马尔可夫链的遍历性研究在随机过程理论中占有重要地位,本文聚焦于马尔可夫链的次几何遍历性,提出了次几何遍历的六个等价判定条件,这些等价条件对进一步探索一般马尔可夫过程的次几何遍历性提供了理论基础,并将其应用于排队论中经典的M...马尔可夫链的遍历性研究在随机过程理论中占有重要地位,本文聚焦于马尔可夫链的次几何遍历性,提出了次几何遍历的六个等价判定条件,这些等价条件对进一步探索一般马尔可夫过程的次几何遍历性提供了理论基础,并将其应用于排队论中经典的M/G/1嵌入过程,得到了易验证的M/G/1嵌入排队过程次几何遍历的判定条件。The study of the ergodicity of Markov chains holds a significant position in the theory of stochastic processes. This paper focuses on the subgeometric ergodicity of Markov chains and proposes six equivalent criteria for subgeometric ergodicity of Markov chains. These equivalent conditions provide a theoretical foundation for further exploration of the subgeometric ergodicity of general Markov processes. In addition, this paper applies these criteria to the classical M/G/1 embedded process in queueing theory, obtaining easily verifiable conditions for determining the subgeometric ergodicity of the M/G/1 embedded queueing process.展开更多
By studying the spectral properties of the underlying operator corresponding to the M/G/1 queueing model with optional second service we obtain that the time-dependent solution of the model strongly converges to its s...By studying the spectral properties of the underlying operator corresponding to the M/G/1 queueing model with optional second service we obtain that the time-dependent solution of the model strongly converges to its steady-state solution. We also show that the time-dependent queueing size at the departure point converges to the corresponding steady-state queueing size at the departure point.展开更多
This paper considers an M/G/1 queue with Poisson rate lambda > 0 and service time distribution G(t) which is supposed to have finite mean 1/mu. The following questions are first studied: (a) The closed bounds of th...This paper considers an M/G/1 queue with Poisson rate lambda > 0 and service time distribution G(t) which is supposed to have finite mean 1/mu. The following questions are first studied: (a) The closed bounds of the probability that waiting time is more than a fixed value; (b)The total busy time of the server, which including the distribution, probability that are more than a fixed value during a given time interval (0, t], and the expected value. Some new and important results are obtained by theories of the classes of life distributions and renewal process.展开更多
We study a batch arrival MX/M/1 queue with multiple working vacation. The server serves customers at a lower rate rather than completely stopping service during the service period. Using a quasi upper triangular trans...We study a batch arrival MX/M/1 queue with multiple working vacation. The server serves customers at a lower rate rather than completely stopping service during the service period. Using a quasi upper triangular transition probability matrix of two-dimensional Markov chain and matrix analytic method, the probability generating function (PGF) of the stationary system length distribution is obtained, from which we obtain the stochastic decomposition structure of system length which indicates the relationship with that of the MX/M/1 queue without vacation. Some performance indices are derived by using the PGF of the stationary system length distribution. It is important that we obtain the Laplace Stieltjes transform (LST) of the stationary waiting time distribution. Further, we obtain the mean system length and the mean waiting time. Finally, numerical results for some special cases are presented to show the effects of system parameters.展开更多
In this paper, by considering the stochastic proces s of the busy period and the idle period, and introducing the unfinished work as a supplementary variable, a new vector Markov process was presented to study th e M...In this paper, by considering the stochastic proces s of the busy period and the idle period, and introducing the unfinished work as a supplementary variable, a new vector Markov process was presented to study th e M/G/1 queue again. Through establishing and solving the density evolution equa tions, the busy-period distribution, and the stationary distributions of waitin g time and queue length were obtained. In addition, the stability condition of th is queue system was given by means of an imbedded renewal process.展开更多
In this paper, we consider point spectra of the operator corresponding to the M/M/1 queueing model with working vacation and vacation interruption. We prove that the underlying operator has uncountable eigenvalues on ...In this paper, we consider point spectra of the operator corresponding to the M/M/1 queueing model with working vacation and vacation interruption. We prove that the underlying operator has uncountable eigenvalues on the left real line and these results describe the point spectra of the operator. Then, we show that the essential growth bound of the C_0-semigroup generated by the operator is 0 and therefore it is not quasi compact, the essential spectral bound of the C_0-semigroup is equal to 1. Moreover, our results imply it is impossible that the time-dependent solution of the model exponentially converges to its steady-state solution.展开更多
In this paper, we study an M/M/1 queue with multiple working vacations under following Bernoulli control policy: at the instants of the completion of a service in vacation, the server will interrupt the vacation and e...In this paper, we study an M/M/1 queue with multiple working vacations under following Bernoulli control policy: at the instants of the completion of a service in vacation, the server will interrupt the vacation and enter regular busy period with probability 1 p (if there are customers in the queue) or continue the vacation with probability p. For this model, we drive the analytic expression of the stationary queue length and demonstrate stochastic decomposition structures of the stationary queue length and waiting time, also we obtain the additional queue length and the additional delay of this model. The results we got agree with the corresponding results for working vacation model with or without vacation interruption if we set p = 0 or p = 1, respectively.展开更多
The article deals with the waiting time process of the GI/G/1 queueing system.We shall give that the rate of convergence to the stationary distribution and the decay of the stationary tail only depend on the tail of t...The article deals with the waiting time process of the GI/G/1 queueing system.We shall give that the rate of convergence to the stationary distribution and the decay of the stationary tail only depend on the tail of the service distribution,but not on the interarrival distribution.We shall also give explicit criteria for the rate of convergence and decay of stationary tail for three specific types of subgeometric cases(Case 1:the rate function r(n)=exp(sn1/1+α),α〉0,s〉0;Case 2:polynomial rate function r(n)=nα,α〉0;Case 3:logarithmic rate function r(n)=logαn,α〉0).展开更多
文摘马尔可夫链的遍历性研究在随机过程理论中占有重要地位,本文聚焦于马尔可夫链的次几何遍历性,提出了次几何遍历的六个等价判定条件,这些等价条件对进一步探索一般马尔可夫过程的次几何遍历性提供了理论基础,并将其应用于排队论中经典的M/G/1嵌入过程,得到了易验证的M/G/1嵌入排队过程次几何遍历的判定条件。The study of the ergodicity of Markov chains holds a significant position in the theory of stochastic processes. This paper focuses on the subgeometric ergodicity of Markov chains and proposes six equivalent criteria for subgeometric ergodicity of Markov chains. These equivalent conditions provide a theoretical foundation for further exploration of the subgeometric ergodicity of general Markov processes. In addition, this paper applies these criteria to the classical M/G/1 embedded process in queueing theory, obtaining easily verifiable conditions for determining the subgeometric ergodicity of the M/G/1 embedded queueing process.
