In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autoco...In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autocombustion method. X-ray diffraction (XRD), a scanning electronic microscopy ( SEM ), a physical properties measurement system (PPMS-9), and a vector network analyzer were used to analyze their structure, surface morphology, magnetic and absorbing properties, respectively. The results show that the absorbing band of the composite absorbing material is widened and the absorbing strength is increased compared with the pure M-type barium ferrite. The sample with the content of doped graphene oxide of 3% has the minimum reflectivity at 10 to 18 GHz frequencies. Hence, the doped graphene oxide effectively improves the absorbing properties of M-type barium ferrite.展开更多
The La-Co substituted Sr1–xLaxFe12–xCoxO19 (x=0–0.5) ferrites with appropriate Bi2O3 additive were prepared by conventional sintering method and microwave sintering method at low sintering temperatures compatible w...The La-Co substituted Sr1–xLaxFe12–xCoxO19 (x=0–0.5) ferrites with appropriate Bi2O3 additive were prepared by conventional sintering method and microwave sintering method at low sintering temperatures compatible with LTCC (low temperature co-fired ceramics) systems, and their sintering behavior was chiefly investigated, including the crystal structure, saturation magnetizationMs, magnetic anisotropy fieldHa, intrinsic coercivityHci, and Curie temperatureTC. Experiment results clearly showed that the pure M-type crystal phase was successfully obtained when the La-Co substitution amountx did not exceed 0.3. However, the single M-type phase structure transformed to multiphase structure with further increased x, where the M-type phase coexisted with the non-magnetic phase such asα-Fe2O3 phase, La2O3 phase, and LaCoO3 phase. Appropriate La-Co substitution improved theMs (>62 emu/g),Ha (>1400 kA/m), andHci (>320 kA/m) for the ferrites withx varying from 0.1 to 0.3, but theTC decreased with increasing substitution amount. More-over, the microwave sintered ferrites could provide largerHci and similarMs compared with the conventional sintered ferrites.展开更多
La-Co substituted M-type barium ferrites (BaM) were prepared by traditional solid state method and sintered at low tem- perature (1173 K). X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrat...La-Co substituted M-type barium ferrites (BaM) were prepared by traditional solid state method and sintered at low tem- perature (1173 K). X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) were employed to investigate the influence of La-Co on the structure and magnetic properties of the samples. By sintering at 1173 K for 6 h in air, single phase M-type barium ferrites with chemical composition of Ba(LaCo)xFel〉z^Oj9 (x=0.0~).5) were formed. M-H curves showed that the magnetic properties of barium ferrites were obviously effected by La-Co substitution. The saturation magnetization (Ms) and coercivity (He) reached the maximum value of 65.15 AmZ/kg and 4165 Oe, respectively. This behavior was attributed to the sites of La-Co substitutions and the particles size. SEM revealed that the shape of ferrite particles was influenced by La-Co substitution.展开更多
The effects of heat treatment conditions on the magnetic properties and microstructure of M-type strontium ferrite according to calcination temperature were analyzed.Strontium ferrite Sr0.06Ca0.52La0.52Fe11.68Co0.22O1...The effects of heat treatment conditions on the magnetic properties and microstructure of M-type strontium ferrite according to calcination temperature were analyzed.Strontium ferrite Sr0.06Ca0.52La0.52Fe11.68Co0.22O19magnetic powder was prepared by a standard ceramic process.During experiments,the calcination temperature was varied from 1180 to 1260℃,and sintering temperature was fixed.While the M-phase(SrFe12O19)existed with hematite(Fe2 O3)in the powder calcined at below 1220℃,the pure M-phase was observed in the powder calcined at over1240℃.With an increase in the calcination temperature,the magnetization of the calcined powder increases,meanwhile,the coercivity decreases.The magnetization is improved by decreasing the lattice constant c and activating the Fe3+-OFe3+superexchange interaction,and the coercivity decreases by the large particle sizes due to the grain growth.展开更多
