期刊文献+
共找到16,543篇文章
< 1 2 250 >
每页显示 20 50 100
EXPERIMENTAL AND THEORETICAL RESEARCH OF ELECTRON EMISSION MECHANISM OF M-TYPE CATHODES 被引量:2
1
作者 Yin Shengyi 《Journal of Electronics(China)》 2014年第2期159-167,共9页
With the most advanced Synchronous Radiation Photoelectron Spectrum(SRPS),the emission mechanism of M-type cathodes has been investigated from the perspective of chemical state.Based on the experimental results of SRP... With the most advanced Synchronous Radiation Photoelectron Spectrum(SRPS),the emission mechanism of M-type cathodes has been investigated from the perspective of chemical state.Based on the experimental results of SRPS analysis,a new model of the electron emission mechanism for M-type cathode is discussed.The main topics in this paper include the research status of electron emission mechanism of M-type cathodes;the advantages of SRPS technology;the distribution of oxygen chemical state on the cathode surface and the evolvement of oxygen chemical state during activation process;the relation between barium chemical state and osmium(Os)-coating;surplus barium and its formula;the characteristics of Os,and other noble metal coatings;the relation between film characteristics and emission performance of cathodes,the inhibition effects to the emission for Platinum(Pt)-coated cathode,etc.At the end of this paper,electron emission mechanism of M-type cathode is summarized and foreseen. 展开更多
关键词 m-type cathodes Synchronous Radiation Photoelectron Spectrum(SRPS) Chemical state OXYGEN Surplus barium
在线阅读 下载PDF
Tackling Challenges and Exploring Opportunities in Cathode Binder Innovation
2
作者 Tingrun Lai Li Wang +3 位作者 Zhibei Liu Adnan Murad Bhayo Yude Wang Xiangming He 《Nano-Micro Letters》 2026年第1期198-228,共31页
Long-life energy storage batteries are integral to energy storage systems and electric vehicles,with lithium-ion batteries(LIBs)currently being the preferred option for extended usage-life energy storage.To further ex... Long-life energy storage batteries are integral to energy storage systems and electric vehicles,with lithium-ion batteries(LIBs)currently being the preferred option for extended usage-life energy storage.To further extend the life span of LIBs,it is essential to intensify investments in battery design,manufacturing processes,and the advancement of ancillary materials.The pursuit of long durability introduces new challenges for battery energy density.The advent of electrode material offers effective support in enhancing the battery’s long-duration performance.Often underestimated as part of the cathode composition,the binder plays a pivotal role in the longevity and electrochemical performance of the electrode.Maintaining the mechanical integrity of the electrode through judicious binder design is a fundamental requirement for achieving consistent long-life cycles and high energy density.This paper primarily concentrates on the commonly employed cathode systems in lithium-ion batteries,elucidates the significance of binders for both,discusses the application status,strengths,and weaknesses of novel binders,and ultimately puts forth corresponding optimization strategies.It underscores the critical function of binders in enhancing battery performance and advancing the sustainable development of lithium-ion batteries,aiming to offer fresh insights and perspectives for the design of high-performance LIBs. 展开更多
关键词 cathode Binder Lithium-Ion Battery Performance Optimization Sustainable Development Innovative Design
在线阅读 下载PDF
Cu/Ti-doped O3-type cathode materials for high cyclic stability of sodium-ion batteries
3
作者 Jingjing Dong Liu Pei +6 位作者 Yifei Wang Yan Liu Xingliang Liu Zhidan Diao Jianling Li Yejing Li Xindong Wang 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期306-314,共9页
The outstanding performance of O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM111)at both high and low temperatures coupled with its impressive specific capacity makes it an excellent cathode material for sodium-ion batte... The outstanding performance of O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM111)at both high and low temperatures coupled with its impressive specific capacity makes it an excellent cathode material for sodium-ion batteries.However,its poor cycling,owing to highpressure phase transitions,is one of its disadvantages.In this study,Cu/Ti was introduced into NFM111 cathode material using a solidphase method.Through both theoretically and experimentally,this study found that Cu doping provides a higher redox potential in NFM111,improving its reversible capacity and charge compensation process.The introduction of Ti would enhance the cycling stability of the material,smooth its charge and discharge curves,and suppress its high-voltage phase transitions.Accordingly,the NaNi_(0.27)Fe_(0.28)Mn_(0.33)Cu_(0.05)Ti_(0.06)O_(2)sample used in the study exhibited a remarkable rate performance of 142.97 mAh·g^(-1)at 0.1 C(2.0-4.2 V)and an excellent capacity retention of 72.81%after 300 cycles at 1C(1C=150 mA·g^(-1)). 展开更多
