Scour around bridge pier foundations is a complex phenomenon that can threaten structural stability.Accurate prediction of scour depth around compound piers remains challenging for bridge engineers.This study investig...Scour around bridge pier foundations is a complex phenomenon that can threaten structural stability.Accurate prediction of scour depth around compound piers remains challenging for bridge engineers.This study investigated the effect of foundation elevation on scour around compound piers and developed reliable scour depth prediction models for economical foundation design.Experiments were conducted under clear-water conditions using two circular piers:(1)a uniform pier(with a diameter of D)and(2)a compound pier consisting of a uniform pier resting on a circular foundation(with a foundation diameter(D_(f))of 2D)positioned at various elevations(Z)relative to the channel bed.Results showed that foundation elevation significantly affected scour depth.Foundations at or below the bed(Z/D≥0)reduced scour,while those projecting into the flow field(Z/D<0)increased scour.The optimal foundation elevation was found to be 0.1D below the bed level,yielding a 57%reduction in scour depth compared to the uniform pier due to its shielding effect against downflow and horseshoe vortices.In addition,regression,artificial neural network(ANN),and M5 model tree models were developed using experimental data from this and previous studies.The M5 model outperformed the traditional HEC-18 equation,regression,and ANN models,with a coefficient of determination greater than 0.85.Sensitivity analysis indicated that flow depth,foundation elevation,and diameter significantly influenced scour depth prediction,whereas sediment size had a lesser impact.展开更多
In 2018,a catastrophic high-altitude landslide occurred at Baige,located within the tectonic suture zone of the Upper Jinsha River.The failure mechanism of this event remains poorly understood.This study aims to eluci...In 2018,a catastrophic high-altitude landslide occurred at Baige,located within the tectonic suture zone of the Upper Jinsha River.The failure mechanism of this event remains poorly understood.This study aims to elucidate the deformation characteristics and failure mechanism of the Baige landslide by employing a comprehensive methodology,including field geological surveys,analysis of historical remote sensing imagery,high-density electrical resistivity surveys,and advanced displacement monitoring.Additionally,the physical modeling experiments were conducted to replicate the unique failure modes.The findings propose a novel perspective on the failure mechanism of the Baige landslide,which involves two critical stages:first,the brittle shear zone bypasses and fails at the lower locked segment,and second,the failure of the upper locked segment,combined with the shear zone's impact on the lower locked segment,triggers overall slope instability.Physical modeling experiments revealed a transition from initial acceleration to a rapid acceleration phase,particularly marked by a significant increase in velocity following the failure of the upper locked segment.The intensity of acoustic emission signals was found to correlate with the failure of the locked segments and the state of particle collisions post-failure.It offers new insights into the failure mechanisms of tectonic mélange belt large-scale landslides in suture zones,contributing to the broader field of landslide research.展开更多
Complement C3 plays a critical role in periodontitis.However,its source,role and underlying mechanisms remain unclear.In our study,by analyzing single-cell sequencing data from mouse model of periodontitis,we identifi...Complement C3 plays a critical role in periodontitis.However,its source,role and underlying mechanisms remain unclear.In our study,by analyzing single-cell sequencing data from mouse model of periodontitis,we identified that C3 is primarily derived from periodontal fibroblasts.Subsequently,we demonstrated that C3a has a detrimental effect in ligature-induced periodontitis.C3ar−/−mice exhibited significantly less destruction of periodontal support tissues compared to wild-type mice,characterized by mild gingival tissue damage and reduced alveolar bone loss.This reduction was associated with decreased production of proinflammatory mediators and reduced osteoclast infiltration in the periodontal tissues.Mechanistic studies suggested that C3a could promote macrophage polarization and osteoclast differentiation.Finally,by analyzing single-cell sequencing data from the periodontal tissues of patients with periodontitis,we found that the results observed in mice were consistent with human data.Therefore,our findings clearly demonstrate the destructive role of fibroblast-derived C3 in ligature-induced periodontitis,driven by macrophage M1 polarization and osteoclast differentiation.These data strongly support the feasibility of C3a-targeted interventions for the treatment of human periodontitis.展开更多