With the most advanced Synchronous Radiation Photoelectron Spectrum(SRPS),the emission mechanism of M-type cathodes has been investigated from the perspective of chemical state.Based on the experimental results of SRP...With the most advanced Synchronous Radiation Photoelectron Spectrum(SRPS),the emission mechanism of M-type cathodes has been investigated from the perspective of chemical state.Based on the experimental results of SRPS analysis,a new model of the electron emission mechanism for M-type cathode is discussed.The main topics in this paper include the research status of electron emission mechanism of M-type cathodes;the advantages of SRPS technology;the distribution of oxygen chemical state on the cathode surface and the evolvement of oxygen chemical state during activation process;the relation between barium chemical state and osmium(Os)-coating;surplus barium and its formula;the characteristics of Os,and other noble metal coatings;the relation between film characteristics and emission performance of cathodes,the inhibition effects to the emission for Platinum(Pt)-coated cathode,etc.At the end of this paper,electron emission mechanism of M-type cathode is summarized and foreseen.展开更多
Although there is a high demand for absorption-dominant electromagnetic interference(EMI) shielding materials for 5G millimeter-wave(mmWave) frequencies, most current shielding materials are based on reflection-domina...Although there is a high demand for absorption-dominant electromagnetic interference(EMI) shielding materials for 5G millimeter-wave(mmWave) frequencies, most current shielding materials are based on reflection-dominant conductive materials. While there are few absorption-dominant shielding materials proposed with magnetic materials, their working frequencies are usually limited to under 30 GHz. In this study, a novel multi-band absorption-dominant EMI shielding film with M-type strontium ferrites and a conductive grid is proposed. This film shows ultralow EMI reflection of less than 5% in multiple mmWave frequency bands with sub-millimeter thicknesses, while shielding more than 99.9% of EMI. The ultralow reflection frequency bands are controllable by tuning the ferromagnetic resonance frequency of M-type strontium ferrites and composite layer geometries. Two examples of shielding films with ultralow reflection frequencies, one for 39 and 52 GHz 5G telecommunication bands and the other for 60 and 77 GHz autonomous radar bands, are presented. The remarkably low reflectance and thinness of the proposed films provide an important advancement toward the commercialization of EMI shielding materials for 5G mmWave applications.展开更多
The effect of pH values on synthesizing single-phase CoTi-substituted barium M-type ferrite ultrafine powders,and BaCoTiFe- 10O- 19, was investigated employing corrosion versus pH plot (E-pH plot) for metal element,...The effect of pH values on synthesizing single-phase CoTi-substituted barium M-type ferrite ultrafine powders,and BaCoTiFe- 10O- 19, was investigated employing corrosion versus pH plot (E-pH plot) for metal element, thermodynamic calculation, and co-dump coprecipitation. The pH values of complete coprecipitation of all Fe 3+, Ti 4+, Co 2+ and Ba 2+ cations are 9-12 and higher than 7.9 on the basis of E-pH plot analysis and thermodynamic calculation, respectively. The minimum pH value necessary to the formation of single-phase BaCoTiFe- 10O- 19 is 8.5 in the light of the co-dump coprecipitation.These results indicate that the coprecipitation process for synthesizing CoTi-substituted barium M-type ferrite ultrafine powders is simultaneously influenced by synergetic coprecipation effect of cations and coordination effect of Cl-anions. The test time of the minimum pH value corresponding to forming a series of single-phase CoTi-substituted barium M-type ferrite ultrafine powders,and BaCo-xTi-xFe- 12-2xO- 19, may be significantly reduced by using the effects of two new factors on the coprecipitation process.展开更多
An M-type hexagonal ferrite BaTiCoFe10 O19 was prepared by solid phase reaction by a partial 2Fe3+→Ti4+ Co2+ substitution. The morphology observation and phase identification of BaTiCoFe10O19 were carried out by SEM ...An M-type hexagonal ferrite BaTiCoFe10 O19 was prepared by solid phase reaction by a partial 2Fe3+→Ti4+ Co2+ substitution. The morphology observation and phase identification of BaTiCoFe10O19 were carried out by SEM and XRD, and its X-ray powder diffraction data was reported in this paper for the first time. Further, the microwave electromagnetic properties of BaTiCoFe10O19 were measured and discussed.展开更多
The new magnetic degree of freedom provided by the noncollinear structure plays an important role in the development of spintronic devices.In this work,we conducted a systematic study on the magnetic and electrical tr...The new magnetic degree of freedom provided by the noncollinear structure plays an important role in the development of spintronic devices.In this work,we conducted a systematic study on the magnetic and electrical transport properties of the hexagonal noncollinear ferromagnetic MnFeGe alloy.Abnormal Hall effect and moderate magnetoresistance(MR)were observed below the Curie temperature(~200 K)of MnFeGe,in both bulk and thin-film forms.Notably,the perpendicular MR in all samples firstly grows,then quasi-linearly descends with magnetic field increasing,making an irregular M-type MR in the low-field region.It is speculated that the abnormal MR is related to the magnetic domain change,and combined with micromagnetic simulations,the labyrinth domain and sparse bubble formation are verified to exist in MnFeGe.Our work offers an understanding of the lowfield-positive MR in a ferromagnet,as well as raises the possibility of magnetic bubble formation in this noncollinear system.展开更多
