Let A=M-N be a regular splitting of an M-matrix. We study the spectral properties of the ineration matrix M-1N. Under a mild assumption on M-1 N. some necessary and sufficent conditions such that p(M-1N)=1 are obtaine...Let A=M-N be a regular splitting of an M-matrix. We study the spectral properties of the ineration matrix M-1N. Under a mild assumption on M-1 N. some necessary and sufficent conditions such that p(M-1N)=1 are obtained and the algebraic multiplicity and the index associated with eigenvalue 1 in M-1N are considered.展开更多
Computing the eigenvalue of smallest modulus and its corresponding eigneveclor of an irreducible nonsingular M-matrix A is considered, It is shown that if the entries of A are known with high relative accuracy, its ei...Computing the eigenvalue of smallest modulus and its corresponding eigneveclor of an irreducible nonsingular M-matrix A is considered, It is shown that if the entries of A are known with high relative accuracy, its eigenvalue of smallest modulus and each component of the corresponding eigenvector will be determined to much higher accuracy than the standard perturbation theory suggests. An algorithm is presented to compute them with a small componentwise backward error, which is consistent with the perturbation results.展开更多
A direct algorithm is proposed by which one can distinguish whether a matrix is an M-matrix (or H-matrix) or not quickly and effectively. Numerical examples show that it is effective and convincible to distinguish M-m...A direct algorithm is proposed by which one can distinguish whether a matrix is an M-matrix (or H-matrix) or not quickly and effectively. Numerical examples show that it is effective and convincible to distinguish M-matrix (or H-matrix) by using the algorithm.展开更多
For the lower bound about the determinant of Hadamard product of A and B, where A is a n × n real positive definite matrix and B is a n × n M-matrix, Jianzhou Liu [SLAM J. Matrix Anal. Appl., 18(2)(1997): 30...For the lower bound about the determinant of Hadamard product of A and B, where A is a n × n real positive definite matrix and B is a n × n M-matrix, Jianzhou Liu [SLAM J. Matrix Anal. Appl., 18(2)(1997): 305-311]obtained the estimated inequality as follows det(A o B)≥a11b11 nⅡk=2(bkk detAk/detAk-1+detBk/detBk-1(k-1Ei=1 aikaki/aii))=Ln(A,B),where Ak is kth order sequential principal sub-matrix of A. We establish an improved lower bound of the form Yn(A,B)=a11baa nⅡk=2(bkk detAk/detAk-1+akk detBk/detBk-1-detAdetBk/detak-1detBk-1)≥Ln(A,B).For more weaker and practical lower bound, Liu given thatdet(A o B)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB(nⅡk=2 k-1Ei=1 aikaki/aiiakk)=(L)n(A,B).We further improve it as Yn(A,B)=(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)+max1≤k≤n wn(A,B,k)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)≥(L)n(A,B).展开更多
Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of...Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper.展开更多
基金Supported by National Natural Science Foundation of China
文摘Let A=M-N be a regular splitting of an M-matrix. We study the spectral properties of the ineration matrix M-1N. Under a mild assumption on M-1 N. some necessary and sufficent conditions such that p(M-1N)=1 are obtained and the algebraic multiplicity and the index associated with eigenvalue 1 in M-1N are considered.
文摘Computing the eigenvalue of smallest modulus and its corresponding eigneveclor of an irreducible nonsingular M-matrix A is considered, It is shown that if the entries of A are known with high relative accuracy, its eigenvalue of smallest modulus and each component of the corresponding eigenvector will be determined to much higher accuracy than the standard perturbation theory suggests. An algorithm is presented to compute them with a small componentwise backward error, which is consistent with the perturbation results.
基金Foundation item: This work is supported by the Science Foundations of the Education Department of Yunnan Province (03Z169A)the Science Foundatons of Yunnan University (2003Z013B).
文摘A direct algorithm is proposed by which one can distinguish whether a matrix is an M-matrix (or H-matrix) or not quickly and effectively. Numerical examples show that it is effective and convincible to distinguish M-matrix (or H-matrix) by using the algorithm.
文摘For the lower bound about the determinant of Hadamard product of A and B, where A is a n × n real positive definite matrix and B is a n × n M-matrix, Jianzhou Liu [SLAM J. Matrix Anal. Appl., 18(2)(1997): 305-311]obtained the estimated inequality as follows det(A o B)≥a11b11 nⅡk=2(bkk detAk/detAk-1+detBk/detBk-1(k-1Ei=1 aikaki/aii))=Ln(A,B),where Ak is kth order sequential principal sub-matrix of A. We establish an improved lower bound of the form Yn(A,B)=a11baa nⅡk=2(bkk detAk/detAk-1+akk detBk/detBk-1-detAdetBk/detak-1detBk-1)≥Ln(A,B).For more weaker and practical lower bound, Liu given thatdet(A o B)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB(nⅡk=2 k-1Ei=1 aikaki/aiiakk)=(L)n(A,B).We further improve it as Yn(A,B)=(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)+max1≤k≤n wn(A,B,k)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)≥(L)n(A,B).
基金Supported by the National Natural Science Foundation of China(12001395)the special fund for Science and Technology Innovation Teams of Shanxi Province(202204051002018)+1 种基金Research Project Supported by Shanxi Scholarship Council of China(2022-169)Graduate Education Innovation Project of Taiyuan Normal University(SYYJSYC-2314)。
文摘Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper.