With the most advanced Synchronous Radiation Photoelectron Spectrum(SRPS),the emission mechanism of M-type cathodes has been investigated from the perspective of chemical state.Based on the experimental results of SRP...With the most advanced Synchronous Radiation Photoelectron Spectrum(SRPS),the emission mechanism of M-type cathodes has been investigated from the perspective of chemical state.Based on the experimental results of SRPS analysis,a new model of the electron emission mechanism for M-type cathode is discussed.The main topics in this paper include the research status of electron emission mechanism of M-type cathodes;the advantages of SRPS technology;the distribution of oxygen chemical state on the cathode surface and the evolvement of oxygen chemical state during activation process;the relation between barium chemical state and osmium(Os)-coating;surplus barium and its formula;the characteristics of Os,and other noble metal coatings;the relation between film characteristics and emission performance of cathodes,the inhibition effects to the emission for Platinum(Pt)-coated cathode,etc.At the end of this paper,electron emission mechanism of M-type cathode is summarized and foreseen.展开更多
Long-life energy storage batteries are integral to energy storage systems and electric vehicles,with lithium-ion batteries(LIBs)currently being the preferred option for extended usage-life energy storage.To further ex...Long-life energy storage batteries are integral to energy storage systems and electric vehicles,with lithium-ion batteries(LIBs)currently being the preferred option for extended usage-life energy storage.To further extend the life span of LIBs,it is essential to intensify investments in battery design,manufacturing processes,and the advancement of ancillary materials.The pursuit of long durability introduces new challenges for battery energy density.The advent of electrode material offers effective support in enhancing the battery’s long-duration performance.Often underestimated as part of the cathode composition,the binder plays a pivotal role in the longevity and electrochemical performance of the electrode.Maintaining the mechanical integrity of the electrode through judicious binder design is a fundamental requirement for achieving consistent long-life cycles and high energy density.This paper primarily concentrates on the commonly employed cathode systems in lithium-ion batteries,elucidates the significance of binders for both,discusses the application status,strengths,and weaknesses of novel binders,and ultimately puts forth corresponding optimization strategies.It underscores the critical function of binders in enhancing battery performance and advancing the sustainable development of lithium-ion batteries,aiming to offer fresh insights and perspectives for the design of high-performance LIBs.展开更多
The outstanding performance of O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM111)at both high and low temperatures coupled with its impressive specific capacity makes it an excellent cathode material for sodium-ion batte...The outstanding performance of O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM111)at both high and low temperatures coupled with its impressive specific capacity makes it an excellent cathode material for sodium-ion batteries.However,its poor cycling,owing to highpressure phase transitions,is one of its disadvantages.In this study,Cu/Ti was introduced into NFM111 cathode material using a solidphase method.Through both theoretically and experimentally,this study found that Cu doping provides a higher redox potential in NFM111,improving its reversible capacity and charge compensation process.The introduction of Ti would enhance the cycling stability of the material,smooth its charge and discharge curves,and suppress its high-voltage phase transitions.Accordingly,the NaNi_(0.27)Fe_(0.28)Mn_(0.33)Cu_(0.05)Ti_(0.06)O_(2)sample used in the study exhibited a remarkable rate performance of 142.97 mAh·g^(-1)at 0.1 C(2.0-4.2 V)and an excellent capacity retention of 72.81%after 300 cycles at 1C(1C=150 mA·g^(-1)).展开更多
Hard carbon(HC)is widely used in sodium-ion batteries(SIBs),but its performance has always been limited by lowinitial Coulombic efficiency(ICE)and cycling stability.Cathode compensation agent is a favorable strategy t...Hard carbon(HC)is widely used in sodium-ion batteries(SIBs),but its performance has always been limited by lowinitial Coulombic efficiency(ICE)and cycling stability.Cathode compensation agent is a favorable strategy to make up for the loss of active sodium ions consumed byHCanode.Yet it lacks agent that effectively decomposes to increase the active sodium ions as well as regulate carbon defects for decreasing the irreversible sodium ions consumption.Here,we propose 1,2-dihydroxybenzene Na salt(NaDB)as a cathode compensation agent with high specific capacity(347.9 mAh g^(-1)),lower desodiation potential(2.4–2.8 V)and high utilization(99%).Meanwhile,its byproduct could functionalize HC with more C=O groups and promote its reversible capacity.Consequently,the presodiation hard carbon(pHC)anode exhibits highly reversible capacity of 204.7 mAh g^(-1) with 98%retention at 5 C rate over 1000 cycles.Moreover,with 5 wt%NaDB initially coated on the Na3V2(PO4)3(NVP)cathode,the capacity retention of NVP + NaDB|HC cell could increase from 22%to 89%after 1000 cycles at 1 C rate.This work provides a new avenue to improve reversible capacity and cycling performance of SIBs through designing functional cathode compensation agent.展开更多
Solid oxide electrolysis cells(SOECs)can effectively convert CO_(2)into high value-added CO fuel.In this paper,Sc-doped Sr_(2)Fe_(1.5)Mo_(0.3)Sc_(0.2)O_(6−δ)(SFMSc)perovskite oxide material is synthesized via solid-p...Solid oxide electrolysis cells(SOECs)can effectively convert CO_(2)into high value-added CO fuel.In this paper,Sc-doped Sr_(2)Fe_(1.5)Mo_(0.3)Sc_(0.2)O_(6−δ)(SFMSc)perovskite oxide material is synthesized via solid-phase method as the cathode for CO_(2)electrolysis by SOECs.XRD confirms that SFMSc exhibits a stable cubic phase crystal structure.The experimental results of TPD,TG,EPR,CO_(2)-TPD further demonstrate that Sc-doping increases the concentration of oxygen vacancy in the material and the chemical adsorption capacity of CO_(2)molecules.Electrochemical tests reveal that SFMSc single cell achieves a current density of 2.26 A/cm^(2) and a lower polarization impedance of 0.32Ω·cm^(2) at 800°C under the applied voltage of 1.8 V.And no significant performance attenuation or carbon deposition is observed after 80 h continuous long-term stability test.This study provides a favorable support for the development of SOEC cathode materials with good electro-catalytic performance and stability.展开更多
The growing need for higher energy density in rechargeable batteries necessitates the exploration of cathode materials with enhanced specific energy for lithium-ion batteries.Due to their exceptional cost-effectivenes...The growing need for higher energy density in rechargeable batteries necessitates the exploration of cathode materials with enhanced specific energy for lithium-ion batteries.Due to their exceptional cost-effectiveness and specific capacity,lithium-rich manganese-based cathode materials(LRMs)obtain in-creasing attention in the pursuit of enhancing energy density and reducing costs.The implementation has faced obstacles in various applications due to substantial capacity and voltage degradation,insufficient safety performance,and restricted rate capability during cycling.These issues arise from the migration of transition metal,the release of oxygen,and structural transformation.In this review,we provide an integrated survey of the structure,lithium storage mechanism,challenges,and origins of LRMs,as well as recent advancements in various coating strategies.Particularly,the significance of optimizing the design of the cathode electrolyte interphase was emphasized to enhance electrode performance.Furthermore,future perspective was also addressed alongside in-situ measurements,advanced synthesis techniques,and the application of machine learning to overcome encountered challenges in LRMs.展开更多