The dried gel of SrFe12O19, prepared by citrate approach, was investigated by means of infrared spectroscopy ( IR ), thermogravimetric analysis ( TG ), differential scanning calorimetry ( DSC ), X- ray diffract...The dried gel of SrFe12O19, prepared by citrate approach, was investigated by means of infrared spectroscopy ( IR ), thermogravimetric analysis ( TG ), differential scanning calorimetry ( DSC ), X- ray diffraction( XRD ) techniques, energy dispersive spectroscopy( EDS ), and transmission electron microscopy( TEM ). The thermal instability and the thermal decomposition of low-temperature strontium M-type hexaferrite crystallized at about 600℃ were confirmed for the first time by XRD method. The decomposition of the low-temperature strontium M-type hexaferrite took place at about 688.6℃ determined by DSC investigation. The low-temperature strontium M-type hexaferrite nanopartieles were decomposed into SrFeO2.5 with an orthorthombic cell and Fe2O3 with a tetragonal cell as well as possibl α-Fe2O3 . The agglomerated particles with sizes less than 200 nm obtained at 800℃ were plesiomorphous to strontium M-type hexaferrite. The thermally stable strontium M-type hexaferrite nanopartieles with sizes less than 100um cotdd take place at 900 ℃ . Up to 1000 ℃ , the phose transformotion to form strontium M-type hexaferrite was ended, the calcinations with the sizes more than 1μm were composed of α-Fe2O3 and strontium M-type hexaferrite. The method of distinguishing γ-Fe2O3 with a spinel structure from Fe2O3 with tetragonal cells by using powder XRD method was proposed. Fe2O3 with tetragonal cells to be crystallized before the crystallization of thermally stable strontium M-type hexaferrite was confirmed for the first time. The reason why α- Fe2O3 as an additional phase appears in the calcinations is the cationic vacancy of stroutium M-type hexaferrite , SrFe12-x□O19 (0≤x ≤0.5).展开更多
The present study investigates the influence of La<sup>3+</sup> and Pr<sup>3+</sup> doping on the structural, magnetic properties, and hyperfine fields of Sr<sub>0.7</sub>RE<sub&...The present study investigates the influence of La<sup>3+</sup> and Pr<sup>3+</sup> doping on the structural, magnetic properties, and hyperfine fields of Sr<sub>0.7</sub>RE<sub>0.3</sub>Fe<sub>12-2x</sub> Co<sub>x</sub>Al<sub>x</sub>O<sub>19</sub>, (RE: La<sup>3+</sup> and Pr<sup>3+</sup>, <em>x</em> = 0.0 - 0.8) hexaferrite compounds prepared via auto-combustion technique. The XRD analysis shows a linear decrease in a and c lattice and unit cell volume contraction with the content <em>x</em>. The room temperature magnetic study shows that for the Pr<sup>3+</sup> doped Sr<sub>0.7</sub>Pr<sub>0.3</sub>Fe<sub>12-2x</sub> Co<sub>x</sub>Al<sub>x</sub>O<sub>19</sub> (Pr<sup>3+</sup>-SrM), the magnetization value monotonically decreases while for La<sup>3+</sup> doped Sr<sub>0.7</sub>La<sub>0.3</sub>Fe<sub>12-2x</sub>Co<sub>x</sub>Al<sub>x</sub>O<sub>19</sub> (La<sup>3+</sup>-SrM) magnetization value shows a noticeable increase in magnetization value with <em>x</em>. The coercivity of the Pr<sup>3+</sup>-SrM compound was observed to decrease while that of the La<sup>3+</sup>-SrM compound showed a marked 40% increase at <em>x</em> = 0.2 (~5829 Oe) in comparison to undoped SrFe<sub>12</sub>O<sub>19</sub> (~3918 Oe). A difference in Curie temperature was also observed, with Tc ~ 525<span style="white-space:nowrap;">°</span>C at <em>x</em> = 0.4 for Pr<sup>3+</sup>-SrM and Tc = 505<span style="white-space:nowrap;">°</span>C for <em>x</em> = 0.4 for La<sup>3+</sup>-SrM compound. The observed differences in magnetic properties have been explained on the basis of the site occupancy of Co<sup>2+</sup> and Al<sup>3+</sup> in the presence of rare-earth ions. The presence of non-magnetic rare-earth ion, La<sup>3+</sup>, improved saturation magnetization, and coercivity and deemed suitable replacement for Sr<sup>2+</sup>. The hyperfine parameters namely quadrupole shift showed a decrease with the La3<sup>+</sup> or Pr<sup>3+</sup> doping independent of (Co<sup>2+</sup>-Al<sup>3+</sup>) ions doping. Overall, the Mossbauer analysis suggests that the (Co<sup>2+</sup>-Al<sup>3+</sup>) impurities prefer occupancy at 2<em>a</em> site.展开更多