Researching and comprehending the characteristics of destructive seismic motions is essential for the seismic design of critical infrastructure.This study employs historical data from the M 7.5 earthquake that occurre...Researching and comprehending the characteristics of destructive seismic motions is essential for the seismic design of critical infrastructure.This study employs historical data from the M 7.5 earthquake that occurred in 1850 to simulate the impacts of a M 7.5 event on hydropower stations located in proximity to Xichang.Key factors taken into account in the simulation of seismic motion encompass uncertainties,mixed-source models,and the placement of asperities.Through these simulations,we acquired the peak ground acceleration(PGA),acceleration time histories,and acceleration response spectra for the hydropower facilities affected by the earthquake.To perform a comprehensive analysis,we utilized a multi-scenario stochastic finite fault simulation method to estimate parameters including the minimum,average,and maximum values of PGA and pseudo-spectral acceleration(PSA)response spectra.Additionally,we assessed the 50^(th),84^(th),and 95^(th)percentiles values of the peak ground acceleration and pseudo-spectral acceleration response spectra.The simulation results also include peak ground acceleration field maps and peak ground velocity(PGV)field maps and intensity distribution maps pertaining to the earthquake.The findings demonstrate that the intensity maps produced through the stochastic finite fault method closely correspond with the intensity contour maps published of historical seismic records.These findings offer significant insights for the seismic safety evaluation and design of the specified hydropower stations.Moreover,this multi-scenario methodology can be effectively utilized for other critical infrastructure projects to derive dependable seismic motion parameters.展开更多
The hot deformation behavior and microstructure evolution of industrial grade American Iron and Steel Institute(AISI)M35 high-speed steel produced by electroslag remelting at different parameters were investigated.The...The hot deformation behavior and microstructure evolution of industrial grade American Iron and Steel Institute(AISI)M35 high-speed steel produced by electroslag remelting at different parameters were investigated.The results indicated that grains coarsening and M2C carbides decomposing appeared in the steel at 1150℃for 5 min,and the network carbides were broken and deformed radially after the hot deformation.A constitutive equation was determined based on the corrected flow stress-strain curves considering the effects of friction and temperature,and a constitutive model with strain-compensated was established.The dynamic recrystallization(DRX)characteristic values were calculated based on the Cingara-McQueen model,and the grain distribution under different conditions was observed and analyzed.Significantly,the action mechanisms of carbides on the DRX were illuminated.It was found from a functional relation between average grain size and Z parameter that grain size increased with increasing temperature and decreasing strain rate.Optimal parameters for the hot deformation were determined as 980-1005℃~0.01-0.015 s^(−1)and 1095-1110℃~0.01-0.037 s^(−1)at the strain ranging from 0.05 to 0.8.Increasing the strain rate appropriately during deformation process was suggested to obtain fine and uniformly distributed carbides.Besides,an industrial grade forging deformation had also verified practicability of the above parameters.展开更多
Objective:Aloin,the main active component in Aloe vera(L.)Burm.f.,has shown promising anti-tumor effects.This study investigated the impact of aloin in lung squamous cell carcinoma(LUSC)and explored its functional mec...Objective:Aloin,the main active component in Aloe vera(L.)Burm.f.,has shown promising anti-tumor effects.This study investigated the impact of aloin in lung squamous cell carcinoma(LUSC)and explored its functional mechanism.Methods:We analyzed the viability,migration,invasion,proliferation,and apoptosis of two LUSC cell lines after treatment with aloin.Target molecules of aloin and downstream target transcripts of nuclear receptor subfamily 3 group C member 2(NR3C2)were predicted by bioinformatics.The biological functions of NR3C2 and metallothionein 1M(MT1M)in the malignant properties of LUSC cells were determined.A co-culture system of LUSC cells with monocyte-derived macrophages was constructed.Mouse xenograft tumor models were generated to analyze the functions of aloin and NR3C2 in the tumorigenic activity of LUSC cells and macrophage polarization in vivo.Results:Aloin suppressed malignant properties of LUSC cells in vitro.However,these effects were negated by the silencing of NR3C2.NR3C2 was found to activate MT1M transcription by binding to its promoter.Additional upregulation of MT1M suppressed the malignant behavior of LUSC cells augmented by NR3C2 silencing.Analysis of the M1 and M2 markers/cytokines in the macrophages or the culture supernatant revealed that aloin treatment or MT1M overexpression in LUSC cells enhanced M1 polarization while suppressing M2 polarization of macrophages,whereas NR3C2 silencing led to reverse trends.Consistent findings were reproduced in vivo.Conclusion:This study demonstrated that aloin activates the NR3C2/MT1M axis to suppress the malignant behavior of LUSC cells and M2 macrophage polarization.Please cite this article as:Chen YN,Lu JY,Gao CF,Fang ZR,Zhou Y.Aloin blocks the malignant behavior of lung squamous cell carcinoma cells and M2 macrophage polarization by modulating the NR3C2/MT1M axis.展开更多
