Scour around bridge pier foundations is a complex phenomenon that can threaten structural stability.Accurate prediction of scour depth around compound piers remains challenging for bridge engineers.This study investig...Scour around bridge pier foundations is a complex phenomenon that can threaten structural stability.Accurate prediction of scour depth around compound piers remains challenging for bridge engineers.This study investigated the effect of foundation elevation on scour around compound piers and developed reliable scour depth prediction models for economical foundation design.Experiments were conducted under clear-water conditions using two circular piers:(1)a uniform pier(with a diameter of D)and(2)a compound pier consisting of a uniform pier resting on a circular foundation(with a foundation diameter(D_(f))of 2D)positioned at various elevations(Z)relative to the channel bed.Results showed that foundation elevation significantly affected scour depth.Foundations at or below the bed(Z/D≥0)reduced scour,while those projecting into the flow field(Z/D<0)increased scour.The optimal foundation elevation was found to be 0.1D below the bed level,yielding a 57%reduction in scour depth compared to the uniform pier due to its shielding effect against downflow and horseshoe vortices.In addition,regression,artificial neural network(ANN),and M5 model tree models were developed using experimental data from this and previous studies.The M5 model outperformed the traditional HEC-18 equation,regression,and ANN models,with a coefficient of determination greater than 0.85.Sensitivity analysis indicated that flow depth,foundation elevation,and diameter significantly influenced scour depth prediction,whereas sediment size had a lesser impact.展开更多
In 2018,a catastrophic high-altitude landslide occurred at Baige,located within the tectonic suture zone of the Upper Jinsha River.The failure mechanism of this event remains poorly understood.This study aims to eluci...In 2018,a catastrophic high-altitude landslide occurred at Baige,located within the tectonic suture zone of the Upper Jinsha River.The failure mechanism of this event remains poorly understood.This study aims to elucidate the deformation characteristics and failure mechanism of the Baige landslide by employing a comprehensive methodology,including field geological surveys,analysis of historical remote sensing imagery,high-density electrical resistivity surveys,and advanced displacement monitoring.Additionally,the physical modeling experiments were conducted to replicate the unique failure modes.The findings propose a novel perspective on the failure mechanism of the Baige landslide,which involves two critical stages:first,the brittle shear zone bypasses and fails at the lower locked segment,and second,the failure of the upper locked segment,combined with the shear zone's impact on the lower locked segment,triggers overall slope instability.Physical modeling experiments revealed a transition from initial acceleration to a rapid acceleration phase,particularly marked by a significant increase in velocity following the failure of the upper locked segment.The intensity of acoustic emission signals was found to correlate with the failure of the locked segments and the state of particle collisions post-failure.It offers new insights into the failure mechanisms of tectonic mélange belt large-scale landslides in suture zones,contributing to the broader field of landslide research.展开更多
Hydrological models are very useful tools for evaluating water resources, and the hydroclimatic hazards associated with the water cycle. However, their calibration and validation require the use of performance criteri...Hydrological models are very useful tools for evaluating water resources, and the hydroclimatic hazards associated with the water cycle. However, their calibration and validation require the use of performance criteria which choice is not straightforward. This paper aims to evaluate the influence of the performance criteria on water balance components and water extremes using two global rainfall-runoff models (HBV and GR4J) over the Ouémé watershed at the Bonou and Savè outlets. Three (3) Efficacy criteria (Nash, coefficient of determination, and KGE) were considered for calibration and validation. The results show that the Nash criterion provides a good assessment of the simulation of the different parts of the hydrograph. KGE is better for simulating peak flows and water balance elements than other efficiency criteria. This study could serve as a basis for the choice of performance criteria in hydrological modelling.展开更多
Flow records for stations in the Casamance basin are incomplete. Several gaps were noted over the 1980-2021 study period, making this study tedious. The aim of this study is to assess the potential impact of climate c...Flow records for stations in the Casamance basin are incomplete. Several gaps were noted over the 1980-2021 study period, making this study tedious. The aim of this study is to assess the potential impact of climate change on the flow of the Casamance watershed at Kolda. To this end, hydrological series are simulated and then extended using the GR2M rainfall-runoff model, with a monthly time step. Projected climate data are derived from a multi-model ensemble under scenarios SSP2-4.5 (scenario with additional radiative forcing of 4.5 W/m<sup>2</sup> by 2099) and SSP5-8.5 (scenario with additional radiative forcing of 8.5 W/m<sup>2</sup> by 2099). An analysis of the homogeneity of the rainfall data series from the Kolda station was carried out using KhronoStat software. The Casamance watershed was then delimited using ArcGIS to determine the morphometric parameters of the basin, which will be decisive for the rest of the work. Next, monthly evapotranspiration was calculated using the formula proposed by Oudin et al. This, together with rainfall and runoff, forms the input data for the model. The GR2M model was then calibrated and cross-validated using various simulations to assess its performance and robustness in the Casamance watershed. The version of the model with the calibrated parameters will make it possible to extend Casamance river flows to 2099. This simulation of future flows with GR2M shows a decrease in the flow of the Casamance at Kolda with the two scenarios SSP2-4.5 and SSP5-8.5 during the rainy period, and almost zero flows during the dry season from the period 2040-2059.展开更多