关键词 sodium-ion batteries Cu/Ti doping cyclic stability layered cathode material
在线阅读 下载PDF
A functional cathode sodium compensation agent for stable sodium-ion batteries 被引量:1
4
作者 Wei Wu Zhenglin Hu +2 位作者 Zhengfei Zhao Aoxuan Wang Jiayan Luo 《Green Energy & Environment》 SCIE EI CAS 2025年第1期173-182,共10页
Hard carbon(HC)is widely used in sodium-ion batteries(SIBs),but its performance has always been limited by lowinitial Coulombic efficiency(ICE)and cycling stability.Cathode compensation agent is a favorable strategy t... Hard carbon(HC)is widely used in sodium-ion batteries(SIBs),but its performance has always been limited by lowinitial Coulombic efficiency(ICE)and cycling stability.Cathode compensation agent is a favorable strategy to make up for the loss of active sodium ions consumed byHCanode.Yet it lacks agent that effectively decomposes to increase the active sodium ions as well as regulate carbon defects for decreasing the irreversible sodium ions consumption.Here,we propose 1,2-dihydroxybenzene Na salt(NaDB)as a cathode compensation agent with high specific capacity(347.9 mAh g^(-1)),lower desodiation potential(2.4–2.8 V)and high utilization(99%).Meanwhile,its byproduct could functionalize HC with more C=O groups and promote its reversible capacity.Consequently,the presodiation hard carbon(pHC)anode exhibits highly reversible capacity of 204.7 mAh g^(-1) with 98%retention at 5 C rate over 1000 cycles.Moreover,with 5 wt%NaDB initially coated on the Na3V2(PO4)3(NVP)cathode,the capacity retention of NVP + NaDB|HC cell could increase from 22%to 89%after 1000 cycles at 1 C rate.This work provides a new avenue to improve reversible capacity and cycling performance of SIBs through designing functional cathode compensation agent. 展开更多
关键词 Hard carbon ICE cathode compensation agent Reversible capacity Stability
在线阅读 下载PDF
Sc-doped strontium iron molybdenum cathode for high-efficiency CO_(2)electrolysis in solid oxide electrolysis cell 被引量:1
5
作者 LIU Zhen ZHANG Lihong +4 位作者 XU Chunming WANG Zhenhua QIAO Jinshuo SUN Wang SUN Kening 《燃料化学学报(中英文)》 北大核心 2025年第2期272-281,共10页
Solid oxide electrolysis cells(SOECs)can effectively convert CO_(2)into high value-added CO fuel.In this paper,Sc-doped Sr_(2)Fe_(1.5)Mo_(0.3)Sc_(0.2)O_(6−δ)(SFMSc)perovskite oxide material is synthesized via solid-p... Solid oxide electrolysis cells(SOECs)can effectively convert CO_(2)into high value-added CO fuel.In this paper,Sc-doped Sr_(2)Fe_(1.5)Mo_(0.3)Sc_(0.2)O_(6−δ)(SFMSc)perovskite oxide material is synthesized via solid-phase method as the cathode for CO_(2)electrolysis by SOECs.XRD confirms that SFMSc exhibits a stable cubic phase crystal structure.The experimental results of TPD,TG,EPR,CO_(2)-TPD further demonstrate that Sc-doping increases the concentration of oxygen vacancy in the material and the chemical adsorption capacity of CO_(2)molecules.Electrochemical tests reveal that SFMSc single cell achieves a current density of 2.26 A/cm^(2) and a lower polarization impedance of 0.32Ω·cm^(2) at 800°C under the applied voltage of 1.8 V.And no significant performance attenuation or carbon deposition is observed after 80 h continuous long-term stability test.This study provides a favorable support for the development of SOEC cathode materials with good electro-catalytic performance and stability. 展开更多
关键词 solid oxide electrolysis cells cathode PEROVSKITE ELECTRO-CATALYSIS element doping
在线阅读 下载PDF
Recent advance in coating strategies for lithium-rich manganese-based cathode materials 被引量:1
6
作者 Qianchen Wang Lei Liu +3 位作者 Hudong Li Gaojing Yang Abdullah NAlodhayb Jianmin Ma 《Journal of Materials Science & Technology》 2025年第4期274-294,共21页
