期刊文献+
共找到282,844篇文章
< 1 2 250 >
每页显示 20 50 100
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
1
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
Flood predictions from metrics to classes by multiple machine learning algorithms coupling with clustering-deduced membership degree
2
作者 ZHAI Xiaoyan ZHANG Yongyong +5 位作者 XIA Jun ZHANG Yongqiang TANG Qiuhong SHAO Quanxi CHEN Junxu ZHANG Fan 《Journal of Geographical Sciences》 2026年第1期149-176,共28页
Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting... Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach. 展开更多
关键词 flood regime metrics class prediction machine learning algorithms hydrological model
原文传递
Equivalent Modeling with Passive Filter Parameter Clustering for Photovoltaic Power Stations Based on a Particle Swarm Optimization K-Means Algorithm
3
作者 Binjiang Hu Yihua Zhu +3 位作者 Liang Tu Zun Ma Xian Meng Kewei Xu 《Energy Engineering》 2026年第1期431-459,共29页
This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl... This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research. 展开更多
关键词 Photovoltaic power station multi-machine equivalentmodeling particle swarmoptimization K-means clustering algorithm
在线阅读 下载PDF
GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT
4
作者 Wanwei Huang Huicong Yu +3 位作者 Jiawei Ren Kun Wang Yanbu Guo Lifeng Jin 《Computers, Materials & Continua》 2026年第1期2006-2029,共24页
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from... Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%. 展开更多
关键词 Industrial Internet of Things intrusion detection system feature selection whale optimization algorithm Gaussian mutation
在线阅读 下载PDF
Identification of small impact craters in Chang’e-4 landing areas using a new multi-scale fusion crater detection algorithm
5
作者 FangChao Liu HuiWen Liu +7 位作者 Li Zhang Jian Chen DiJun Guo Bo Li ChangQing Liu ZongCheng Ling Ying-Bo Lu JunSheng Yao 《Earth and Planetary Physics》 2026年第1期92-104,共13页
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an... Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy. 展开更多
关键词 impact craters Chang’e-4 landing area multi-scale automatic detection YOLO11 Fusion algorithm
在线阅读 下载PDF
基于LM算法的三维点云与二维图像标定方法
6
作者 吴龙 陶奕帆 +2 位作者 杨旭 徐璐 陈淑玉 《现代电子技术》 北大核心 2026年第1期59-65,共7页
针对激光雷达与相机检测时标定精度不足,导致后续激光雷达点云与相机图像的空间对齐产生误差,影响后续特征匹配、物体检测和三维重建准确性的问题,文中提出一种基于激光雷达三维点云和单目相机的二维图像的标定方法,旨在实现对大规模物... 针对激光雷达与相机检测时标定精度不足,导致后续激光雷达点云与相机图像的空间对齐产生误差,影响后续特征匹配、物体检测和三维重建准确性的问题,文中提出一种基于激光雷达三维点云和单目相机的二维图像的标定方法,旨在实现对大规模物体的精确检测和三维环境重建。该方法首先通过多帧点云数据叠加获得相对密集的点云测量,并利用角点检测算法检测图像中的特征角点;随后使用偏最小二乘法(PLS)对参数进行求解;最后利用LM迭代算法最小化重投影误差,提高标定精度。标定结果表明,SPAAM算法相较于经典方法重投影误差减少8.6%,所提方法相较于经典方法重投影误差减少近38.2%,验证了所提方法的准确性和有效性。 展开更多
关键词 激光雷达 单目相机 标定方法 点云数据 偏最小二乘法 Lm迭代算法
在线阅读 下载PDF
基于改进变分模态分解与Informer组合模型的风电功率多步预测研究
7
作者 郭晓鹏 赵琪 张国维 《现代电力》 北大核心 2026年第1期20-29,共10页
保证风电功率预测的准确性是提高风能利用效率、实现电力系统可持续发展的关键工作。因此,该文提出一种基于改进变分模态分解与Informer组合模型的风电功率多步预测模型。首先,采用随机森林模型对风速、风向、压强等原始气象因素进行筛... 保证风电功率预测的准确性是提高风能利用效率、实现电力系统可持续发展的关键工作。因此,该文提出一种基于改进变分模态分解与Informer组合模型的风电功率多步预测模型。首先,采用随机森林模型对风速、风向、压强等原始气象因素进行筛选。其次,通过鹈鹕优化算法改进后的变分模态分解算法对风电功率信号进行分解,从而提高风电序列预测精准性。第三,基于Informer模型对风电功率进行多步预测。最后,通过与其他模型进行对比分析,验证该模型在风电功率多步预测中的优越性。算例结果表明,基于改进变分模态分解与Informer组合模型的风电功率多步预测模型具有良好的预测性能,可为风电功率的预测提供参考。 展开更多
关键词 风电功率预测 随机森林 鹈鹕优化算法 信号分解 多步预测
原文传递
基于最佳滑移率估计的汽车EMB防抱死控制
8
作者 潘公宇 熊浩东 《郑州大学学报(工学版)》 北大核心 2026年第1期58-65,共8页
