M2,reduce inflammation,and enhance tissue repair,demonstrating their potential as an immunomodulatory strategy in wound healing.These findings highlight the promising therapeutic application of FDMSCs in managing chronic wounds. 展开更多
关键词 Fetal dermal mesenchymal stem cells Macrophage polarization Wound healing IMMUNOMODULATION m2 phenotype
暂未订购
Unlocking the potential of Calculus bovis: A breakthrough in liver cancer treatment via Wnt/β-catenin pathway modulation
2
作者 Farouk Benmediouni 《World Journal of Gastroenterology》 2025年第4期164-168,共5页
Liver cancer remains a significant global health challenge,characterized by high incidence and mortality rates.Despite advancements in medical treatments,the prognosis for liver cancer patients remains poor,highlighti... Liver cancer remains a significant global health challenge,characterized by high incidence and mortality rates.Despite advancements in medical treatments,the prognosis for liver cancer patients remains poor,highlighting the urgent need for novel therapeutic approaches.Traditional Chinese medicine(TCM),particularly Calculus bovis(CB),has shown promise in addressing this need due to its multitarget therapeutic mechanisms.CB refers to natural or synthetic gallstones,traditionally sourced from cattle,and used in TCM for their anti-inflammatory,detoxifying,and therapeutic properties.In modern practice,synthetic CB is often utilized to ensure consistent supply and safety.This article aims to discuss the findings of Huang et al,who investigated the anti-liver cancer properties of CB,focusing on its ability to inhibit M2 tumor-associated macrophage(TAM)polarization via modulation of the Wnt/β-catenin pathway.Huang et al employed a comprehensive approach integrating chemical analysis,animal model testing,and advanced bioinformatics.They identified active components of CB using UPLC-Q-TOF-MS,evaluated its anti-neoplastic effects in a nude mouse model,and elucidated the underlying mechanisms through network pharmacology,transcriptomics,and molecular docking studies.The study demonstrated that CB significantly inhibited liver tumor growth in vivo,as evidenced by reduced tumor size and weight in treated mice.Histological analyses confirmed signs of tumor regression.CB was found to modulate the tumor microenvironment by inhibiting the polarization of M2 phenotype-TAMs,as shown by reduced expression of M2 markers and downregulation of mRNA levels of C-C motif chemokine 22,arginase-1,transforming growth factor-beta 2,and interleukin-10.The study further revealed that CB’s antineoplastic activity involved the downregulation of Wnt5B andβ-catenin and upregulation of Axin2,thus inhibiting the Wnt/β-catenin signaling pathway.These findings highlight the therapeutic potential of CB in liver cancer treatment through its modulation of the Wnt/β-catenin pathway and suppression of M2 phenotype-TAM polarization.This study underscores the value of integrating TCM with modern therapeutic strategies to develop novel effective treatments for liver cancer. 展开更多
关键词 Calculus bovis Liver cancer m2 phenotype tumor-associated macrophages Wnt/β-catenin pathway Traditional Chinese medicine Tumor microenvironment Antineoplastic therapy
暂未订购
Bio-inspired barnacle cement coating of biodegradable magnesium alloy for cerebrovascular application
3
作者 Hang Li Fei Wang +4 位作者 Xiao-Jing Sun Liu-Jie Qi Jing-An Li Mujahid Iqbal Shao-Kang Guan 《Rare Metals》 SCIE EI CAS CSCD 2024年第10期5164-5185,共22页
Ischemic stroke is increasing worldwide,and stent intervention has gradually become one of the effective treatments.Owing to its good mechanical properties and biocompatibility,biodegradable Mg-Zn-Y-Nd alloy(ZE21B)has... Ischemic stroke is increasing worldwide,and stent intervention has gradually become one of the effective treatments.Owing to its good mechanical properties and biocompatibility,biodegradable Mg-Zn-Y-Nd alloy(ZE21B)has good application prospects in vascular stents.However,too fast degradation and delayed endothelialization are the bottleneck problem to limit its further application.In this study,the bio-inspired coating barnacle cement cp19k is constructed on ZE21B surface through electrostatic spraying to improve the corrosion resistance and pro-endothelialization ability.The coating was evaluated through electrochemistry,static immersion corrosion,in vitro blood experiments and cell experiments.Cp19k effectively improved the corrosion resistance of the substrate ZE21B,reduced the degradation rate,improved endothelial cell proliferation and migration capabilities,inhibited smooth muscle cells proliferation and regulated contractile phenotype,inhibited macrophage adhesion,regulated macrophage M2 phenotype,and reduced the expression of inflammatory factor of TNF-a and inhibited fibroplasia in vivo.Our data indicated that the barnacle cement cp19k coating had potential application on the surface modification of Mg alloy cerebrovascular stent. 展开更多