In recent years,sodium-ion batteries(SIBs)have become one of the hot discussions and have gradually moved toward industrialization.However,there are still some shortcomings in their performance that have not been well...In recent years,sodium-ion batteries(SIBs)have become one of the hot discussions and have gradually moved toward industrialization.However,there are still some shortcomings in their performance that have not been well addressed,including phase transition,structural degradation,and voltage platform.High entropy materials have recently gained significant attention from researchers due to their effects on thermodynamics,dynamics,structure,and performance.Researchers have attempted to use these materials in sodium-ion batteries to overcome their problems,making it a modification method.This paper aims to discuss the research status of high-entropy cathode materials for sodium-ion batteries and summarize their effects on sodium-ion batteries from three perspectives:Layered oxide,polyanion,and Prussian blue.The infiuence on material structure,the inhibition of phase transition,and the improvement of ion diffusivity are described.Finally,the advantages and disadvantages of high-entropy cathode materials for sodium-ion batteries are summarized,and their future development has prospected.展开更多
As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability...As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density.This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs,including hydrogen evolution reaction,phase transformation and dissolution phenomena.To address these challenges,we propose a range of advanced strategies aimed at improving the stability of cathode materials.These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions.Additionally,we emphasize the importance of designing antioxidant electrolytes,with a focus on understanding and optimizing electrolyte decomposition mechanisms.The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs.By integrating these cutting-edge approaches,this review anticipates substantial advancements in the stability of high-voltage cathode materials,paving the way for the broader application and development of AZIBs in energy storage.展开更多
Sodium-ion batteries(SIBs)have attracted significant attention in large-scale energy storage system because of their abundant sodium resource and cost-effectiveness.Layered oxide materials are particularly promising a...Sodium-ion batteries(SIBs)have attracted significant attention in large-scale energy storage system because of their abundant sodium resource and cost-effectiveness.Layered oxide materials are particularly promising as SIBs cathodes due to their high theoretical capacities and facile synthesis.However,their practical applications are hindered by the limitations in energy density and cycling stability.The comprehensive understanding of failure mechanisms within bulk structure and at the cathode/electrolyte interface of cathodes is still lacking.In this review,the issues related to bulk phase degradation and surface degradation,such as irreversible phase transitions,cation migration,transition metal dissolution,air/moisture instability,intergranular cracking,interfacial reactions,and reactive oxygen loss,are discussed.The latest advances and strategies to improve the stability of layered oxide cathodes and full cells are provided,as well as our perspectives on the future development of SIBs.展开更多
A tunable oxidization and reduction strategy was proposed to directly regenerate spent LiFePO_(4)/C cathode materials by oxidizing excessive carbon powders with the addition of FePO_(4).Experimental results indicate t...A tunable oxidization and reduction strategy was proposed to directly regenerate spent LiFePO_(4)/C cathode materials by oxidizing excessive carbon powders with the addition of FePO_(4).Experimental results indicate that spent LiFePO_(4)/C cathode materials with good performance can be regenerated by roasting at 650℃ for 11 h with the addition ofLi_(2)CO_(3),FePO_(4),V_(2)O_(5),and glucose.V_(2)O_(5) is added to improve the cycle performance of regenerated cathode materials.Glucose is used to revitalize the carbon layers on the surface of spent LiFePO_(4)/C particles for improving their conductivity.The regenerated V-doped LiFePO_(4)/C shows an excellent electrochemical performance with the discharge specific capacity of 161.36 mA·h/g at 0.2C,under which the capacity retention is 97.85%after 100 cycles.展开更多
Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the ...Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the Jahn-Teller(JT)effect associated with Mn-ion,the cathode exhibits poor structural stability.Herein,we propose a strategy to enhance structural stability by introducing robust metal-oxygen(M-O)bonds,which can realize the pinning effect to constrain the distortion in the transition metal(TM)layer.Concurrently,all the elements employed have exceptionally high crustal abundance.As a proof of concept,the designed K_(0.5)Mn_(0.9)Mg_(0.025)Ti_(0.025)Al_(0.05)O_(2)cathode exhibited a discharge capacity of approximately 100 mA h g^(-1)at 20 mA g^(-1)with 79%capacity retention over 50 cycles,and 73%capacity retention over 200 cycles at 200 mA g^(-1),showcased much better battery performance than the designed cathode with less robust M-O bonds.The properties of the formed M-O bonds were investigated using theoretical calculations.The enhanced dynamics,mitigated JT effect,and improved structural stability were elucidated through the in-situ X-ray diffractometer(XRD),in-situ electrochemical impedance spectroscopy(EIS)(and distribution of relaxation times(DRT)method),and ex-situ X-ray absorption fine structure(XAFS)tests.This study holds substantial reference value for the future design of costeffective Mn-based layered cathodes for PIBs.展开更多