The growing need for higher energy density in rechargeable batteries necessitates the exploration of cathode materials with enhanced specific energy for lithium-ion batteries.Due to their exceptional cost-effectivenes... The growing need for higher energy density in rechargeable batteries necessitates the exploration of cathode materials with enhanced specific energy for lithium-ion batteries.Due to their exceptional cost-effectiveness and specific capacity,lithium-rich manganese-based cathode materials(LRMs)obtain in-creasing attention in the pursuit of enhancing energy density and reducing costs.The implementation has faced obstacles in various applications due to substantial capacity and voltage degradation,insufficient safety performance,and restricted rate capability during cycling.These issues arise from the migration of transition metal,the release of oxygen,and structural transformation.In this review,we provide an integrated survey of the structure,lithium storage mechanism,challenges,and origins of LRMs,as well as recent advancements in various coating strategies.Particularly,the significance of optimizing the design of the cathode electrolyte interphase was emphasized to enhance electrode performance.Furthermore,future perspective was also addressed alongside in-situ measurements,advanced synthesis techniques,and the application of machine learning to overcome encountered challenges in LRMs. 展开更多
关键词 Lithium-rich manganese-based cathode materials Lithium-ion batteries Coating strategies Design of cathode electrolyte interphase
原文传递
Research progress of high-entropy cathode materials for sodium-ion batteries 被引量:2
7
作者 Fan Wu Shaoyang Wu +2 位作者 Xin Ye Yurong Ren Peng Wei 《Chinese Chemical Letters》 2025年第4期20-33,共14页
In recent years,sodium-ion batteries(SIBs)have become one of the hot discussions and have gradually moved toward industrialization.However,there are still some shortcomings in their performance that have not been well... In recent years,sodium-ion batteries(SIBs)have become one of the hot discussions and have gradually moved toward industrialization.However,there are still some shortcomings in their performance that have not been well addressed,including phase transition,structural degradation,and voltage platform.High entropy materials have recently gained significant attention from researchers due to their effects on thermodynamics,dynamics,structure,and performance.Researchers have attempted to use these materials in sodium-ion batteries to overcome their problems,making it a modification method.This paper aims to discuss the research status of high-entropy cathode materials for sodium-ion batteries and summarize their effects on sodium-ion batteries from three perspectives:Layered oxide,polyanion,and Prussian blue.The infiuence on material structure,the inhibition of phase transition,and the improvement of ion diffusivity are described.Finally,the advantages and disadvantages of high-entropy cathode materials for sodium-ion batteries are summarized,and their future development has prospected. 展开更多
关键词 High-entropy material Sodium-ion battery cathode materials Phase transition Structure
原文传递
Mini review:Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries 被引量:2
8
作者 Lingjiang Kou Yong Wang +5 位作者 Jiajia Song Taotao Ai Wenhu Li Mohammad Yeganeh Ghotbi Panya Wattanapaphawong Koji Kajiyoshi 《Chinese Chemical Letters》 2025年第1期214-224,共11页
As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability... As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density.This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs,including hydrogen evolution reaction,phase transformation and dissolution phenomena.To address these challenges,we propose a range of advanced strategies aimed at improving the stability of cathode materials.These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions.Additionally,we emphasize the importance of designing antioxidant electrolytes,with a focus on understanding and optimizing electrolyte decomposition mechanisms.The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs.By integrating these cutting-edge approaches,this review anticipates substantial advancements in the stability of high-voltage cathode materials,paving the way for the broader application and development of AZIBs in energy storage. 展开更多
关键词 Aqueous zinc ion battery High-voltage cathode materials Stability enhancement Failure mechanisms Electrolyte optimization
原文传递
Insights into chemical-mechanical degradation and modification strategies of layered oxide cathode materials of sodium ion batteries 被引量:1
9
作者 Tong Zhang Yuesen Li +4 位作者 Zihao Song Yaohui Huang Fei Li Shaoan Cheng Fujun Li 《Journal of Energy Chemistry》 2025年第4期294-315,共22页