基金supported by the National Natural Science Foundation of China(11371303)Natural Science Foundation of Xinjiang(2012211A023)Science Foundation of Xinjiang University(XY110101)
文摘By studying the spectral properties of the underlying operator corresponding to the M/G/1 queueing model with optional second service we obtain that the time-dependent solution of the model strongly converges to its steady-state solution. We also show that the time-dependent queueing size at the departure point converges to the corresponding steady-state queueing size at the departure point.
基金This work was suPPorted by the Natiotal Out-standing YOuth Sdence FOundstion (79725tX)2) the suPporting program of the Nat
文摘This paper considers an M/G/1 queue with Poisson rate lambda > 0 and service time distribution G(t) which is supposed to have finite mean 1/mu. The following questions are first studied: (a) The closed bounds of the probability that waiting time is more than a fixed value; (b)The total busy time of the server, which including the distribution, probability that are more than a fixed value during a given time interval (0, t], and the expected value. Some new and important results are obtained by theories of the classes of life distributions and renewal process.
文摘We study a batch arrival MX/M/1 queue with multiple working vacation. The server serves customers at a lower rate rather than completely stopping service during the service period. Using a quasi upper triangular transition probability matrix of two-dimensional Markov chain and matrix analytic method, the probability generating function (PGF) of the stationary system length distribution is obtained, from which we obtain the stochastic decomposition structure of system length which indicates the relationship with that of the MX/M/1 queue without vacation. Some performance indices are derived by using the PGF of the stationary system length distribution. It is important that we obtain the Laplace Stieltjes transform (LST) of the stationary waiting time distribution. Further, we obtain the mean system length and the mean waiting time. Finally, numerical results for some special cases are presented to show the effects of system parameters.
基金Project supported by the National Natural Science Foundation of China(Grant No.70171059)
文摘In this paper, by considering the stochastic proces s of the busy period and the idle period, and introducing the unfinished work as a supplementary variable, a new vector Markov process was presented to study th e M/G/1 queue again. Through establishing and solving the density evolution equa tions, the busy-period distribution, and the stationary distributions of waitin g time and queue length were obtained. In addition, the stability condition of th is queue system was given by means of an imbedded renewal process.
基金Supported by the National Natural Science Foundation of China(Grant No.11801485)
文摘In this paper, we consider point spectra of the operator corresponding to the M/M/1 queueing model with working vacation and vacation interruption. We prove that the underlying operator has uncountable eigenvalues on the left real line and these results describe the point spectra of the operator. Then, we show that the essential growth bound of the C_0-semigroup generated by the operator is 0 and therefore it is not quasi compact, the essential spectral bound of the C_0-semigroup is equal to 1. Moreover, our results imply it is impossible that the time-dependent solution of the model exponentially converges to its steady-state solution.
基金Foundation item: Supported by the National Science Foundation of China(60874083) Supported by the 2011 National Statistical Science Development Funds(2011LY014) Supported by the 2012 Soft Science Devel- opment Funds of Science and Technology Committee of Henan Province(122400450090)
文摘In this paper, we study an M/M/1 queue with multiple working vacations under following Bernoulli control policy: at the instants of the completion of a service in vacation, the server will interrupt the vacation and enter regular busy period with probability 1 p (if there are customers in the queue) or continue the vacation with probability p. For this model, we drive the analytic expression of the stationary queue length and demonstrate stochastic decomposition structures of the stationary queue length and waiting time, also we obtain the additional queue length and the additional delay of this model. The results we got agree with the corresponding results for working vacation model with or without vacation interruption if we set p = 0 or p = 1, respectively.
基金partially supported by the Fundamental Research Funds for the Central Universities (BUPT2011RC0703)
文摘The article deals with the waiting time process of the GI/G/1 queueing system.We shall give that the rate of convergence to the stationary distribution and the decay of the stationary tail only depend on the tail of the service distribution,but not on the interarrival distribution.We shall also give explicit criteria for the rate of convergence and decay of stationary tail for three specific types of subgeometric cases(Case 1:the rate function r(n)=exp(sn1/1+α),α〉0,s〉0;Case 2:polynomial rate function r(n)=nα,α〉0;Case 3:logarithmic rate function r(n)=logαn,α〉0).