Vanadium pentoxide(V_(2)O_(5))displays the characteristics of high theoretical specific capacity,high operating voltage,and adjustable layered structure,possessing the considerable potential as cathode in magnesium me...Vanadium pentoxide(V_(2)O_(5))displays the characteristics of high theoretical specific capacity,high operating voltage,and adjustable layered structure,possessing the considerable potential as cathode in magnesium metal batteries(MMBs).Nevertheless,the large charge-radius ratio of Mg^(2+)induces the strong interactions of Mg^(2+)with solvent molecules of electrolyte and anionic framework of cathode,resulting in a notable voltage polarization and structural deterioration during cycling process.Herein,an in-situ multi-scale structural engineering is proposed to activate the interlayer-expanded V_(2)O_(5)cathode(pillared by tetrabutylammonium cation)via adding hexadecyltrimethylammonium bromide(CTAB)additive into electrolyte.During cycling,the in-situ incorporation of CTA^(+)not only enhances the electrostatic shielding effect and Mg species migration,but also stabilizes the interlayer spacing.Besides,CTA^(+)is prone to be adsorbed on cathode surface and induces the loss-free pulverization and amorphization of electroactive grains,leading to the pronounced effect of intercalation pseudocapacitance.CTAB additive also enables to scissor the Mg^(2+)solvation sheath and tailor the insertion mode of Mg species,further endowing V_(2)O_(5)cathode with fast reaction kinetics.Based on these merits,the corresponding V2O5‖Mg full cells exhibit the remarkable rate performance with capacities as high as 317.6,274.4,201.1,and 132.7 mAh g^(-1)at the high current densities of 0.1,0.2,0.5,and 1 A g^(-1),respectively.Moreover,after 1000 cycles,the capacity is still preserved to be 90,4 mAh g^(-1)at 1 A g^(-1)with an average coulombic efficiency of~100%.Our strategy of synergetic modulations of cathode host and electrolyte solvation structures provides new guidance for the development of high-rate,large-capacity,and long-life MMBs.展开更多
Sodium-ion batteries(SIBs)have the advantages of environmental friendliness,cost-effectiveness,and high energy density,which are considered one of the most promising candidates for lithium-ion batteries(LIBs).The cath...Sodium-ion batteries(SIBs)have the advantages of environmental friendliness,cost-effectiveness,and high energy density,which are considered one of the most promising candidates for lithium-ion batteries(LIBs).The cathode materials influence the cost and energy output of SIBs.Therefore,the development of advanced cathode materials is crucial for the practical application of SIBs.Among various cathode materials,layered transition metal oxides(LTMOs)have received widespread attention owing to their straightforward preparation,abundant availability,and cost-competitiveness.Notably,layered Fe-based oxide cathodes are deemed to be one of the most promising candidates for the lowest price and easy-to-improve performance.Nevertheless,the challenges such as severe phase transitions,sluggish diffusion kinetics and interfacial degradation pose significant hurdles in achieving high-performance cathodes for SIBs.This review first briefly outlines the classification of layered structures and the working principle of layered oxides.Then,recent advances in modification strategies employed to address current issues with layered iron-based oxide cathodes are systematically reviewed,including ion doping,biphasic engineering and surface modification.Furthermore,the review not only outlines the prospects and development directions for layered Fe-based oxide cathodes but also provides novel insights and directions for future research endeavors for SIBs.展开更多
Facilitating anion redox chemistry is an effective strategy to increase the capacity of layered oxides for sodium-ion batteries.Nevertheless,there remains a paucity of literature pertaining to the oxygen redox chemist...Facilitating anion redox chemistry is an effective strategy to increase the capacity of layered oxides for sodium-ion batteries.Nevertheless,there remains a paucity of literature pertaining to the oxygen redox chemistry of O3-type layered oxide cathode materials.This work systematically investigates the effect of Fe doping on the anionic oxygen redox chemistry and electrochemical reactions in O3-NaNi_(0.4)Cu_(0.1)Mn_(0.4)Ti_(0.1)O_(2).The results of the density functional theory(DFT)calculations indicate that the electrons of the O 2p occupy a higher energy level.In the ex-situ X-ray photoelectron spectrometer(XPS)of O 1s,the addition of Fe facilitates the lattice oxygen(O^(n-))to exhibit enhanced activity at 4.45 V.The in-situ X-ray diffraction(XRD)demonstrates that the doping of Fe effectively suppresses the Y phase transition at high voltages.Furthermore,the Galvanostatic Intermittent Titration Technique(GITT)data indicate that Fe doping significantly increases the Na~+migration rate at high voltages.Consequently,the substitution of Fe can elevate the cut-off voltage to 4.45 V,thereby facilitating electron migration from O^(2-).The redox of O^(2-)/O^(n-)(n<2)contributes to the overall capacity.O3-Na(Ni_(0.4)Cu_(0.1)Mn_(0.4)Ti_(0.1))_(0.92)Fe_(0.08)O_(2)provides an initial discharge specific capacity of 180.55 mA h g^(-1)and71.6%capacity retention at 0.5 C(1 C=240 mA g^(-1)).This work not only demonstrates the beneficial impact of Fe substitution for promoting the redox activity and reversibility of O^(2-)in 03-type layered oxides,but also guarantees the structural integrity of the cathode materials at high voltages(>4.2 V).It offers a novel avenue for investigating the anionic redox reaction in O3-type layered oxides to design advanced cathode materials.展开更多
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th...Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.展开更多
High-nickel ternary cathodes hold a great application prospect in solid-state lithium metal batteries to achieve high-energy density,but they still suffer from structural instability and detrimental side reactions wit...High-nickel ternary cathodes hold a great application prospect in solid-state lithium metal batteries to achieve high-energy density,but they still suffer from structural instability and detrimental side reactions with the solid-state electrolytes.To circumvent these issues,a continuous uniform layer polyacrylonitrile(PAN)was introduced on the surface of LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2) via in situ polymerization of acrylonitrile(AN).Furthermore,the partial-cyclized treatment of PAN(cPAN)coating layer presents high ionic and electron conductivity,which can accelerate interfacial Li+and electron diffusion simultaneously.And the thermodynamically stabilized cPAN coating layer cannot only effectively inhibit detrimental side reactions between cathode and solid-state electrolytes but also provide a homogeneous stress to simultaneously address the problems of bulk structural degradation,which contributes to the exceptional mechanical and electrochemical stabilities of the modified electrode.Besides,the coordination bond interaction between the cPAN and NCM811 can suppress the migration of Ni to elevate the stability of the crystal structure.Benefited from these,the In-cPAN-260@NCM811 shows excellent cycling performance with a retention of 86.8%after 300 cycles and superior rate capability.And endow the solid-state battery with thermal safety stability even at hightemperature extreme environment.This facile and scalable surface engineering represents significant progress in developing high-performance solid-state lithium metal batteries.展开更多
Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress ...Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress and strain,causes micro-cracks and interfacial contact loss at potentials>4.3 V(vs.Li/Li^(+)).Quantifying micro-cracks and voids in CAMs can reveal the degradation mechanisms of Ni-rich oxidebased cathodes during electrochemical cycling.Nonetheless,the origin of electrochemical-mechanical damage remains unclear.Herein,We have developed a multifunctional PEG-based soft buffer layer(SBL)on the surface of carbon black(CB).This layer functions as a percolation network in the single crystal LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)and Li_(6)PS_(5)Cl composite cathode layer,ensuring superior ionic conductivity,reducing void formation and particle cracking,and promoting uniform utilization of the cathode active material in all-solid-state lithium batteries(ASSLBs).High-angle annular dark-field STEM combined with nanoscale X-ray holo-tomography and plasma-focused ion beam scanning electron microscopy confirmed that the PEG-based SBL mitigated strain induced by reaction heterogeneity in the cathode.This strain produces lattice stretches,distortions,and curved transition metal oxide layers near the surface,contributing to structural degradation at elevated voltages.Consequently,ASSLBs with a LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)cathode containing LCCB-10(CB/PEG mass ratio:100/10)demonstrate a high areal capacity(2.53 mAh g^(-1)/0.32 mA g^(-1))and remarkable rate capability(0.58 mAh g^(-1)at 1.4 mA g^(-1)),with88%capacity retention over 1000 cycles.展开更多