文摘Scour around bridge pier foundations is a complex phenomenon that can threaten structural stability.Accurate prediction of scour depth around compound piers remains challenging for bridge engineers.This study investigated the effect of foundation elevation on scour around compound piers and developed reliable scour depth prediction models for economical foundation design.Experiments were conducted under clear-water conditions using two circular piers:(1)a uniform pier(with a diameter of D)and(2)a compound pier consisting of a uniform pier resting on a circular foundation(with a foundation diameter(D_(f))of 2D)positioned at various elevations(Z)relative to the channel bed.Results showed that foundation elevation significantly affected scour depth.Foundations at or below the bed(Z/D≥0)reduced scour,while those projecting into the flow field(Z/D<0)increased scour.The optimal foundation elevation was found to be 0.1D below the bed level,yielding a 57%reduction in scour depth compared to the uniform pier due to its shielding effect against downflow and horseshoe vortices.In addition,regression,artificial neural network(ANN),and M5 model tree models were developed using experimental data from this and previous studies.The M5 model outperformed the traditional HEC-18 equation,regression,and ANN models,with a coefficient of determination greater than 0.85.Sensitivity analysis indicated that flow depth,foundation elevation,and diameter significantly influenced scour depth prediction,whereas sediment size had a lesser impact.
基金supported by the National Major Scientific Instruments and Equipment Development Projects of China(No.41827808)the Major Program of the National Natural Science Foundation of China(No.42090055)Supported by Science and Technology Projects of Xizang Autonomous Region,China(No.XZ202402ZD0001)。
文摘In 2018,a catastrophic high-altitude landslide occurred at Baige,located within the tectonic suture zone of the Upper Jinsha River.The failure mechanism of this event remains poorly understood.This study aims to elucidate the deformation characteristics and failure mechanism of the Baige landslide by employing a comprehensive methodology,including field geological surveys,analysis of historical remote sensing imagery,high-density electrical resistivity surveys,and advanced displacement monitoring.Additionally,the physical modeling experiments were conducted to replicate the unique failure modes.The findings propose a novel perspective on the failure mechanism of the Baige landslide,which involves two critical stages:first,the brittle shear zone bypasses and fails at the lower locked segment,and second,the failure of the upper locked segment,combined with the shear zone's impact on the lower locked segment,triggers overall slope instability.Physical modeling experiments revealed a transition from initial acceleration to a rapid acceleration phase,particularly marked by a significant increase in velocity following the failure of the upper locked segment.The intensity of acoustic emission signals was found to correlate with the failure of the locked segments and the state of particle collisions post-failure.It offers new insights into the failure mechanisms of tectonic mélange belt large-scale landslides in suture zones,contributing to the broader field of landslide research.
基金supported by the National Key R&D Program of China(No.2022YFC2504200)the National Natural Science Foundation of China(Nos.82370936,81920108012,82471032).
文摘Complement C3 plays a critical role in periodontitis.However,its source,role and underlying mechanisms remain unclear.In our study,by analyzing single-cell sequencing data from mouse model of periodontitis,we identified that C3 is primarily derived from periodontal fibroblasts.Subsequently,we demonstrated that C3a has a detrimental effect in ligature-induced periodontitis.C3ar−/−mice exhibited significantly less destruction of periodontal support tissues compared to wild-type mice,characterized by mild gingival tissue damage and reduced alveolar bone loss.This reduction was associated with decreased production of proinflammatory mediators and reduced osteoclast infiltration in the periodontal tissues.Mechanistic studies suggested that C3a could promote macrophage polarization and osteoclast differentiation.Finally,by analyzing single-cell sequencing data from the periodontal tissues of patients with periodontitis,we found that the results observed in mice were consistent with human data.Therefore,our findings clearly demonstrate the destructive role of fibroblast-derived C3 in ligature-induced periodontitis,driven by macrophage M1 polarization and osteoclast differentiation.These data strongly support the feasibility of C3a-targeted interventions for the treatment of human periodontitis.
