期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Mixed Local and Nonlocal Elliptic Problem with Concave-Convex and Discontinuous Nonlinearities
1
作者 Yiru WANG Shuibo HUANG Qiaoyu TIAN 《Journal of Mathematical Research with Applications》 2026年第1期40-56,共17页
This paper investigates the following mixed local and nonlocal elliptic problem fea-turing concave-convex nonlinearities and a discontinuous right-hand side:{L(u)=H(u−μ)|u|^(p−2)u+λ|u|^(q−2)u,x∈Ω,u≥0,x∈Ω,u=0,x... This paper investigates the following mixed local and nonlocal elliptic problem fea-turing concave-convex nonlinearities and a discontinuous right-hand side:{L(u)=H(u−μ)|u|^(p−2)u+λ|u|^(q−2)u,x∈Ω,u≥0,x∈Ω,u=0,x∈R^(N)\Ω,where Ω R^(N)(N>2)is a bounded domain,μ≥0 and λ>0 are real parameters,H denotes the Heaviside function(H(t)=0 for t<0,H(t)=1 for t>0),and the mixed local and nolocal operator is defined as L(u)=−Δu+(−Δ)^(s)u with(−Δ)^(s) being the restricted fractional Laplace(0<s<1).The exponents satisfy 1<q<2<p.By employing a novel non-smooth variational principle,we establish the existence of an M-solution for this problem and identify a range for the exponent p. 展开更多
关键词 mixed local and nonlocal operator discontinuous non-smooth variational principle m-solution
原文传递
Backward stochastic Volterra integral equations——a brief survey 被引量:2
2
作者 YONG Jiong-min 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2013年第4期383-394,共12页
In this paper, we present a brief survey on the updated theory of backward stochas-tic Volterra integral equations (BSVIEs, for short). BSVIEs are a natural generalization of backward stochastic diff erential equati... In this paper, we present a brief survey on the updated theory of backward stochas-tic Volterra integral equations (BSVIEs, for short). BSVIEs are a natural generalization of backward stochastic diff erential equations (BSDEs, for short). Some interesting motivations of studying BSVIEs are recalled. With proper solution concepts, it is possible to establish the corresponding well-posedness for BSVIEs. We also survey various comparison theorems for solutions to BSVIEs. 展开更多
关键词 backward stochastic diff erential equation backward stochastic Volterra integral equation m-solution comparison theorem
在线阅读 下载PDF
L^p Solutions of Backward Stochastic Volterra Integral Equations 被引量:1
3
作者 Tian Xiao WANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第9期1875-1882,共8页
This paper is devoted to the unique solvability of backward stochastic Volterra integral equations (BSVIEs, for short), in terms of both M-solution and the adapted solutions. We prove the existence and uniqueness of... This paper is devoted to the unique solvability of backward stochastic Volterra integral equations (BSVIEs, for short), in terms of both M-solution and the adapted solutions. We prove the existence and uniqueness of M-solutions of BSVIEs in Lp (1 〈 p 〈 2), which extends the existing results on M-solutions. The unique solvability of adapted solutions of BSVIEs in Lp (p 〉 1) is also considered, which also generalizes the results in the existing literature. 展开更多
关键词 Backward stochastic Volterra integral equations m-solutions Lp solutions adapted solutions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部