The implementation of ultrahigh-Ni cathodes in high-energy lithium-ion batteries(LIBs)is constrained by significant structural and interfacial degradation during cycling.In this study,doping-induced surface restructur...The implementation of ultrahigh-Ni cathodes in high-energy lithium-ion batteries(LIBs)is constrained by significant structural and interfacial degradation during cycling.In this study,doping-induced surface restructuring in ultrahigh-nickel cathode materials is rapidly facilitated through an ultrafast Joule heating method.Density functional theory(DFT)calculations,synchrotron X-ray absorption spectroscopy(XAS),and single-particle force test confirmed the establishment of a stable crystal framework and lattice oxygen,which mitigated H2-H3 phase transitions and improved structural reversibility.Additionally,the Sc doping process exhibits a pinning effect on the grain boundaries,as shown by scanning transmission electron microscopy(STEM),enhancing Li~+diffusion kinetics and decreasing mechanical strain during cycling.The in situ development of a cation-mixing layer at grain boundaries also creates a robust cathode/electrolyte interphase,effectively reducing interfacial parasitic reactions and transition metal dissolution,as validated by STEM and time-of-flight secondary ion mass spectrometry(TOF-SIMS).These synergistic modifications reduce particle cracking and surface/interface degradation,leading to enhanced rate capability,structural integrity,and thermal stability.Consequently,the optimized Sc-modified ultrahigh-Ni cathode(Sc-1)exhibits 93.99%capacity retention after 100 cycles at 1 C(25℃)and87.06%capacity retention after 100 cycles at 1 C(50℃),indicating excellent cycling and thermal stability.By presenting a one-step multifunctional modification approach,this research delivers an extensive analysis of the mechanisms governing the structure,microstructure,and interface properties of nickel-rich layered cathode materials(NCMs).These results underscore the potential of ultrahigh-Ni cathodes as viable candidates for advanced lithium-ion batteries(LIBs)in next-generation electric vehicles(EVs).展开更多
The commercialization of solid oxide fuel cells depends on the cathode,which possesses both high catalytic activity and a thermal-expansion coefficient(TEC)that aligns with the electrolyte.Although the cobalt-based ca...The commercialization of solid oxide fuel cells depends on the cathode,which possesses both high catalytic activity and a thermal-expansion coefficient(TEC)that aligns with the electrolyte.Although the cobalt-based cathode La_(0.6)Sr_(0.4)CoO_(3)(LSC)offers excellent catalytic performance,its TEC is significantly larger than that of the electrolyte.In this study,we mechanically mix Sm_(0.2)Ce_(0.8)O_(2−δ)(SDC)with LSC to create a composite cathode.By incorporating 50wt%SDC,the TEC decreases significantly from 18.29×10^(−6) to 13.90×10^(−6) K^(−1).Under thermal-shock conditions ranging from room temperature to 800℃,the growth rate of polarization resistance is only 0.658%per cycle,i.e.,merely 49%that of pure LSC.The button cell comprising the LSC-SDC composite cathode operates stably for over 900 h without Sr segregation,with a voltage growth rate of 1.11%/kh.A commercial flat-tube cell(active area:70 cm^(2))compris-ing the LSC-SDC composite cathode delivers 54.8 W at 750℃.The distribution of relaxation-time shows that the non-electrode portion is the main rate-limiting step.This study demonstrates that the LSC-SDC mixture strategy effectively improves the compatibility with the electrolyte while maintaining a high output,thus rendering it a promising commercial cathode material.展开更多
Minimizing the thermal expansion coefficient(TEC)mismatch between the cathode and electrolyte in solid oxide fuel cells is crucial for achieving stable,durable operation and high performance.Recently,materials with ne...Minimizing the thermal expansion coefficient(TEC)mismatch between the cathode and electrolyte in solid oxide fuel cells is crucial for achieving stable,durable operation and high performance.Recently,materials with negative thermal expansion(NTE)have at-tracted significant attention as effective additives for tailoring the thermomechanical properties of electrodes and enhancing cell durability.In this work,for the first time,single-phase NTE perovskite Sm_(0.85)Zn_(0.15)MnO_(3−δ)(SZM15)was successfully synthesized via the sol-gel method,eliminating the unwanted ZnO phase typically observed in materials obtained through the conventional solid-state reaction route.The sol-gel approach proved highly advantageous,offering low cost,robustness,excellent chemical homogeneity,precise compositional control,and high phase purity.After optimization of synthesis parameters,a negative TEC of approximately−6.5×10^(−6)K^(−1)was achieved in the 400-850℃range.SZM15 was then incorporated as an additive(10wt%-50wt%)into a SmBa0.5Sr0.5CoCuO_(5+δ)(SBSCCO)cathode to tune the thermomechanical properties with a La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_(3−δ)(LSGM)electrolyte,achieving a minimal TEC mismatch of only 1%.Notably,the SBSCCO+10wt%SZM15 composite cathode exhibited the lowest polarization resistance of 0.019Ω·cm^(2)at 900℃,showing approximately 70%lower than that of the pristine cathode.Excellent long-term stability after 100 h of operation was achieved.In addition,a high peak power density of 680 mW·cm^(−2)was achieved in a Ni-YSZ(yttria-stabilized zirconia)|YSZ|Ce_(0.9)Gd_(0.1)O_(2−δ)(GDC10)|SBSCCO+10wt%SZM15 anode-supported fuel cell at 850℃,highlighting the effectiveness of incorporating NTE materials as a promising strategy for regulating the thermomechanical properties and improving the long-term stability of intermediate temperature solid oxide fuel cells(IT-SOFCs).展开更多
基金Supported by the National Natural Science Foundation of China(No.60871053)
文摘With the most advanced Synchronous Radiation Photoelectron Spectrum(SRPS),the emission mechanism of M-type cathodes has been investigated from the perspective of chemical state.Based on the experimental results of SRPS analysis,a new model of the electron emission mechanism for M-type cathode is discussed.The main topics in this paper include the research status of electron emission mechanism of M-type cathodes;the advantages of SRPS technology;the distribution of oxygen chemical state on the cathode surface and the evolvement of oxygen chemical state during activation process;the relation between barium chemical state and osmium(Os)-coating;surplus barium and its formula;the characteristics of Os,and other noble metal coatings;the relation between film characteristics and emission performance of cathodes,the inhibition effects to the emission for Platinum(Pt)-coated cathode,etc.At the end of this paper,electron emission mechanism of M-type cathode is summarized and foreseen.