Geostatistical Kriging is performed on hydrologic model parameters in a two-dimensional region—different from the geographical space—as a hydrospace. The x-axis in percent is a relative difference of soil characteri...Geostatistical Kriging is performed on hydrologic model parameters in a two-dimensional region—different from the geographical space—as a hydrospace. The x-axis in percent is a relative difference of soil characteristics between an embedded 12 watersheds in reference to a large one related to the Niger River in West Africa;noted var_WHC, it stands for Water Holding Capacity. The y-axis in percent, var_Nash, is a hydrologic model’s efficiency in two contexts: (a) calibrated model parameters on the reference watershed are injected in modelling on each sub-watershed in validation phase to produce a series of Nash values as references, (b) a second series of Nash values is produced in calibrations. SimulHyd which stands for Simulation of Hydrological Systems is applied along with a French hydrological model—Genie Rural with 2 parameters at Monthly time step. The built Nash-WHC hydrospace and its two variants, or hybrids, permit the krige of both hydrologic model’s parameters. The relative variation of upper module absolute ranges from 0.1% to 15.68%—the developed hydro-geostatistics practice is considered in reference to hydrological calibration. Accepted as hydrogeostatistics practice, it is applicable to ungauged watersheds to estimate hydrologic models’ parameters.展开更多
Researching and comprehending the characteristics of destructive seismic motions is essential for the seismic design of critical infrastructure.This study employs historical data from the M 7.5 earthquake that occurre...Researching and comprehending the characteristics of destructive seismic motions is essential for the seismic design of critical infrastructure.This study employs historical data from the M 7.5 earthquake that occurred in 1850 to simulate the impacts of a M 7.5 event on hydropower stations located in proximity to Xichang.Key factors taken into account in the simulation of seismic motion encompass uncertainties,mixed-source models,and the placement of asperities.Through these simulations,we acquired the peak ground acceleration(PGA),acceleration time histories,and acceleration response spectra for the hydropower facilities affected by the earthquake.To perform a comprehensive analysis,we utilized a multi-scenario stochastic finite fault simulation method to estimate parameters including the minimum,average,and maximum values of PGA and pseudo-spectral acceleration(PSA)response spectra.Additionally,we assessed the 50^(th),84^(th),and 95^(th)percentiles values of the peak ground acceleration and pseudo-spectral acceleration response spectra.The simulation results also include peak ground acceleration field maps and peak ground velocity(PGV)field maps and intensity distribution maps pertaining to the earthquake.The findings demonstrate that the intensity maps produced through the stochastic finite fault method closely correspond with the intensity contour maps published of historical seismic records.These findings offer significant insights for the seismic safety evaluation and design of the specified hydropower stations.Moreover,this multi-scenario methodology can be effectively utilized for other critical infrastructure projects to derive dependable seismic motion parameters.展开更多
文摘Scour around bridge pier foundations is a complex phenomenon that can threaten structural stability.Accurate prediction of scour depth around compound piers remains challenging for bridge engineers.This study investigated the effect of foundation elevation on scour around compound piers and developed reliable scour depth prediction models for economical foundation design.Experiments were conducted under clear-water conditions using two circular piers:(1)a uniform pier(with a diameter of D)and(2)a compound pier consisting of a uniform pier resting on a circular foundation(with a foundation diameter(D_(f))of 2D)positioned at various elevations(Z)relative to the channel bed.Results showed that foundation elevation significantly affected scour depth.Foundations at or below the bed(Z/D≥0)reduced scour,while those projecting into the flow field(Z/D<0)increased scour.The optimal foundation elevation was found to be 0.1D below the bed level,yielding a 57%reduction in scour depth compared to the uniform pier due to its shielding effect against downflow and horseshoe vortices.In addition,regression,artificial neural network(ANN),and M5 model tree models were developed using experimental data from this and previous studies.The M5 model outperformed the traditional HEC-18 equation,regression,and ANN models,with a coefficient of determination greater than 0.85.Sensitivity analysis indicated that flow depth,foundation elevation,and diameter significantly influenced scour depth prediction,whereas sediment size had a lesser impact.
基金supported by the National Major Scientific Instruments and Equipment Development Projects of China(No.41827808)the Major Program of the National Natural Science Foundation of China(No.42090055)Supported by Science and Technology Projects of Xizang Autonomous Region,China(No.XZ202402ZD0001)。
文摘In 2018,a catastrophic high-altitude landslide occurred at Baige,located within the tectonic suture zone of the Upper Jinsha River.The failure mechanism of this event remains poorly understood.This study aims to elucidate the deformation characteristics and failure mechanism of the Baige landslide by employing a comprehensive methodology,including field geological surveys,analysis of historical remote sensing imagery,high-density electrical resistivity surveys,and advanced displacement monitoring.Additionally,the physical modeling experiments were conducted to replicate the unique failure modes.The findings propose a novel perspective on the failure mechanism of the Baige landslide,which involves two critical stages:first,the brittle shear zone bypasses and fails at the lower locked segment,and second,the failure of the upper locked segment,combined with the shear zone's impact on the lower locked segment,triggers overall slope instability.Physical modeling experiments revealed a transition from initial acceleration to a rapid acceleration phase,particularly marked by a significant increase in velocity following the failure of the upper locked segment.The intensity of acoustic emission signals was found to correlate with the failure of the locked segments and the state of particle collisions post-failure.It offers new insights into the failure mechanisms of tectonic mélange belt large-scale landslides in suture zones,contributing to the broader field of landslide research.