Sodium-ion batteries(SIBs)have attracted significant attention in large-scale energy storage system because of their abundant sodium resource and cost-effectiveness.Layered oxide materials are particularly promising a... Sodium-ion batteries(SIBs)have attracted significant attention in large-scale energy storage system because of their abundant sodium resource and cost-effectiveness.Layered oxide materials are particularly promising as SIBs cathodes due to their high theoretical capacities and facile synthesis.However,their practical applications are hindered by the limitations in energy density and cycling stability.The comprehensive understanding of failure mechanisms within bulk structure and at the cathode/electrolyte interface of cathodes is still lacking.In this review,the issues related to bulk phase degradation and surface degradation,such as irreversible phase transitions,cation migration,transition metal dissolution,air/moisture instability,intergranular cracking,interfacial reactions,and reactive oxygen loss,are discussed.The latest advances and strategies to improve the stability of layered oxide cathodes and full cells are provided,as well as our perspectives on the future development of SIBs. 展开更多
关键词 Layered oxide cathode Failure mechanism Intercalation chemistry Sodium-ion batteries SUSTAINABILITY
在线阅读 下载PDF
Facile regeneration of spent lithium-ion battery cathode materials via tunable oxidization and reduction strategy 被引量:1
10
作者 Xue-hu ZHONG Wen-qing QIN +1 位作者 Jiang ZHOU Jun-wei HAN 《Transactions of Nonferrous Metals Society of China》 2025年第2期653-668,共16页
A tunable oxidization and reduction strategy was proposed to directly regenerate spent LiFePO_(4)/C cathode materials by oxidizing excessive carbon powders with the addition of FePO_(4).Experimental results indicate t... A tunable oxidization and reduction strategy was proposed to directly regenerate spent LiFePO_(4)/C cathode materials by oxidizing excessive carbon powders with the addition of FePO_(4).Experimental results indicate that spent LiFePO_(4)/C cathode materials with good performance can be regenerated by roasting at 650℃ for 11 h with the addition ofLi_(2)CO_(3),FePO_(4),V_(2)O_(5),and glucose.V_(2)O_(5) is added to improve the cycle performance of regenerated cathode materials.Glucose is used to revitalize the carbon layers on the surface of spent LiFePO_(4)/C particles for improving their conductivity.The regenerated V-doped LiFePO_(4)/C shows an excellent electrochemical performance with the discharge specific capacity of 161.36 mA·h/g at 0.2C,under which the capacity retention is 97.85%after 100 cycles. 展开更多
关键词 spent lithium-ion batteries direct regeneration cathode materials ROASTING circular economy
在线阅读 下载PDF
Introducing strong metal–oxygen bonds to suppress the Jahn-Teller effect and enhance the structural stability of Ni/Co-free Mn-based layered oxide cathodes for potassium-ion batteries 被引量:1
11
作者 Yicheng Lin Shaohua Luo +5 位作者 Pengyu Li Jun Cong Wei Zhao Lixiong Qian Qi Sun Shengxue Yan 《Journal of Energy Chemistry》 2025年第2期713-722,I0015,共11页
Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the ... Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the Jahn-Teller(JT)effect associated with Mn-ion,the cathode exhibits poor structural stability.Herein,we propose a strategy to enhance structural stability by introducing robust metal-oxygen(M-O)bonds,which can realize the pinning effect to constrain the distortion in the transition metal(TM)layer.Concurrently,all the elements employed have exceptionally high crustal abundance.As a proof of concept,the designed K_(0.5)Mn_(0.9)Mg_(0.025)Ti_(0.025)Al_(0.05)O_(2)cathode exhibited a discharge capacity of approximately 100 mA h g^(-1)at 20 mA g^(-1)with 79%capacity retention over 50 cycles,and 73%capacity retention over 200 cycles at 200 mA g^(-1),showcased much better battery performance than the designed cathode with less robust M-O bonds.The properties of the formed M-O bonds were investigated using theoretical calculations.The enhanced dynamics,mitigated JT effect,and improved structural stability were elucidated through the in-situ X-ray diffractometer(XRD),in-situ electrochemical impedance spectroscopy(EIS)(and distribution of relaxation times(DRT)method),and ex-situ X-ray absorption fine structure(XAFS)tests.This study holds substantial reference value for the future design of costeffective Mn-based layered cathodes for PIBs. 展开更多
关键词 Layered oxide cathodes Potassium-ion batteries Robust M-O bonds Low-cost Jahn-Teller effect
在线阅读 下载PDF
In-situ multi-scale structural engineering of cathode and electrolyte for high-rate and long-life Mg metal batteries 被引量:1
12
作者 Guyue Li Zhenguo Yao Chilin Li 《Journal of Energy Chemistry》 2025年第6期44-53,I0002,共11页