基金We would like to show gratitude to the Yunnan Province Basic Research Major Project(202501BC070006(Y.Wang))Key Industry Science and Technology Projects for University Services in Yunnan Province(FWCY ZNT2024002(Y.Wang))+3 种基金National Natural Science Foundation of China(22279070(L.Wang))and(U21A20170(X.He))the Ministry of Science and Technology of China(2019YFA0705703(L.Wang))Beijing Natural Science Foundation(L242005(X.He))Key Industry Science and Technology Projects for University Services in Yunnan Province(FWCY BSPY2024011(T.Lai)).
文摘Long-life energy storage batteries are integral to energy storage systems and electric vehicles,with lithium-ion batteries(LIBs)currently being the preferred option for extended usage-life energy storage.To further extend the life span of LIBs,it is essential to intensify investments in battery design,manufacturing processes,and the advancement of ancillary materials.The pursuit of long durability introduces new challenges for battery energy density.The advent of electrode material offers effective support in enhancing the battery’s long-duration performance.Often underestimated as part of the cathode composition,the binder plays a pivotal role in the longevity and electrochemical performance of the electrode.Maintaining the mechanical integrity of the electrode through judicious binder design is a fundamental requirement for achieving consistent long-life cycles and high energy density.This paper primarily concentrates on the commonly employed cathode systems in lithium-ion batteries,elucidates the significance of binders for both,discusses the application status,strengths,and weaknesses of novel binders,and ultimately puts forth corresponding optimization strategies.It underscores the critical function of binders in enhancing battery performance and advancing the sustainable development of lithium-ion batteries,aiming to offer fresh insights and perspectives for the design of high-performance LIBs.
基金supported by the Low-Cost Long-Life Batteries program,China(No.WL-24-08-01)the National Natural Science Foundation of China(No.22279007)。
文摘The outstanding performance of O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM111)at both high and low temperatures coupled with its impressive specific capacity makes it an excellent cathode material for sodium-ion batteries.However,its poor cycling,owing to highpressure phase transitions,is one of its disadvantages.In this study,Cu/Ti was introduced into NFM111 cathode material using a solidphase method.Through both theoretically and experimentally,this study found that Cu doping provides a higher redox potential in NFM111,improving its reversible capacity and charge compensation process.The introduction of Ti would enhance the cycling stability of the material,smooth its charge and discharge curves,and suppress its high-voltage phase transitions.Accordingly,the NaNi_(0.27)Fe_(0.28)Mn_(0.33)Cu_(0.05)Ti_(0.06)O_(2)sample used in the study exhibited a remarkable rate performance of 142.97 mAh·g^(-1)at 0.1 C(2.0-4.2 V)and an excellent capacity retention of 72.81%after 300 cycles at 1C(1C=150 mA·g^(-1)).
基金supported by National Natural Science Foundation of China(No.22278308 and 22109114)Open Foundation of Shanghai Jiao Tong University Shaoxing Research Institute of Renewable Energy and Molecular Engineering(Grant number:JDSX2022023).
文摘Hard carbon(HC)is widely used in sodium-ion batteries(SIBs),but its performance has always been limited by lowinitial Coulombic efficiency(ICE)and cycling stability.Cathode compensation agent is a favorable strategy to make up for the loss of active sodium ions consumed byHCanode.Yet it lacks agent that effectively decomposes to increase the active sodium ions as well as regulate carbon defects for decreasing the irreversible sodium ions consumption.Here,we propose 1,2-dihydroxybenzene Na salt(NaDB)as a cathode compensation agent with high specific capacity(347.9 mAh g^(-1)),lower desodiation potential(2.4–2.8 V)and high utilization(99%).Meanwhile,its byproduct could functionalize HC with more C=O groups and promote its reversible capacity.Consequently,the presodiation hard carbon(pHC)anode exhibits highly reversible capacity of 204.7 mAh g^(-1) with 98%retention at 5 C rate over 1000 cycles.Moreover,with 5 wt%NaDB initially coated on the Na3V2(PO4)3(NVP)cathode,the capacity retention of NVP + NaDB|HC cell could increase from 22%to 89%after 1000 cycles at 1 C rate.This work provides a new avenue to improve reversible capacity and cycling performance of SIBs through designing functional cathode compensation agent.
基金supported by National Key R&D Program of China(2021YFB4001401)National Natural Science Foundation of China(52272190,22178023).
文摘Solid oxide electrolysis cells(SOECs)can effectively convert CO_(2)into high value-added CO fuel.In this paper,Sc-doped Sr_(2)Fe_(1.5)Mo_(0.3)Sc_(0.2)O_(6−δ)(SFMSc)perovskite oxide material is synthesized via solid-phase method as the cathode for CO_(2)electrolysis by SOECs.XRD confirms that SFMSc exhibits a stable cubic phase crystal structure.The experimental results of TPD,TG,EPR,CO_(2)-TPD further demonstrate that Sc-doping increases the concentration of oxygen vacancy in the material and the chemical adsorption capacity of CO_(2)molecules.Electrochemical tests reveal that SFMSc single cell achieves a current density of 2.26 A/cm^(2) and a lower polarization impedance of 0.32Ω·cm^(2) at 800°C under the applied voltage of 1.8 V.And no significant performance attenuation or carbon deposition is observed after 80 h continuous long-term stability test.This study provides a favorable support for the development of SOEC cathode materials with good electro-catalytic performance and stability.
基金the support from the National Natural Science Foun-dation of China(Grant No.U21A20311)the Distinguished Scientist Fellowship Program(DSFP)at King Saud University,Riyadh,Saudi Arabia.
文摘The growing need for higher energy density in rechargeable batteries necessitates the exploration of cathode materials with enhanced specific energy for lithium-ion batteries.Due to their exceptional cost-effectiveness and specific capacity,lithium-rich manganese-based cathode materials(LRMs)obtain in-creasing attention in the pursuit of enhancing energy density and reducing costs.The implementation has faced obstacles in various applications due to substantial capacity and voltage degradation,insufficient safety performance,and restricted rate capability during cycling.These issues arise from the migration of transition metal,the release of oxygen,and structural transformation.In this review,we provide an integrated survey of the structure,lithium storage mechanism,challenges,and origins of LRMs,as well as recent advancements in various coating strategies.Particularly,the significance of optimizing the design of the cathode electrolyte interphase was emphasized to enhance electrode performance.Furthermore,future perspective was also addressed alongside in-situ measurements,advanced synthesis techniques,and the application of machine learning to overcome encountered challenges in LRMs.