文摘Hydrological models are very useful tools for evaluating water resources, and the hydroclimatic hazards associated with the water cycle. However, their calibration and validation require the use of performance criteria which choice is not straightforward. This paper aims to evaluate the influence of the performance criteria on water balance components and water extremes using two global rainfall-runoff models (HBV and GR4J) over the Ouémé watershed at the Bonou and Savè outlets. Three (3) Efficacy criteria (Nash, coefficient of determination, and KGE) were considered for calibration and validation. The results show that the Nash criterion provides a good assessment of the simulation of the different parts of the hydrograph. KGE is better for simulating peak flows and water balance elements than other efficiency criteria. This study could serve as a basis for the choice of performance criteria in hydrological modelling.
文摘Flow records for stations in the Casamance basin are incomplete. Several gaps were noted over the 1980-2021 study period, making this study tedious. The aim of this study is to assess the potential impact of climate change on the flow of the Casamance watershed at Kolda. To this end, hydrological series are simulated and then extended using the GR2M rainfall-runoff model, with a monthly time step. Projected climate data are derived from a multi-model ensemble under scenarios SSP2-4.5 (scenario with additional radiative forcing of 4.5 W/m<sup>2</sup> by 2099) and SSP5-8.5 (scenario with additional radiative forcing of 8.5 W/m<sup>2</sup> by 2099). An analysis of the homogeneity of the rainfall data series from the Kolda station was carried out using KhronoStat software. The Casamance watershed was then delimited using ArcGIS to determine the morphometric parameters of the basin, which will be decisive for the rest of the work. Next, monthly evapotranspiration was calculated using the formula proposed by Oudin et al. This, together with rainfall and runoff, forms the input data for the model. The GR2M model was then calibrated and cross-validated using various simulations to assess its performance and robustness in the Casamance watershed. The version of the model with the calibrated parameters will make it possible to extend Casamance river flows to 2099. This simulation of future flows with GR2M shows a decrease in the flow of the Casamance at Kolda with the two scenarios SSP2-4.5 and SSP5-8.5 during the rainy period, and almost zero flows during the dry season from the period 2040-2059.
文摘Geostatistical Kriging is performed on hydrologic model parameters in a two-dimensional region—different from the geographical space—as a hydrospace. The x-axis in percent is a relative difference of soil characteristics between an embedded 12 watersheds in reference to a large one related to the Niger River in West Africa;noted var_WHC, it stands for Water Holding Capacity. The y-axis in percent, var_Nash, is a hydrologic model’s efficiency in two contexts: (a) calibrated model parameters on the reference watershed are injected in modelling on each sub-watershed in validation phase to produce a series of Nash values as references, (b) a second series of Nash values is produced in calibrations. SimulHyd which stands for Simulation of Hydrological Systems is applied along with a French hydrological model—Genie Rural with 2 parameters at Monthly time step. The built Nash-WHC hydrospace and its two variants, or hybrids, permit the krige of both hydrologic model’s parameters. The relative variation of upper module absolute ranges from 0.1% to 15.68%—the developed hydro-geostatistics practice is considered in reference to hydrological calibration. Accepted as hydrogeostatistics practice, it is applicable to ungauged watersheds to estimate hydrologic models’ parameters.
基金the support of National Natural Science Foundation of China(Grant Numbers 52192675 and 52378541)。
文摘Researching and comprehending the characteristics of destructive seismic motions is essential for the seismic design of critical infrastructure.This study employs historical data from the M 7.5 earthquake that occurred in 1850 to simulate the impacts of a M 7.5 event on hydropower stations located in proximity to Xichang.Key factors taken into account in the simulation of seismic motion encompass uncertainties,mixed-source models,and the placement of asperities.Through these simulations,we acquired the peak ground acceleration(PGA),acceleration time histories,and acceleration response spectra for the hydropower facilities affected by the earthquake.To perform a comprehensive analysis,we utilized a multi-scenario stochastic finite fault simulation method to estimate parameters including the minimum,average,and maximum values of PGA and pseudo-spectral acceleration(PSA)response spectra.Additionally,we assessed the 50^(th),84^(th),and 95^(th)percentiles values of the peak ground acceleration and pseudo-spectral acceleration response spectra.The simulation results also include peak ground acceleration field maps and peak ground velocity(PGV)field maps and intensity distribution maps pertaining to the earthquake.The findings demonstrate that the intensity maps produced through the stochastic finite fault method closely correspond with the intensity contour maps published of historical seismic records.These findings offer significant insights for the seismic safety evaluation and design of the specified hydropower stations.Moreover,this multi-scenario methodology can be effectively utilized for other critical infrastructure projects to derive dependable seismic motion parameters.