基金the support of National Natural Science Foundation of China(Grant Numbers 52192675 and 52378541)。
文摘Researching and comprehending the characteristics of destructive seismic motions is essential for the seismic design of critical infrastructure.This study employs historical data from the M 7.5 earthquake that occurred in 1850 to simulate the impacts of a M 7.5 event on hydropower stations located in proximity to Xichang.Key factors taken into account in the simulation of seismic motion encompass uncertainties,mixed-source models,and the placement of asperities.Through these simulations,we acquired the peak ground acceleration(PGA),acceleration time histories,and acceleration response spectra for the hydropower facilities affected by the earthquake.To perform a comprehensive analysis,we utilized a multi-scenario stochastic finite fault simulation method to estimate parameters including the minimum,average,and maximum values of PGA and pseudo-spectral acceleration(PSA)response spectra.Additionally,we assessed the 50^(th),84^(th),and 95^(th)percentiles values of the peak ground acceleration and pseudo-spectral acceleration response spectra.The simulation results also include peak ground acceleration field maps and peak ground velocity(PGV)field maps and intensity distribution maps pertaining to the earthquake.The findings demonstrate that the intensity maps produced through the stochastic finite fault method closely correspond with the intensity contour maps published of historical seismic records.These findings offer significant insights for the seismic safety evaluation and design of the specified hydropower stations.Moreover,this multi-scenario methodology can be effectively utilized for other critical infrastructure projects to derive dependable seismic motion parameters.
基金support from Open Project of State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing(No.41622030)Danyang Coinch New Material Technology Co.,Ltd.
文摘The hot deformation behavior and microstructure evolution of industrial grade American Iron and Steel Institute(AISI)M35 high-speed steel produced by electroslag remelting at different parameters were investigated.The results indicated that grains coarsening and M2C carbides decomposing appeared in the steel at 1150℃for 5 min,and the network carbides were broken and deformed radially after the hot deformation.A constitutive equation was determined based on the corrected flow stress-strain curves considering the effects of friction and temperature,and a constitutive model with strain-compensated was established.The dynamic recrystallization(DRX)characteristic values were calculated based on the Cingara-McQueen model,and the grain distribution under different conditions was observed and analyzed.Significantly,the action mechanisms of carbides on the DRX were illuminated.It was found from a functional relation between average grain size and Z parameter that grain size increased with increasing temperature and decreasing strain rate.Optimal parameters for the hot deformation were determined as 980-1005℃~0.01-0.015 s^(−1)and 1095-1110℃~0.01-0.037 s^(−1)at the strain ranging from 0.05 to 0.8.Increasing the strain rate appropriately during deformation process was suggested to obtain fine and uniformly distributed carbides.Besides,an industrial grade forging deformation had also verified practicability of the above parameters.
基金Financial support was provided by the Research Start-up Funding of Changzhou University(No.ZMF19020381)。
文摘Objective:Aloin,the main active component in Aloe vera(L.)Burm.f.,has shown promising anti-tumor effects.This study investigated the impact of aloin in lung squamous cell carcinoma(LUSC)and explored its functional mechanism.Methods:We analyzed the viability,migration,invasion,proliferation,and apoptosis of two LUSC cell lines after treatment with aloin.Target molecules of aloin and downstream target transcripts of nuclear receptor subfamily 3 group C member 2(NR3C2)were predicted by bioinformatics.The biological functions of NR3C2 and metallothionein 1M(MT1M)in the malignant properties of LUSC cells were determined.A co-culture system of LUSC cells with monocyte-derived macrophages was constructed.Mouse xenograft tumor models were generated to analyze the functions of aloin and NR3C2 in the tumorigenic activity of LUSC cells and macrophage polarization in vivo.Results:Aloin suppressed malignant properties of LUSC cells in vitro.However,these effects were negated by the silencing of NR3C2.NR3C2 was found to activate MT1M transcription by binding to its promoter.Additional upregulation of MT1M suppressed the malignant behavior of LUSC cells augmented by NR3C2 silencing.Analysis of the M1 and M2 markers/cytokines in the macrophages or the culture supernatant revealed that aloin treatment or MT1M overexpression in LUSC cells enhanced M1 polarization while suppressing M2 polarization of macrophages,whereas NR3C2 silencing led to reverse trends.Consistent findings were reproduced in vivo.Conclusion:This study demonstrated that aloin activates the NR3C2/MT1M axis to suppress the malignant behavior of LUSC cells and M2 macrophage polarization.Please cite this article as:Chen YN,Lu JY,Gao CF,Fang ZR,Zhou Y.Aloin blocks the malignant behavior of lung squamous cell carcinoma cells and M2 macrophage polarization by modulating the NR3C2/MT1M axis.