基金the National Natural Science Foundation of China Key Program(No.U22A20420)Changzhou Leading Innovative Talents Introduction and Cultivation Project(No.CQ20230109)for supporting our work。
文摘In recent years,sodium-ion batteries(SIBs)have become one of the hot discussions and have gradually moved toward industrialization.However,there are still some shortcomings in their performance that have not been well addressed,including phase transition,structural degradation,and voltage platform.High entropy materials have recently gained significant attention from researchers due to their effects on thermodynamics,dynamics,structure,and performance.Researchers have attempted to use these materials in sodium-ion batteries to overcome their problems,making it a modification method.This paper aims to discuss the research status of high-entropy cathode materials for sodium-ion batteries and summarize their effects on sodium-ion batteries from three perspectives:Layered oxide,polyanion,and Prussian blue.The infiuence on material structure,the inhibition of phase transition,and the improvement of ion diffusivity are described.Finally,the advantages and disadvantages of high-entropy cathode materials for sodium-ion batteries are summarized,and their future development has prospected.
基金supported by the Exchange Program of Highend Foreign Experts of Ministry of Science and Technology of People’s Republic of China(No.G2023041003L)the Natural Science Foundation of Shaanxi Provincial Department of Education(No.23JK0367)+1 种基金the Scientific Research Startup Program for Introduced Talents of Shaanxi University of Technology(Nos.SLGRCQD2208,SLGRCQD2306,SLGRCQD2133)Contaminated Soil Remediation and Resource Utilization Innovation Team at Shaanxi University of Technology。
文摘As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density.This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs,including hydrogen evolution reaction,phase transformation and dissolution phenomena.To address these challenges,we propose a range of advanced strategies aimed at improving the stability of cathode materials.These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions.Additionally,we emphasize the importance of designing antioxidant electrolytes,with a focus on understanding and optimizing electrolyte decomposition mechanisms.The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs.By integrating these cutting-edge approaches,this review anticipates substantial advancements in the stability of high-voltage cathode materials,paving the way for the broader application and development of AZIBs in energy storage.
基金supported by the National Natural Science Foundation of China(Grant No.W2412060,22325902 and 52171215)the State Key Laboratory of Clean Energy Utilization(Open Fund Project No.ZJUCEU2023002)。
文摘Sodium-ion batteries(SIBs)have attracted significant attention in large-scale energy storage system because of their abundant sodium resource and cost-effectiveness.Layered oxide materials are particularly promising as SIBs cathodes due to their high theoretical capacities and facile synthesis.However,their practical applications are hindered by the limitations in energy density and cycling stability.The comprehensive understanding of failure mechanisms within bulk structure and at the cathode/electrolyte interface of cathodes is still lacking.In this review,the issues related to bulk phase degradation and surface degradation,such as irreversible phase transitions,cation migration,transition metal dissolution,air/moisture instability,intergranular cracking,interfacial reactions,and reactive oxygen loss,are discussed.The latest advances and strategies to improve the stability of layered oxide cathodes and full cells are provided,as well as our perspectives on the future development of SIBs.
基金National Natural Science Foundation of China(Nos.52174269,52374293)Science and Technology Innovation Program of Hunan Province,China(Nos.2024CK1009,2022RC1123)。
文摘A tunable oxidization and reduction strategy was proposed to directly regenerate spent LiFePO_(4)/C cathode materials by oxidizing excessive carbon powders with the addition of FePO_(4).Experimental results indicate that spent LiFePO_(4)/C cathode materials with good performance can be regenerated by roasting at 650℃ for 11 h with the addition ofLi_(2)CO_(3),FePO_(4),V_(2)O_(5),and glucose.V_(2)O_(5) is added to improve the cycle performance of regenerated cathode materials.Glucose is used to revitalize the carbon layers on the surface of spent LiFePO_(4)/C particles for improving their conductivity.The regenerated V-doped LiFePO_(4)/C shows an excellent electrochemical performance with the discharge specific capacity of 161.36 mA·h/g at 0.2C,under which the capacity retention is 97.85%after 100 cycles.
基金financially supported by the National Natural Science Foundation of China(NSFC)(52274295)the Natural Science Foundation of Hebei Province(E2021501029)+3 种基金the Fundamental Research Funds for the Central Universities(N2423051,N2423053,N2302016,N2423019,N2323013,N2423005)the Science and Technology Project of Hebei Education Department(QN2024238)the Basic Research Program Project of Shijiazhuang City for Universities Stationed in Hebei Province(241790937A)the Science and Technology Project of Qinhuangdao City in 2023.
文摘Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the Jahn-Teller(JT)effect associated with Mn-ion,the cathode exhibits poor structural stability.Herein,we propose a strategy to enhance structural stability by introducing robust metal-oxygen(M-O)bonds,which can realize the pinning effect to constrain the distortion in the transition metal(TM)layer.Concurrently,all the elements employed have exceptionally high crustal abundance.As a proof of concept,the designed K_(0.5)Mn_(0.9)Mg_(0.025)Ti_(0.025)Al_(0.05)O_(2)cathode exhibited a discharge capacity of approximately 100 mA h g^(-1)at 20 mA g^(-1)with 79%capacity retention over 50 cycles,and 73%capacity retention over 200 cycles at 200 mA g^(-1),showcased much better battery performance than the designed cathode with less robust M-O bonds.The properties of the formed M-O bonds were investigated using theoretical calculations.The enhanced dynamics,mitigated JT effect,and improved structural stability were elucidated through the in-situ X-ray diffractometer(XRD),in-situ electrochemical impedance spectroscopy(EIS)(and distribution of relaxation times(DRT)method),and ex-situ X-ray absorption fine structure(XAFS)tests.This study holds substantial reference value for the future design of costeffective Mn-based layered cathodes for PIBs.
基金supported by the National Natural Science Foundation of China(52372249)support by the Program of Shanghai Academic Research Leader(21XD1424400)。
文摘Vanadium pentoxide(V_(2)O_(5))displays the characteristics of high theoretical specific capacity,high operating voltage,and adjustable layered structure,possessing the considerable potential as cathode in magnesium metal batteries(MMBs).Nevertheless,the large charge-radius ratio of Mg^(2+)induces the strong interactions of Mg^(2+)with solvent molecules of electrolyte and anionic framework of cathode,resulting in a notable voltage polarization and structural deterioration during cycling process.Herein,an in-situ multi-scale structural engineering is proposed to activate the interlayer-expanded V_(2)O_(5)cathode(pillared by tetrabutylammonium cation)via adding hexadecyltrimethylammonium bromide(CTAB)additive into electrolyte.During cycling,the in-situ incorporation of CTA^(+)not only enhances the electrostatic shielding effect and Mg species migration,but also stabilizes the interlayer spacing.Besides,CTA^(+)is prone to be adsorbed on cathode surface and induces the loss-free pulverization and amorphization of electroactive grains,leading to the pronounced effect of intercalation pseudocapacitance.CTAB additive also enables to scissor the Mg^(2+)solvation sheath and tailor the insertion mode of Mg species,further endowing V_(2)O_(5)cathode with fast reaction kinetics.Based on these merits,the corresponding V2O5‖Mg full cells exhibit the remarkable rate performance with capacities as high as 317.6,274.4,201.1,and 132.7 mAh g^(-1)at the high current densities of 0.1,0.2,0.5,and 1 A g^(-1),respectively.Moreover,after 1000 cycles,the capacity is still preserved to be 90,4 mAh g^(-1)at 1 A g^(-1)with an average coulombic efficiency of~100%.Our strategy of synergetic modulations of cathode host and electrolyte solvation structures provides new guidance for the development of high-rate,large-capacity,and long-life MMBs.