We theoretically investigate the phenomena of electromagnetically induced grating in an M-type five-level atomic system. It is found that a weak field can be effectively diffracted into high-order directions using a s...We theoretically investigate the phenomena of electromagnetically induced grating in an M-type five-level atomic system. It is found that a weak field can be effectively diffracted into high-order directions using a standing wave coupling field, and different depths of the phase modulation can disperse the diffraction light into different orders. When the phase modulation depth is approximated to the orders of π, 2π and 3π, the first-, second- and third-order diffraction intensity reach the maximum, respectively. Thus we can take advantage of the phase modulation to control the probe light dispersing into the required high orders.展开更多
The G. Abu Garadi area is covered mainly by metasediments, alkali feldspar granites and stream sediments. The alkali feldspar granite is traversed by a major strike-slip fault trending in an N-S direction as well as t...The G. Abu Garadi area is covered mainly by metasediments, alkali feldspar granites and stream sediments. The alkali feldspar granite is traversed by a major strike-slip fault trending in an N-S direction as well as two subordinate sets of faults trending NW to WNW for the first one and NE for the second one. These faults represent the shear zones affected by magmatic (syngenetic) as well as hydrothermal (epigenetic) activities causing alteration of the granitic rocks. The most common alteration features are albitization, greisenization and koalinitization. The mass balance calculations of the studied altered samples show enrichments in Zr, Y, Ni, U, Th and Ga and depletions in Zn, Sr, Nb, Ba, Pb, Cu and V. Only the greisenized samples exhibit a significant enrichment in Nb, ∑REE budget and pronounced lanthanide tetrad effect (M-type), especially TE1,4, while weakly expressed tetrad effects are for the other albitized and koalinitized samples. Mineralogically, the common accessory minerals in the altered samples include samarskite-(Y), betafite, uranothorite, zircon, fluorite and cassiterite. The greisenized granites contain high eU and eTh than the other altered types, where they are characterized by an assemblage of the radioactive minerals; samarskite-(Y), betafite, uranothorite in addition to zircon. The inter-element relationships between U and Th and also their ratios illustrate that the radioelement distribution in these granites is mainly governed by magmatic processes, in addition to post-magmatic ones. The distribution of chemical elements and the fractionation of some isovalents within the shear zone are largely controlled by the newly formed mineral phases. With respect to uranium mobilization, uranium migrated from the host alkali feldspar granites of G. Abu Garadi, while the shear zones acted as traps for the migrated uranium. Moreover, U migrated in the shear zone during greisenization and albitization, and migrated out during koalinitization.展开更多
For the lower bound about the determinant of Hadamard product of A and B, where A is a n × n real positive definite matrix and B is a n × n M-matrix, Jianzhou Liu [SLAM J. Matrix Anal. Appl., 18(2)(1997): 30...For the lower bound about the determinant of Hadamard product of A and B, where A is a n × n real positive definite matrix and B is a n × n M-matrix, Jianzhou Liu [SLAM J. Matrix Anal. Appl., 18(2)(1997): 305-311]obtained the estimated inequality as follows det(A o B)≥a11b11 nⅡk=2(bkk detAk/detAk-1+detBk/detBk-1(k-1Ei=1 aikaki/aii))=Ln(A,B),where Ak is kth order sequential principal sub-matrix of A. We establish an improved lower bound of the form Yn(A,B)=a11baa nⅡk=2(bkk detAk/detAk-1+akk detBk/detBk-1-detAdetBk/detak-1detBk-1)≥Ln(A,B).For more weaker and practical lower bound, Liu given thatdet(A o B)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB(nⅡk=2 k-1Ei=1 aikaki/aiiakk)=(L)n(A,B).We further improve it as Yn(A,B)=(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)+max1≤k≤n wn(A,B,k)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)≥(L)n(A,B).展开更多
基金The National Natural Science Foundation of China(No.51205282)
文摘In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autocombustion method. X-ray diffraction (XRD), a scanning electronic microscopy ( SEM ), a physical properties measurement system (PPMS-9), and a vector network analyzer were used to analyze their structure, surface morphology, magnetic and absorbing properties, respectively. The results show that the absorbing band of the composite absorbing material is widened and the absorbing strength is increased compared with the pure M-type barium ferrite. The sample with the content of doped graphene oxide of 3% has the minimum reflectivity at 10 to 18 GHz frequencies. Hence, the doped graphene oxide effectively improves the absorbing properties of M-type barium ferrite.
基金supported by the National Public Welfare Fund Industry Research(201410026)Scientific Research Foundation of Education Office of Sichuan Province(13Z198)the Young and Middle-aged Academic Leaders of Scientific Research Funds of Chengdu University of Information Technology(J201222)
文摘The La-Co substituted Sr1–xLaxFe12–xCoxO19 (x=0–0.5) ferrites with appropriate Bi2O3 additive were prepared by conventional sintering method and microwave sintering method at low sintering temperatures compatible with LTCC (low temperature co-fired ceramics) systems, and their sintering behavior was chiefly investigated, including the crystal structure, saturation magnetizationMs, magnetic anisotropy fieldHa, intrinsic coercivityHci, and Curie temperatureTC. Experiment results clearly showed that the pure M-type crystal phase was successfully obtained when the La-Co substitution amountx did not exceed 0.3. However, the single M-type phase structure transformed to multiphase structure with further increased x, where the M-type phase coexisted with the non-magnetic phase such asα-Fe2O3 phase, La2O3 phase, and LaCoO3 phase. Appropriate La-Co substitution improved theMs (>62 emu/g),Ha (>1400 kA/m), andHci (>320 kA/m) for the ferrites withx varying from 0.1 to 0.3, but theTC decreased with increasing substitution amount. More-over, the microwave sintered ferrites could provide largerHci and similarMs compared with the conventional sintered ferrites.
基金Project supported by the National Basic Research Program of China(2012CB933100)National Natural Science Foundation of China(61001025,60721001,51132003,61171047)+2 种基金support of the Fundamental Research Funds for the Central Universities (ZYGX2011X006)the second item of strongpoint industry of Guangdong province (2012A090100001)the Opening Fund of State Key Laboratory of Electronic Thin Films and Integrated Devices (KFJJ201102)
文摘La-Co substituted M-type barium ferrites (BaM) were prepared by traditional solid state method and sintered at low tem- perature (1173 K). X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) were employed to investigate the influence of La-Co on the structure and magnetic properties of the samples. By sintering at 1173 K for 6 h in air, single phase M-type barium ferrites with chemical composition of Ba(LaCo)xFel〉z^Oj9 (x=0.0~).5) were formed. M-H curves showed that the magnetic properties of barium ferrites were obviously effected by La-Co substitution. The saturation magnetization (Ms) and coercivity (He) reached the maximum value of 65.15 AmZ/kg and 4165 Oe, respectively. This behavior was attributed to the sites of La-Co substitutions and the particles size. SEM revealed that the shape of ferrite particles was influenced by La-Co substitution.
文摘The effects of heat treatment conditions on the magnetic properties and microstructure of M-type strontium ferrite according to calcination temperature were analyzed.Strontium ferrite Sr0.06Ca0.52La0.52Fe11.68Co0.22O19magnetic powder was prepared by a standard ceramic process.During experiments,the calcination temperature was varied from 1180 to 1260℃,and sintering temperature was fixed.While the M-phase(SrFe12O19)existed with hematite(Fe2 O3)in the powder calcined at below 1220℃,the pure M-phase was observed in the powder calcined at over1240℃.With an increase in the calcination temperature,the magnetization of the calcined powder increases,meanwhile,the coercivity decreases.The magnetization is improved by decreasing the lattice constant c and activating the Fe3+-OFe3+superexchange interaction,and the coercivity decreases by the large particle sizes due to the grain growth.