关键词 Cerebrovascular stent Biodegradable magnesium alloy Barnacle cement cp19k Proendothelialization m2 phenotype
原文传递
TMEM16F may be a new therapeutic target for Alzheimer's disease 被引量:6
4
作者 Zhi-Qiang Cui Xiao-Ying Hu +6 位作者 Tuo Yang Jing-Wei Guan Ying Gu Hui-Yuan Li Hui-Yu Zhang Qing-Huan Xiao Xiao-Hong Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期643-651,共9页
TMEM16F is involved in many physiological processes such as blood coagulation,cell membrane fusion and bone mineralization.Activation of TMEM16F has been studied in various central nervous system diseases.High TMEM16F... TMEM16F is involved in many physiological processes such as blood coagulation,cell membrane fusion and bone mineralization.Activation of TMEM16F has been studied in various central nervous system diseases.High TMEM16F level has been also found to participate in microglial phagocytosis and transformation.Microglia-mediated neuroinflammation is a key factor in promoting the progression of Alzheimer’s disease.However,few studies have examined the effects of TMEM16F on neuroinflammation in Alzheimer’s disease.In this study,we established TMEM16F-knockdown AD model in vitro and in vivo to investigate the underlying regulatory mechanism about TMEM16F-mediated neuroinflammation in AD.We performed a Morris water maze test to evaluate the spatial memory ability of animals and detected markers for the microglia M1/M2 phenotype and NLRP3 inflammasome.Our results showed that TMEM16F was elevated in 9-month-old APP/PS1 mice.After TMEM16F knockdown in mice,spatial memory ability was improved,microglia polarization to the M2 phenotype was promoted,NLRP3 inflammasome activation was inhibited,cell apoptosis and Aβplaque deposition in brain tissue were reduced,and brain injury was alleviated.We used amyloid-beta(Aβ_(25-35))to stimulate human microglia to construct microglia models of Alzheimer’s disease.The levels of TMEM16F,inducible nitric oxide synthase(iNOS),proinflammatory cytokines and NLRP3 inflammasome-associated biomarkers were higher in Aβ_(25-35) treated group compared with that in the control group.TMEM16F knockdown enhanced the expression of the M2 phenotype biomarkers Arg1 and Socs3,reduced the release of proinflammatory factors interleukin-1,interleukin-6 and tumor necrosis factor-α,and inhibited NLRP3 inflammasome activation through reducing downstream proinflammatory factors interleukin-1βand interleukin-18.This inhibitory effect of TMEM16F knockdown on M1 microglia was partially reversed by the NLRP3 agonist Nigericin.Our findings suggest that TMEM16F participates in neuroinflammation in Alzheimer’s disease through participating in polarization of microglia and activation of the NLRP3 inflammasome.These results indicate that TMEM16F inhibition may be a potential therapeutic approach for Alzheimer’s disease treatment. 展开更多
关键词 Alzheimer’s disease Aβplaque inflammatory cytokines M1 phenotype m2 phenotype microglia polarization NEUROINFLAMMATION NLRP3 inflammasome siRNA TMEM16F
暂未订购
ROS-responsive 18β-glycyrrhetic acid-conjugated polymeric nanoparticles mediate neuroprotection in ischemic stroke through HMGB1 inhibition and microglia polarization regulation 被引量:11
5
作者 Lulu Jin Zhixin Zhu +3 位作者 Liangjie Hong Zhefeng Qian Fang Wang Zhengwei Mao 《Bioactive Materials》 SCIE CSCD 2023年第1期38-49,共12页
Ischemic stroke is an acute and serious cerebral vascular disease,which greatly affects people’s health and brings huge economic burden to society.Microglia,as important innate immune components in central nervous sy... Ischemic stroke is an acute and serious cerebral vascular disease,which greatly affects people’s health and brings huge economic burden to society.Microglia,as important innate immune components in central nervous system(CNS),are double-edged swords in the battle of nerve injury,considering their polarization between pro-inflammatory M1 or anti-inflammatory M2 phenotypes.High mobility group box 1(HMGB1)is one of the potent pro-inflammatory mediators that promotes the M1 polarization of microglia.18β-glycyrrhetinic acid(GA)is an effective intracellular inhibitor of HMGB1,but of poor water solubility and dose-dependent toxicity.To overcome the shortcomings of GA delivery and to improve the efficacy of cerebral ischemia therapy,herein,we designed reactive oxygen species(ROS)responsive polymer-drug conjugate nanoparticles(DGA)to manipulate microglia polarization by suppressing the translocation of nuclear HMGB1.DGA presented excellent therapeutic efficacy in stroke mice,as evidenced by the reduction of infarct volume,recovery of motor function,suppressed of M1 microglia activation and enhanced M2 activation,and induction of neurogenesis.Altogether,our work demonstrates a close association between HMGB1 and microglia polarization,suggesting potential strategies for coping with inflammatory microglia-related diseases. 展开更多
关键词 HMGB1 MICROGLIA M1/m2 phenotype Polymer-drug conjugates Drug delivery Ischemic stroke
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部