Vanadium pentoxide(V_(2)O_(5))displays the characteristics of high theoretical specific capacity,high operating voltage,and adjustable layered structure,possessing the considerable potential as cathode in magnesium me... Vanadium pentoxide(V_(2)O_(5))displays the characteristics of high theoretical specific capacity,high operating voltage,and adjustable layered structure,possessing the considerable potential as cathode in magnesium metal batteries(MMBs).Nevertheless,the large charge-radius ratio of Mg^(2+)induces the strong interactions of Mg^(2+)with solvent molecules of electrolyte and anionic framework of cathode,resulting in a notable voltage polarization and structural deterioration during cycling process.Herein,an in-situ multi-scale structural engineering is proposed to activate the interlayer-expanded V_(2)O_(5)cathode(pillared by tetrabutylammonium cation)via adding hexadecyltrimethylammonium bromide(CTAB)additive into electrolyte.During cycling,the in-situ incorporation of CTA^(+)not only enhances the electrostatic shielding effect and Mg species migration,but also stabilizes the interlayer spacing.Besides,CTA^(+)is prone to be adsorbed on cathode surface and induces the loss-free pulverization and amorphization of electroactive grains,leading to the pronounced effect of intercalation pseudocapacitance.CTAB additive also enables to scissor the Mg^(2+)solvation sheath and tailor the insertion mode of Mg species,further endowing V_(2)O_(5)cathode with fast reaction kinetics.Based on these merits,the corresponding V2O5‖Mg full cells exhibit the remarkable rate performance with capacities as high as 317.6,274.4,201.1,and 132.7 mAh g^(-1)at the high current densities of 0.1,0.2,0.5,and 1 A g^(-1),respectively.Moreover,after 1000 cycles,the capacity is still preserved to be 90,4 mAh g^(-1)at 1 A g^(-1)with an average coulombic efficiency of~100%.Our strategy of synergetic modulations of cathode host and electrolyte solvation structures provides new guidance for the development of high-rate,large-capacity,and long-life MMBs. 展开更多
关键词 Vanadium pentoxide cathode Electrolyte additive Solvation structure Interface manipulation Magnesium metal batteries
在线阅读 下载PDF
Emerging modification strategies for layered Fe-based oxide cathodes toward high-performance sodium-ion batteries 被引量:1
13
作者 Zheng-Xiao Li Yi-Meng Wu +6 位作者 Jun-Wei Yin Peng-Fei Wang Zong-Lin Liu Yan-Xuan Wen Jun-Hong Zhang Yan-Rong Zhu Ting-Feng Yi 《Journal of Energy Chemistry》 2025年第8期122-147,共26页
Sodium-ion batteries(SIBs)have the advantages of environmental friendliness,cost-effectiveness,and high energy density,which are considered one of the most promising candidates for lithium-ion batteries(LIBs).The cath... Sodium-ion batteries(SIBs)have the advantages of environmental friendliness,cost-effectiveness,and high energy density,which are considered one of the most promising candidates for lithium-ion batteries(LIBs).The cathode materials influence the cost and energy output of SIBs.Therefore,the development of advanced cathode materials is crucial for the practical application of SIBs.Among various cathode materials,layered transition metal oxides(LTMOs)have received widespread attention owing to their straightforward preparation,abundant availability,and cost-competitiveness.Notably,layered Fe-based oxide cathodes are deemed to be one of the most promising candidates for the lowest price and easy-to-improve performance.Nevertheless,the challenges such as severe phase transitions,sluggish diffusion kinetics and interfacial degradation pose significant hurdles in achieving high-performance cathodes for SIBs.This review first briefly outlines the classification of layered structures and the working principle of layered oxides.Then,recent advances in modification strategies employed to address current issues with layered iron-based oxide cathodes are systematically reviewed,including ion doping,biphasic engineering and surface modification.Furthermore,the review not only outlines the prospects and development directions for layered Fe-based oxide cathodes but also provides novel insights and directions for future research endeavors for SIBs. 展开更多
关键词 Layered Fe-based oxide cathodes lon doping Biphasic engineering Surface modification Sodium-ion batteries
在线阅读 下载PDF
Facilitating the oxygen redox chemistry in O3-type layered oxide cathode material for sodium-ion batteries by Fe substitution 被引量:1
14
作者 Wei Xiong Zhihao Liu +4 位作者 Wenjia Cheng Jiagui Zheng Yi Zou Xi Chen Yang Liu 《Journal of Energy Chemistry》 2025年第4期59-67,共9页