基金supported by the National Natural Science Foundation of China(no.52374301)the Open Project of Guangxi Key Laboratory of Electrochemical Energy Materials(no.GXUEEM2024001)+2 种基金the Hebei Provincial Natural Science Foundation(no.E2024501010)the Shijiazhuang Basic Research Project(no.241790667A)the Performance subsidy fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province(no.22567627H)。
文摘Sodium-ion batteries(SIBs)have the advantages of environmental friendliness,cost-effectiveness,and high energy density,which are considered one of the most promising candidates for lithium-ion batteries(LIBs).The cathode materials influence the cost and energy output of SIBs.Therefore,the development of advanced cathode materials is crucial for the practical application of SIBs.Among various cathode materials,layered transition metal oxides(LTMOs)have received widespread attention owing to their straightforward preparation,abundant availability,and cost-competitiveness.Notably,layered Fe-based oxide cathodes are deemed to be one of the most promising candidates for the lowest price and easy-to-improve performance.Nevertheless,the challenges such as severe phase transitions,sluggish diffusion kinetics and interfacial degradation pose significant hurdles in achieving high-performance cathodes for SIBs.This review first briefly outlines the classification of layered structures and the working principle of layered oxides.Then,recent advances in modification strategies employed to address current issues with layered iron-based oxide cathodes are systematically reviewed,including ion doping,biphasic engineering and surface modification.Furthermore,the review not only outlines the prospects and development directions for layered Fe-based oxide cathodes but also provides novel insights and directions for future research endeavors for SIBs.
基金financial support from the Natural Science Foundation of Shandong Province of China(ZR2023ME051,ZR2019MEM020)。
文摘Facilitating anion redox chemistry is an effective strategy to increase the capacity of layered oxides for sodium-ion batteries.Nevertheless,there remains a paucity of literature pertaining to the oxygen redox chemistry of O3-type layered oxide cathode materials.This work systematically investigates the effect of Fe doping on the anionic oxygen redox chemistry and electrochemical reactions in O3-NaNi_(0.4)Cu_(0.1)Mn_(0.4)Ti_(0.1)O_(2).The results of the density functional theory(DFT)calculations indicate that the electrons of the O 2p occupy a higher energy level.In the ex-situ X-ray photoelectron spectrometer(XPS)of O 1s,the addition of Fe facilitates the lattice oxygen(O^(n-))to exhibit enhanced activity at 4.45 V.The in-situ X-ray diffraction(XRD)demonstrates that the doping of Fe effectively suppresses the Y phase transition at high voltages.Furthermore,the Galvanostatic Intermittent Titration Technique(GITT)data indicate that Fe doping significantly increases the Na~+migration rate at high voltages.Consequently,the substitution of Fe can elevate the cut-off voltage to 4.45 V,thereby facilitating electron migration from O^(2-).The redox of O^(2-)/O^(n-)(n<2)contributes to the overall capacity.O3-Na(Ni_(0.4)Cu_(0.1)Mn_(0.4)Ti_(0.1))_(0.92)Fe_(0.08)O_(2)provides an initial discharge specific capacity of 180.55 mA h g^(-1)and71.6%capacity retention at 0.5 C(1 C=240 mA g^(-1)).This work not only demonstrates the beneficial impact of Fe substitution for promoting the redox activity and reversibility of O^(2-)in 03-type layered oxides,but also guarantees the structural integrity of the cathode materials at high voltages(>4.2 V).It offers a novel avenue for investigating the anionic redox reaction in O3-type layered oxides to design advanced cathode materials.
基金support of the National Natural Science Foundation of China(Grant No.22225801,22178217 and 22308216)supported by the Fundamental Research Funds for the Central Universities,conducted at Tongji University.
文摘Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.
基金financially supported by the National Natural Science Foundation of China(Nos.22102212 and 22479067).
文摘High-nickel ternary cathodes hold a great application prospect in solid-state lithium metal batteries to achieve high-energy density,but they still suffer from structural instability and detrimental side reactions with the solid-state electrolytes.To circumvent these issues,a continuous uniform layer polyacrylonitrile(PAN)was introduced on the surface of LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2) via in situ polymerization of acrylonitrile(AN).Furthermore,the partial-cyclized treatment of PAN(cPAN)coating layer presents high ionic and electron conductivity,which can accelerate interfacial Li+and electron diffusion simultaneously.And the thermodynamically stabilized cPAN coating layer cannot only effectively inhibit detrimental side reactions between cathode and solid-state electrolytes but also provide a homogeneous stress to simultaneously address the problems of bulk structural degradation,which contributes to the exceptional mechanical and electrochemical stabilities of the modified electrode.Besides,the coordination bond interaction between the cPAN and NCM811 can suppress the migration of Ni to elevate the stability of the crystal structure.Benefited from these,the In-cPAN-260@NCM811 shows excellent cycling performance with a retention of 86.8%after 300 cycles and superior rate capability.And endow the solid-state battery with thermal safety stability even at hightemperature extreme environment.This facile and scalable surface engineering represents significant progress in developing high-performance solid-state lithium metal batteries.
基金supported by the Hainan Province Science and Technology Special Fund(ZDYF2021SHFZ232,ZDYF2023GXJS022)the Hainan Province Postdoctoral Science Foundation(300333)the National Natural Science Foundation of China(21203008,21975025,12274025,22372008)。
文摘Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress and strain,causes micro-cracks and interfacial contact loss at potentials>4.3 V(vs.Li/Li^(+)).Quantifying micro-cracks and voids in CAMs can reveal the degradation mechanisms of Ni-rich oxidebased cathodes during electrochemical cycling.Nonetheless,the origin of electrochemical-mechanical damage remains unclear.Herein,We have developed a multifunctional PEG-based soft buffer layer(SBL)on the surface of carbon black(CB).This layer functions as a percolation network in the single crystal LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)and Li_(6)PS_(5)Cl composite cathode layer,ensuring superior ionic conductivity,reducing void formation and particle cracking,and promoting uniform utilization of the cathode active material in all-solid-state lithium batteries(ASSLBs).High-angle annular dark-field STEM combined with nanoscale X-ray holo-tomography and plasma-focused ion beam scanning electron microscopy confirmed that the PEG-based SBL mitigated strain induced by reaction heterogeneity in the cathode.This strain produces lattice stretches,distortions,and curved transition metal oxide layers near the surface,contributing to structural degradation at elevated voltages.Consequently,ASSLBs with a LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)cathode containing LCCB-10(CB/PEG mass ratio:100/10)demonstrate a high areal capacity(2.53 mAh g^(-1)/0.32 mA g^(-1))and remarkable rate capability(0.58 mAh g^(-1)at 1.4 mA g^(-1)),with88%capacity retention over 1000 cycles.