基金Supported by the National Natural Science Foundation of China(No.60871053)
文摘With the most advanced Synchronous Radiation Photoelectron Spectrum(SRPS),the emission mechanism of M-type cathodes has been investigated from the perspective of chemical state.Based on the experimental results of SRPS analysis,a new model of the electron emission mechanism for M-type cathode is discussed.The main topics in this paper include the research status of electron emission mechanism of M-type cathodes;the advantages of SRPS technology;the distribution of oxygen chemical state on the cathode surface and the evolvement of oxygen chemical state during activation process;the relation between barium chemical state and osmium(Os)-coating;surplus barium and its formula;the characteristics of Os,and other noble metal coatings;the relation between film characteristics and emission performance of cathodes,the inhibition effects to the emission for Platinum(Pt)-coated cathode,etc.At the end of this paper,electron emission mechanism of M-type cathode is summarized and foreseen.
基金supported by the Fundamental Research Program of the Korea Institute of Materials Science (PNK8330)the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (2020M3H4A3081843)。
文摘Although there is a high demand for absorption-dominant electromagnetic interference(EMI) shielding materials for 5G millimeter-wave(mmWave) frequencies, most current shielding materials are based on reflection-dominant conductive materials. While there are few absorption-dominant shielding materials proposed with magnetic materials, their working frequencies are usually limited to under 30 GHz. In this study, a novel multi-band absorption-dominant EMI shielding film with M-type strontium ferrites and a conductive grid is proposed. This film shows ultralow EMI reflection of less than 5% in multiple mmWave frequency bands with sub-millimeter thicknesses, while shielding more than 99.9% of EMI. The ultralow reflection frequency bands are controllable by tuning the ferromagnetic resonance frequency of M-type strontium ferrites and composite layer geometries. Two examples of shielding films with ultralow reflection frequencies, one for 39 and 52 GHz 5G telecommunication bands and the other for 60 and 77 GHz autonomous radar bands, are presented. The remarkably low reflectance and thinness of the proposed films provide an important advancement toward the commercialization of EMI shielding materials for 5G mmWave applications.
文摘The effect of pH values on synthesizing single-phase CoTi-substituted barium M-type ferrite ultrafine powders,and BaCoTiFe- 10O- 19, was investigated employing corrosion versus pH plot (E-pH plot) for metal element, thermodynamic calculation, and co-dump coprecipitation. The pH values of complete coprecipitation of all Fe 3+, Ti 4+, Co 2+ and Ba 2+ cations are 9-12 and higher than 7.9 on the basis of E-pH plot analysis and thermodynamic calculation, respectively. The minimum pH value necessary to the formation of single-phase BaCoTiFe- 10O- 19 is 8.5 in the light of the co-dump coprecipitation.These results indicate that the coprecipitation process for synthesizing CoTi-substituted barium M-type ferrite ultrafine powders is simultaneously influenced by synergetic coprecipation effect of cations and coordination effect of Cl-anions. The test time of the minimum pH value corresponding to forming a series of single-phase CoTi-substituted barium M-type ferrite ultrafine powders,and BaCo-xTi-xFe- 12-2xO- 19, may be significantly reduced by using the effects of two new factors on the coprecipitation process.
基金Funded by Grant-in-Aid Project (No.2000-3) of Interna-tional Centre for Difiraction Data and Open Foundation of State Key Lab of Advanced Tech for Mater. Synthesis and Processing
文摘An M-type hexagonal ferrite BaTiCoFe10 O19 was prepared by solid phase reaction by a partial 2Fe3+→Ti4+ Co2+ substitution. The morphology observation and phase identification of BaTiCoFe10O19 were carried out by SEM and XRD, and its X-ray powder diffraction data was reported in this paper for the first time. Further, the microwave electromagnetic properties of BaTiCoFe10O19 were measured and discussed.