Facilitating anion redox chemistry is an effective strategy to increase the capacity of layered oxides for sodium-ion batteries.Nevertheless,there remains a paucity of literature pertaining to the oxygen redox chemist... Facilitating anion redox chemistry is an effective strategy to increase the capacity of layered oxides for sodium-ion batteries.Nevertheless,there remains a paucity of literature pertaining to the oxygen redox chemistry of O3-type layered oxide cathode materials.This work systematically investigates the effect of Fe doping on the anionic oxygen redox chemistry and electrochemical reactions in O3-NaNi_(0.4)Cu_(0.1)Mn_(0.4)Ti_(0.1)O_(2).The results of the density functional theory(DFT)calculations indicate that the electrons of the O 2p occupy a higher energy level.In the ex-situ X-ray photoelectron spectrometer(XPS)of O 1s,the addition of Fe facilitates the lattice oxygen(O^(n-))to exhibit enhanced activity at 4.45 V.The in-situ X-ray diffraction(XRD)demonstrates that the doping of Fe effectively suppresses the Y phase transition at high voltages.Furthermore,the Galvanostatic Intermittent Titration Technique(GITT)data indicate that Fe doping significantly increases the Na~+migration rate at high voltages.Consequently,the substitution of Fe can elevate the cut-off voltage to 4.45 V,thereby facilitating electron migration from O^(2-).The redox of O^(2-)/O^(n-)(n<2)contributes to the overall capacity.O3-Na(Ni_(0.4)Cu_(0.1)Mn_(0.4)Ti_(0.1))_(0.92)Fe_(0.08)O_(2)provides an initial discharge specific capacity of 180.55 mA h g^(-1)and71.6%capacity retention at 0.5 C(1 C=240 mA g^(-1)).This work not only demonstrates the beneficial impact of Fe substitution for promoting the redox activity and reversibility of O^(2-)in 03-type layered oxides,but also guarantees the structural integrity of the cathode materials at high voltages(>4.2 V).It offers a novel avenue for investigating the anionic redox reaction in O3-type layered oxides to design advanced cathode materials. 展开更多
关键词 Sodium-ion battery Oxygen redox chemistry O3 layered oxide Doping modification cathode material
在线阅读 下载PDF
Defect Engineering:Can it Mitigate Strong Coulomb Effect of Mg^(2+)in Cathode Materials for Rechargeable Magnesium Batteries?
15
作者 Zhengqing Fan Ruimin Li +3 位作者 Xin Zhang Wanyu Zhao Zhenghui Pan Xiaowei Yang 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期135-159,共25页
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th... Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described. 展开更多
关键词 Rechargeable magnesium battery Sluggish diffusion kinetic Defect engineering cathode materials Ion migration
在线阅读 下载PDF
In Situ Partial-Cyclized Polymerized Acrylonitrile-Coated NCM811 Cathode for High-Temperature≥100℃ Stable Solid-State Lithium Metal Batteries 被引量:1
16
作者 Jiayi Zheng Haolong Jiang +13 位作者 Xieyu Xu Jie Zhao Xia Ma Weiwei Sun Shuangke Liu Wei Xie Yufang Chen ShiZhao Xiong Hui Wang Kai Xie Yu Han Maoyi Yi Chunman Zheng Qingpeng Guo 《Nano-Micro Letters》 2025年第8期399-415,共17页
High-nickel ternary cathodes hold a great application prospect in solid-state lithium metal batteries to achieve high-energy density,but they still suffer from structural instability and detrimental side reactions wit... High-nickel ternary cathodes hold a great application prospect in solid-state lithium metal batteries to achieve high-energy density,but they still suffer from structural instability and detrimental side reactions with the solid-state electrolytes.To circumvent these issues,a continuous uniform layer polyacrylonitrile(PAN)was introduced on the surface of LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2) via in situ polymerization of acrylonitrile(AN).Furthermore,the partial-cyclized treatment of PAN(cPAN)coating layer presents high ionic and electron conductivity,which can accelerate interfacial Li+and electron diffusion simultaneously.And the thermodynamically stabilized cPAN coating layer cannot only effectively inhibit detrimental side reactions between cathode and solid-state electrolytes but also provide a homogeneous stress to simultaneously address the problems of bulk structural degradation,which contributes to the exceptional mechanical and electrochemical stabilities of the modified electrode.Besides,the coordination bond interaction between the cPAN and NCM811 can suppress the migration of Ni to elevate the stability of the crystal structure.Benefited from these,the In-cPAN-260@NCM811 shows excellent cycling performance with a retention of 86.8%after 300 cycles and superior rate capability.And endow the solid-state battery with thermal safety stability even at hightemperature extreme environment.This facile and scalable surface engineering represents significant progress in developing high-performance solid-state lithium metal batteries. 展开更多
关键词 Solid-state lithium metal battery Ni-rich cathode Interface engineering In situ partial-cyclized PAN High-temperature resistance
在线阅读 下载PDF
Suppressing high voltage chemo-mechanical degradation in single crystal nickel-rich cathodes for high-performance all-solid-state lithium batteries 被引量:1
17
作者 Yirong Xiao Le Yang +5 位作者 Chaoyuan Zeng Ze Hua Shuangquan Qu Niaz Ahmad Ruiwen Shao Wen Yang 《Journal of Energy Chemistry》 2025年第3期377-385,共9页
Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress ... Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress and strain,causes micro-cracks and interfacial contact loss at potentials>4.3 V(vs.Li/Li^(+)).Quantifying micro-cracks and voids in CAMs can reveal the degradation mechanisms of Ni-rich oxidebased cathodes during electrochemical cycling.Nonetheless,the origin of electrochemical-mechanical damage remains unclear.Herein,We have developed a multifunctional PEG-based soft buffer layer(SBL)on the surface of carbon black(CB).This layer functions as a percolation network in the single crystal LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)and Li_(6)PS_(5)Cl composite cathode layer,ensuring superior ionic conductivity,reducing void formation and particle cracking,and promoting uniform utilization of the cathode active material in all-solid-state lithium batteries(ASSLBs).High-angle annular dark-field STEM combined with nanoscale X-ray holo-tomography and plasma-focused ion beam scanning electron microscopy confirmed that the PEG-based SBL mitigated strain induced by reaction heterogeneity in the cathode.This strain produces lattice stretches,distortions,and curved transition metal oxide layers near the surface,contributing to structural degradation at elevated voltages.Consequently,ASSLBs with a LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)cathode containing LCCB-10(CB/PEG mass ratio:100/10)demonstrate a high areal capacity(2.53 mAh g^(-1)/0.32 mA g^(-1))and remarkable rate capability(0.58 mAh g^(-1)at 1.4 mA g^(-1)),with88%capacity retention over 1000 cycles. 展开更多
关键词 Single crystal nickel-rich oxide cathode Lattice stretches and distortions Reaction heterogeneity Percolation network All-solid-state lithium batteries
在线阅读 下载PDF
Synergistic surface restructuring and cation mixing via ultrafast Joule heating enhancing ultrahigh-nickel cathodes for advanced lithium-ion batteries 被引量:1
18
作者 Haoyu Wang Jinyang Dong +10 位作者 Meng Wang Yun Lu Hongyun Zhang Jinzhong Liu Yun Liu Na Liu Ning Li Qing Huang Feng Wu Yuefeng Su Lai Chen 《Journal of Energy Chemistry》 2025年第4期371-382,共12页
The implementation of ultrahigh-Ni cathodes in high-energy lithium-ion batteries(LIBs)is constrained by significant structural and interfacial degradation during cycling.In this study,doping-induced surface restructur... The implementation of ultrahigh-Ni cathodes in high-energy lithium-ion batteries(LIBs)is constrained by significant structural and interfacial degradation during cycling.In this study,doping-induced surface restructuring in ultrahigh-nickel cathode materials is rapidly facilitated through an ultrafast Joule heating method.Density functional theory(DFT)calculations,synchrotron X-ray absorption spectroscopy(XAS),and single-particle force test confirmed the establishment of a stable crystal framework and lattice oxygen,which mitigated H2-H3 phase transitions and improved structural reversibility.Additionally,the Sc doping process exhibits a pinning effect on the grain boundaries,as shown by scanning transmission electron microscopy(STEM),enhancing Li~+diffusion kinetics and decreasing mechanical strain during cycling.The in situ development of a cation-mixing layer at grain boundaries also creates a robust cathode/electrolyte interphase,effectively reducing interfacial parasitic reactions and transition metal dissolution,as validated by STEM and time-of-flight secondary ion mass spectrometry(TOF-SIMS).These synergistic modifications reduce particle cracking and surface/interface degradation,leading to enhanced rate capability,structural integrity,and thermal stability.Consequently,the optimized Sc-modified ultrahigh-Ni cathode(Sc-1)exhibits 93.99%capacity retention after 100 cycles at 1 C(25℃)and87.06%capacity retention after 100 cycles at 1 C(50℃),indicating excellent cycling and thermal stability.By presenting a one-step multifunctional modification approach,this research delivers an extensive analysis of the mechanisms governing the structure,microstructure,and interface properties of nickel-rich layered cathode materials(NCMs).These results underscore the potential of ultrahigh-Ni cathodes as viable candidates for advanced lithium-ion batteries(LIBs)in next-generation electric vehicles(EVs). 展开更多
关键词 Lithium-ion batteries Ultrahigh-nickel layered cathodes In situ surface doping Cation mixing layer Structure and thermal stability