基金supported by the National Key R&D Program of China(2022YFB3803501)the National Natural Science Foundation of China(22179008,22209156)+5 种基金support from the Beijing Nova Program(20230484241)support from the China Postdoctoral Science Foundation(2024M754084)the Postdoctoral Fellowship Program of CPSF(GZB20230931)support from beamline BL08U1A of Shanghai Synchrotron Radiation Facility(2024-SSRF-PT-506950)beamline 1W1B of the Beijing Synchrotron Radiation Facility(2021-BEPC-PT-006276)support from Initial Energy Science&Technology Co.,Ltd(IEST)。
文摘The implementation of ultrahigh-Ni cathodes in high-energy lithium-ion batteries(LIBs)is constrained by significant structural and interfacial degradation during cycling.In this study,doping-induced surface restructuring in ultrahigh-nickel cathode materials is rapidly facilitated through an ultrafast Joule heating method.Density functional theory(DFT)calculations,synchrotron X-ray absorption spectroscopy(XAS),and single-particle force test confirmed the establishment of a stable crystal framework and lattice oxygen,which mitigated H2-H3 phase transitions and improved structural reversibility.Additionally,the Sc doping process exhibits a pinning effect on the grain boundaries,as shown by scanning transmission electron microscopy(STEM),enhancing Li~+diffusion kinetics and decreasing mechanical strain during cycling.The in situ development of a cation-mixing layer at grain boundaries also creates a robust cathode/electrolyte interphase,effectively reducing interfacial parasitic reactions and transition metal dissolution,as validated by STEM and time-of-flight secondary ion mass spectrometry(TOF-SIMS).These synergistic modifications reduce particle cracking and surface/interface degradation,leading to enhanced rate capability,structural integrity,and thermal stability.Consequently,the optimized Sc-modified ultrahigh-Ni cathode(Sc-1)exhibits 93.99%capacity retention after 100 cycles at 1 C(25℃)and87.06%capacity retention after 100 cycles at 1 C(50℃),indicating excellent cycling and thermal stability.By presenting a one-step multifunctional modification approach,this research delivers an extensive analysis of the mechanisms governing the structure,microstructure,and interface properties of nickel-rich layered cathode materials(NCMs).These results underscore the potential of ultrahigh-Ni cathodes as viable candidates for advanced lithium-ion batteries(LIBs)in next-generation electric vehicles(EVs).
基金the financial support from the National Natural Science Foundation of China(No.22209191)Ningbo Key R&D Project(No.2023Z155).
文摘The commercialization of solid oxide fuel cells depends on the cathode,which possesses both high catalytic activity and a thermal-expansion coefficient(TEC)that aligns with the electrolyte.Although the cobalt-based cathode La_(0.6)Sr_(0.4)CoO_(3)(LSC)offers excellent catalytic performance,its TEC is significantly larger than that of the electrolyte.In this study,we mechanically mix Sm_(0.2)Ce_(0.8)O_(2−δ)(SDC)with LSC to create a composite cathode.By incorporating 50wt%SDC,the TEC decreases significantly from 18.29×10^(−6) to 13.90×10^(−6) K^(−1).Under thermal-shock conditions ranging from room temperature to 800℃,the growth rate of polarization resistance is only 0.658%per cycle,i.e.,merely 49%that of pure LSC.The button cell comprising the LSC-SDC composite cathode operates stably for over 900 h without Sr segregation,with a voltage growth rate of 1.11%/kh.A commercial flat-tube cell(active area:70 cm^(2))compris-ing the LSC-SDC composite cathode delivers 54.8 W at 750℃.The distribution of relaxation-time shows that the non-electrode portion is the main rate-limiting step.This study demonstrates that the LSC-SDC mixture strategy effectively improves the compatibility with the electrolyte while maintaining a high output,thus rendering it a promising commercial cathode material.
基金supported by the research project within the program“Excellence Initiative-Research University”for the AGH University of Krakow(IDUB AGH,Action 21)Kun Zheng acknowledges financial support from AGH University of Krakow(No.16.16.210.476).
文摘Minimizing the thermal expansion coefficient(TEC)mismatch between the cathode and electrolyte in solid oxide fuel cells is crucial for achieving stable,durable operation and high performance.Recently,materials with negative thermal expansion(NTE)have at-tracted significant attention as effective additives for tailoring the thermomechanical properties of electrodes and enhancing cell durability.In this work,for the first time,single-phase NTE perovskite Sm_(0.85)Zn_(0.15)MnO_(3−δ)(SZM15)was successfully synthesized via the sol-gel method,eliminating the unwanted ZnO phase typically observed in materials obtained through the conventional solid-state reaction route.The sol-gel approach proved highly advantageous,offering low cost,robustness,excellent chemical homogeneity,precise compositional control,and high phase purity.After optimization of synthesis parameters,a negative TEC of approximately−6.5×10^(−6)K^(−1)was achieved in the 400-850℃range.SZM15 was then incorporated as an additive(10wt%-50wt%)into a SmBa0.5Sr0.5CoCuO_(5+δ)(SBSCCO)cathode to tune the thermomechanical properties with a La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_(3−δ)(LSGM)electrolyte,achieving a minimal TEC mismatch of only 1%.Notably,the SBSCCO+10wt%SZM15 composite cathode exhibited the lowest polarization resistance of 0.019Ω·cm^(2)at 900℃,showing approximately 70%lower than that of the pristine cathode.Excellent long-term stability after 100 h of operation was achieved.In addition,a high peak power density of 680 mW·cm^(−2)was achieved in a Ni-YSZ(yttria-stabilized zirconia)|YSZ|Ce_(0.9)Gd_(0.1)O_(2−δ)(GDC10)|SBSCCO+10wt%SZM15 anode-supported fuel cell at 850℃,highlighting the effectiveness of incorporating NTE materials as a promising strategy for regulating the thermomechanical properties and improving the long-term stability of intermediate temperature solid oxide fuel cells(IT-SOFCs).