基金financially supported by the National Natural Science Foundation of China (Nos.11604148 and 51771003)
文摘The new magnetic degree of freedom provided by the noncollinear structure plays an important role in the development of spintronic devices.In this work,we conducted a systematic study on the magnetic and electrical transport properties of the hexagonal noncollinear ferromagnetic MnFeGe alloy.Abnormal Hall effect and moderate magnetoresistance(MR)were observed below the Curie temperature(~200 K)of MnFeGe,in both bulk and thin-film forms.Notably,the perpendicular MR in all samples firstly grows,then quasi-linearly descends with magnetic field increasing,making an irregular M-type MR in the low-field region.It is speculated that the abnormal MR is related to the magnetic domain change,and combined with micromagnetic simulations,the labyrinth domain and sparse bubble formation are verified to exist in MnFeGe.Our work offers an understanding of the lowfield-positive MR in a ferromagnet,as well as raises the possibility of magnetic bubble formation in this noncollinear system.
文摘The dried gel of SrFe12O19, prepared by citrate approach, was investigated by means of infrared spectroscopy ( IR ), thermogravimetric analysis ( TG ), differential scanning calorimetry ( DSC ), X- ray diffraction( XRD ) techniques, energy dispersive spectroscopy( EDS ), and transmission electron microscopy( TEM ). The thermal instability and the thermal decomposition of low-temperature strontium M-type hexaferrite crystallized at about 600℃ were confirmed for the first time by XRD method. The decomposition of the low-temperature strontium M-type hexaferrite took place at about 688.6℃ determined by DSC investigation. The low-temperature strontium M-type hexaferrite nanopartieles were decomposed into SrFeO2.5 with an orthorthombic cell and Fe2O3 with a tetragonal cell as well as possibl α-Fe2O3 . The agglomerated particles with sizes less than 200 nm obtained at 800℃ were plesiomorphous to strontium M-type hexaferrite. The thermally stable strontium M-type hexaferrite nanopartieles with sizes less than 100um cotdd take place at 900 ℃ . Up to 1000 ℃ , the phose transformotion to form strontium M-type hexaferrite was ended, the calcinations with the sizes more than 1μm were composed of α-Fe2O3 and strontium M-type hexaferrite. The method of distinguishing γ-Fe2O3 with a spinel structure from Fe2O3 with tetragonal cells by using powder XRD method was proposed. Fe2O3 with tetragonal cells to be crystallized before the crystallization of thermally stable strontium M-type hexaferrite was confirmed for the first time. The reason why α- Fe2O3 as an additional phase appears in the calcinations is the cationic vacancy of stroutium M-type hexaferrite , SrFe12-x□O19 (0≤x ≤0.5).
文摘The present study investigates the influence of La<sup>3+</sup> and Pr<sup>3+</sup> doping on the structural, magnetic properties, and hyperfine fields of Sr<sub>0.7</sub>RE<sub>0.3</sub>Fe<sub>12-2x</sub> Co<sub>x</sub>Al<sub>x</sub>O<sub>19</sub>, (RE: La<sup>3+</sup> and Pr<sup>3+</sup>, <em>x</em> = 0.0 - 0.8) hexaferrite compounds prepared via auto-combustion technique. The XRD analysis shows a linear decrease in a and c lattice and unit cell volume contraction with the content <em>x</em>. The room temperature magnetic study shows that for the Pr<sup>3+</sup> doped Sr<sub>0.7</sub>Pr<sub>0.3</sub>Fe<sub>12-2x</sub> Co<sub>x</sub>Al<sub>x</sub>O<sub>19</sub> (Pr<sup>3+</sup>-SrM), the magnetization value monotonically decreases while for La<sup>3+</sup> doped Sr<sub>0.7</sub>La<sub>0.3</sub>Fe<sub>12-2x</sub>Co<sub>x</sub>Al<sub>x</sub>O<sub>19</sub> (La<sup>3+</sup>-SrM) magnetization value shows a noticeable increase in magnetization value with <em>x</em>. The coercivity of the Pr<sup>3+</sup>-SrM compound was observed to decrease while that of the La<sup>3+</sup>-SrM compound showed a marked 40% increase at <em>x</em> = 0.2 (~5829 Oe) in comparison to undoped SrFe<sub>12</sub>O<sub>19</sub> (~3918 Oe). A difference in Curie temperature was also observed, with Tc ~ 525<span style="white-space:nowrap;">°</span>C at <em>x</em> = 0.4 for Pr<sup>3+</sup>-SrM and Tc = 505<span style="white-space:nowrap;">°</span>C for <em>x</em> = 0.4 for La<sup>3+</sup>-SrM compound. The observed differences in magnetic properties have been explained on the basis of the site occupancy of Co<sup>2+</sup> and Al<sup>3+</sup> in the presence of rare-earth ions. The presence of non-magnetic rare-earth ion, La<sup>3+</sup>, improved saturation magnetization, and coercivity and deemed suitable replacement for Sr<sup>2+</sup>. The hyperfine parameters namely quadrupole shift showed a decrease with the La3<sup>+</sup> or Pr<sup>3+</sup> doping independent of (Co<sup>2+</sup>-Al<sup>3+</sup>) ions doping. Overall, the Mossbauer analysis suggests that the (Co<sup>2+</sup>-Al<sup>3+</sup>) impurities prefer occupancy at 2<em>a</em> site.