在线阅读 下载PDF
Enhancing performance and stability of Sm_(0.2)Ce_(0.8)O_(1.9)-decorated La0.6Sr0.4CoO3−δ composite cathode in flat-tube solid oxide fuel cell 被引量:1
19
作者 Zixiang Pei Jie Zhang +5 位作者 Yang Zhang Lizeng Han Tiancheng Fan Yang Wu Jianxin Wang Wanbing Guan 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2676-2688,共13页
The commercialization of solid oxide fuel cells depends on the cathode,which possesses both high catalytic activity and a thermal-expansion coefficient(TEC)that aligns with the electrolyte.Although the cobalt-based ca... The commercialization of solid oxide fuel cells depends on the cathode,which possesses both high catalytic activity and a thermal-expansion coefficient(TEC)that aligns with the electrolyte.Although the cobalt-based cathode La_(0.6)Sr_(0.4)CoO_(3)(LSC)offers excellent catalytic performance,its TEC is significantly larger than that of the electrolyte.In this study,we mechanically mix Sm_(0.2)Ce_(0.8)O_(2−δ)(SDC)with LSC to create a composite cathode.By incorporating 50wt%SDC,the TEC decreases significantly from 18.29×10^(−6) to 13.90×10^(−6) K^(−1).Under thermal-shock conditions ranging from room temperature to 800℃,the growth rate of polarization resistance is only 0.658%per cycle,i.e.,merely 49%that of pure LSC.The button cell comprising the LSC-SDC composite cathode operates stably for over 900 h without Sr segregation,with a voltage growth rate of 1.11%/kh.A commercial flat-tube cell(active area:70 cm^(2))compris-ing the LSC-SDC composite cathode delivers 54.8 W at 750℃.The distribution of relaxation-time shows that the non-electrode portion is the main rate-limiting step.This study demonstrates that the LSC-SDC mixture strategy effectively improves the compatibility with the electrolyte while maintaining a high output,thus rendering it a promising commercial cathode material. 展开更多
关键词 solid oxide fuel cell composite cathode lanthanum strontium cobalt oxide samarium-doped cerium oxide thermal expan-sion flat tube
在线阅读 下载PDF
Tuning negative thermal expansion in Sm_(0.85)Zn_(0.15)MnO_(3−δ)via synthesis optimization for enhancing the stability of heterostructured solid oxide fuel cell cathodes 被引量:1
20
作者 Jakub Fudalewski Piotr Winiarz Kun Zheng 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2689-2698,共10页
Minimizing the thermal expansion coefficient(TEC)mismatch between the cathode and electrolyte in solid oxide fuel cells is crucial for achieving stable,durable operation and high performance.Recently,materials with ne... Minimizing the thermal expansion coefficient(TEC)mismatch between the cathode and electrolyte in solid oxide fuel cells is crucial for achieving stable,durable operation and high performance.Recently,materials with negative thermal expansion(NTE)have at-tracted significant attention as effective additives for tailoring the thermomechanical properties of electrodes and enhancing cell durability.In this work,for the first time,single-phase NTE perovskite Sm_(0.85)Zn_(0.15)MnO_(3−δ)(SZM15)was successfully synthesized via the sol-gel method,eliminating the unwanted ZnO phase typically observed in materials obtained through the conventional solid-state reaction route.The sol-gel approach proved highly advantageous,offering low cost,robustness,excellent chemical homogeneity,precise compositional control,and high phase purity.After optimization of synthesis parameters,a negative TEC of approximately−6.5×10^(−6)K^(−1)was achieved in the 400-850℃range.SZM15 was then incorporated as an additive(10wt%-50wt%)into a SmBa0.5Sr0.5CoCuO_(5+δ)(SBSCCO)cathode to tune the thermomechanical properties with a La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_(3−δ)(LSGM)electrolyte,achieving a minimal TEC mismatch of only 1%.Notably,the SBSCCO+10wt%SZM15 composite cathode exhibited the lowest polarization resistance of 0.019Ω·cm^(2)at 900℃,showing approximately 70%lower than that of the pristine cathode.Excellent long-term stability after 100 h of operation was achieved.In addition,a high peak power density of 680 mW·cm^(−2)was achieved in a Ni-YSZ(yttria-stabilized zirconia)|YSZ|Ce_(0.9)Gd_(0.1)O_(2−δ)(GDC10)|SBSCCO+10wt%SZM15 anode-supported fuel cell at 850℃,highlighting the effectiveness of incorporating NTE materials as a promising strategy for regulating the thermomechanical properties and improving the long-term stability of intermediate temperature solid oxide fuel cells(IT-SOFCs). 展开更多
关键词 negative thermal expansion solid oxide fuel cell cathodes for solid oxide fuel cells sol-gel synthesis method
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部