The growing need for high-performance networking is achieved with parallel processing;several networking functions are processed concurrently in order to accomplish a performance Networking Architecture. Open systems ...The growing need for high-performance networking is achieved with parallel processing;several networking functions are processed concurrently in order to accomplish a performance Networking Architecture. Open systems interconnection (OSI) model is an example of multi-layering structure, and each layer performs definite function unique to that layer. OSI model works on pass it on principle, and it is divided in two stacks lower stack and upper stack. Layers 4 - 7 represent upper stack and responsible for data applications. The remaining 1 - 3 layers represent the lower stack and mostly involve in data movement. There are many techniques are available for server optimization enhancing the availability by distributing the load among peer servers. According to our knowledge, nobody has implemented such splitting architecture across the entire OSI model. In this paper, we present multilayer Split-protocol (MLSP) a high performance, reliable and secure technique for spiting an application or network protocol across OSI model, and we present the design, implementation, and empirical performance evaluation of MLSP. It is the ideal choice for Cloud services where each functional component is considered an independent of each other.展开更多
As a result of the exponential growing rate of worldwide Internet usage, satellite systems are required to support broadband Internet applications. The transmission control protocol (TCP) which is widely used in the...As a result of the exponential growing rate of worldwide Internet usage, satellite systems are required to support broadband Internet applications. The transmission control protocol (TCP) which is widely used in the Internet, performs very well on wired networks. However, in the case of satellite channels, clue to the delay and transmission errors, TCP performance degrades significantly and bandwidth of satellite links can not be fully utilized. To improve the TCP performance, a new idea of placing a TCP spoofing proxy in the satellite is considered. A Novel Satellite Transport Protocol (NSTP) which takes advantage of the special properties of the satellite channel is also proposed. By using simulation, as compared with traditional TCPs, the on-board spoofing proxy integrated with the special transport protocol can significantly enhance throughput performance on the high BER satellite link, the time needed to transfer files and the bandwidth used in reverse path are sharply reduced.展开更多
This paper presents an analytical model of a cross-layer communication system to enable improvement in the Transmission Control Protocol (TCP) over mixed wired and wireless Internet. The focus is on the quantitative p...This paper presents an analytical model of a cross-layer communication system to enable improvement in the Transmission Control Protocol (TCP) over mixed wired and wireless Internet. The focus is on the quantitative performance evaluation of the interactions between TCP NewReno and a hybrid Automatic Repeat reQuest protocol (HARQ) in the link layer (LL) with a finite buffer size. The significant improvement in TCP NewReno throughput when HARQ adaptively selects its optimal settings according to explicit cross-layer information is shown. Through ns-2 simulations, it is demonstrated that this proposed analytical model accurately predicts the TCP-HARQ system performance.展开更多
文摘The growing need for high-performance networking is achieved with parallel processing;several networking functions are processed concurrently in order to accomplish a performance Networking Architecture. Open systems interconnection (OSI) model is an example of multi-layering structure, and each layer performs definite function unique to that layer. OSI model works on pass it on principle, and it is divided in two stacks lower stack and upper stack. Layers 4 - 7 represent upper stack and responsible for data applications. The remaining 1 - 3 layers represent the lower stack and mostly involve in data movement. There are many techniques are available for server optimization enhancing the availability by distributing the load among peer servers. According to our knowledge, nobody has implemented such splitting architecture across the entire OSI model. In this paper, we present multilayer Split-protocol (MLSP) a high performance, reliable and secure technique for spiting an application or network protocol across OSI model, and we present the design, implementation, and empirical performance evaluation of MLSP. It is the ideal choice for Cloud services where each functional component is considered an independent of each other.
文摘As a result of the exponential growing rate of worldwide Internet usage, satellite systems are required to support broadband Internet applications. The transmission control protocol (TCP) which is widely used in the Internet, performs very well on wired networks. However, in the case of satellite channels, clue to the delay and transmission errors, TCP performance degrades significantly and bandwidth of satellite links can not be fully utilized. To improve the TCP performance, a new idea of placing a TCP spoofing proxy in the satellite is considered. A Novel Satellite Transport Protocol (NSTP) which takes advantage of the special properties of the satellite channel is also proposed. By using simulation, as compared with traditional TCPs, the on-board spoofing proxy integrated with the special transport protocol can significantly enhance throughput performance on the high BER satellite link, the time needed to transfer files and the bandwidth used in reverse path are sharply reduced.
文摘This paper presents an analytical model of a cross-layer communication system to enable improvement in the Transmission Control Protocol (TCP) over mixed wired and wireless Internet. The focus is on the quantitative performance evaluation of the interactions between TCP NewReno and a hybrid Automatic Repeat reQuest protocol (HARQ) in the link layer (LL) with a finite buffer size. The significant improvement in TCP NewReno throughput when HARQ adaptively selects its optimal settings according to explicit cross-layer information is shown. Through ns-2 simulations, it is demonstrated that this proposed analytical model accurately predicts the TCP-HARQ system performance.