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11274112 and 11474092the Key Project of Shanghai Municipal Education Commission under Grant No 14ZZ056+1 种基金the Shanghai Natural Science Fund Project under Grant No14ZR1410300the Key Research Project of Henan Province Education Department under Grant No 13A140818
文摘We theoretically investigate the phenomena of electromagnetically induced grating in an M-type five-level atomic system. It is found that a weak field can be effectively diffracted into high-order directions using a standing wave coupling field, and different depths of the phase modulation can disperse the diffraction light into different orders. When the phase modulation depth is approximated to the orders of π, 2π and 3π, the first-, second- and third-order diffraction intensity reach the maximum, respectively. Thus we can take advantage of the phase modulation to control the probe light dispersing into the required high orders.
文摘The G. Abu Garadi area is covered mainly by metasediments, alkali feldspar granites and stream sediments. The alkali feldspar granite is traversed by a major strike-slip fault trending in an N-S direction as well as two subordinate sets of faults trending NW to WNW for the first one and NE for the second one. These faults represent the shear zones affected by magmatic (syngenetic) as well as hydrothermal (epigenetic) activities causing alteration of the granitic rocks. The most common alteration features are albitization, greisenization and koalinitization. The mass balance calculations of the studied altered samples show enrichments in Zr, Y, Ni, U, Th and Ga and depletions in Zn, Sr, Nb, Ba, Pb, Cu and V. Only the greisenized samples exhibit a significant enrichment in Nb, ∑REE budget and pronounced lanthanide tetrad effect (M-type), especially TE1,4, while weakly expressed tetrad effects are for the other albitized and koalinitized samples. Mineralogically, the common accessory minerals in the altered samples include samarskite-(Y), betafite, uranothorite, zircon, fluorite and cassiterite. The greisenized granites contain high eU and eTh than the other altered types, where they are characterized by an assemblage of the radioactive minerals; samarskite-(Y), betafite, uranothorite in addition to zircon. The inter-element relationships between U and Th and also their ratios illustrate that the radioelement distribution in these granites is mainly governed by magmatic processes, in addition to post-magmatic ones. The distribution of chemical elements and the fractionation of some isovalents within the shear zone are largely controlled by the newly formed mineral phases. With respect to uranium mobilization, uranium migrated from the host alkali feldspar granites of G. Abu Garadi, while the shear zones acted as traps for the migrated uranium. Moreover, U migrated in the shear zone during greisenization and albitization, and migrated out during koalinitization.
文摘For the lower bound about the determinant of Hadamard product of A and B, where A is a n × n real positive definite matrix and B is a n × n M-matrix, Jianzhou Liu [SLAM J. Matrix Anal. Appl., 18(2)(1997): 305-311]obtained the estimated inequality as follows det(A o B)≥a11b11 nⅡk=2(bkk detAk/detAk-1+detBk/detBk-1(k-1Ei=1 aikaki/aii))=Ln(A,B),where Ak is kth order sequential principal sub-matrix of A. We establish an improved lower bound of the form Yn(A,B)=a11baa nⅡk=2(bkk detAk/detAk-1+akk detBk/detBk-1-detAdetBk/detak-1detBk-1)≥Ln(A,B).For more weaker and practical lower bound, Liu given thatdet(A o B)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB(nⅡk=2 k-1Ei=1 aikaki/aiiakk)=(L)n(A,B).We further improve it as Yn(A,B)=(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)+max1≤k≤n wn(A,B,k)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)≥(L)n(A,B).