为了解决传统的逻辑门限式ABS控制方法存在无法充分利用路面利用附着系数以及滑移率波动较大的问题,提出了一种基于最佳滑移率估计的汽车EMB防抱死控制策略。首先,建立轮胎滑移率与路面利用附着系数之间的非线性模型;其次,通过一种分段... 为了解决传统的逻辑门限式ABS控制方法存在无法充分利用路面利用附着系数以及滑移率波动较大的问题,提出了一种基于最佳滑移率估计的汽车EMB防抱死控制策略。首先,建立轮胎滑移率与路面利用附着系数之间的非线性模型;其次,通过一种分段式的估计算法来快速准确地跟踪最佳滑移率;最后,基于最佳滑移率的估计结果,设计了积分滑模控制器,通过精确调节EMB制动力矩和电机制动力矩,使前后轮的滑移率维持在各自的最佳滑移率,保证车辆在不同路面条件下的最佳制动距离。仿真结果表明:所采用的估计算法都能够快速准确识别当前路面的最佳滑移率,估计出的最佳滑移率在稳态时与实际的最佳滑移率的最大误差不超过3%,且积分滑模控制器可以精确控制滑移率保持在最佳滑移率附近,与CarSim内置的ABS控制策略相比,单一路面工况制动总时间缩短了10.8%,制动总距离减少了15.8%,对接路面工况制动总时间缩短了18.0%,制动总距离减少了22.2%。 展开更多
关键词 最佳滑移率 电子机械制动 ABS 估计算法 积分滑模控制
在线阅读 下载PDF
基于Space P和K-means的货运航司航线网络特征分析研究
9
作者 罗凤娥 卫昌波 +1 位作者 韩晓彤 郭玲玉 《现代电子技术》 北大核心 2026年第1期102-107,共6页
针对航空货运行业的迅速扩张,航空货运网络结构变得更加复杂,文中通过Space P建模方法构建了货运航空公司航线网络模型,并运用K-means聚类算法对网络进行了深入分析。选取度、平均路径长度、聚类系数和中间度等关键网络特性指标对航线... 针对航空货运行业的迅速扩张,航空货运网络结构变得更加复杂,文中通过Space P建模方法构建了货运航空公司航线网络模型,并运用K-means聚类算法对网络进行了深入分析。选取度、平均路径长度、聚类系数和中间度等关键网络特性指标对航线网络进行层次化分类,揭示了网络的复杂特征和层次结构。通过仿真实验评估了网络的小世界特性,并利用轮廓系数得到不同K值下的聚类结果,进而确定最优聚类结果。同时,模拟了航线网络在遭受攻击时的鲁棒性,实验结果表明:在航线网络较为脆弱的情况下,该方法为货运航司航线网络的优化和抗风险能力的提升提供了重要参考。 展开更多
关键词 航空货运 Space P 航线网络 复杂网络 聚类算法 网络特征
在线阅读 下载PDF
旋翼无人机FMCW SAR成像系统设计
10
作者 周鹏 蒋子仪 邱杭 《电子设计工程》 2026年第1期140-144,149,共6页
为了开发一套低成本且高实用性的旋翼无人机合成孔径雷达(Synthetic Aperture Radar,SAR)成像系统,该文以六旋翼无人机为载体,设计了线性调频连续波(Frequency Modulated Continuous Wave,FMCW)体制的毫米波雷达系统。通过优化硬件架构... 为了开发一套低成本且高实用性的旋翼无人机合成孔径雷达(Synthetic Aperture Radar,SAR)成像系统,该文以六旋翼无人机为载体,设计了线性调频连续波(Frequency Modulated Continuous Wave,FMCW)体制的毫米波雷达系统。通过优化硬件架构和改进传统SAR信号处理算法,提升了系统性能。进行了多点目标、小型无人船、停车场等场景的实际成像实验,结果表明,该系统在各类场景中的成像分辨率达到0.3 m,证明系统具有较高的成像精度和可靠性。该文为构建低成本SAR成像系统提供了一种有效解决方案。 展开更多
关键词 低成本合成孔径雷达系统 旋翼无人机 线性调频连续波 速度估计算法
在线阅读 下载PDF
Joint Optimization of Routing and Resource Allocation in Decentralized UAV Networks Based on DDQN and GNN
11
作者 Nawaf Q.H.Othman YANG Qinghai JIANG Xinpei 《电讯技术》 北大核心 2026年第1期1-10,共10页
Optimizing routing and resource allocation in decentralized unmanned aerial vehicle(UAV)networks remains challenging due to interference and rapidly changing topologies.The authors introduce a novel framework combinin... Optimizing routing and resource allocation in decentralized unmanned aerial vehicle(UAV)networks remains challenging due to interference and rapidly changing topologies.The authors introduce a novel framework combining double deep Q-networks(DDQNs)and graph neural networks(GNNs)for joint routing and resource allocation.The framework uses GNNs to model the network topology and DDQNs to adaptively control routing and resource allocation,addressing interference and improving network performance.Simulation results show that the proposed approach outperforms traditional methods such as Closest-to-Destination(c2Dst),Max-SINR(mSINR),and Multi-Layer Perceptron(MLP)-based models,achieving approximately 23.5% improvement in throughput,50% increase in connection probability,and 17.6% reduction in number of hops,demonstrating its effectiveness in dynamic UAV networks. 展开更多
关键词 decentralized UAV network resource allocation routing algorithm GNN DDQN DRL
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
12
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
13
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model mULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
14
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
Random State Approach to Quantum Computation of Electronic-Structure Properties
15
作者 Yiran Bai Feng Xiong Xueheng Kuang 《Chinese Physics Letters》 2026年第1期89-104,共16页
Classical computation of electronic properties in large-scale materials remains challenging.Quantum computation has the potential to offer advantages in memory footprint and computational scaling.However,general and v... Classical computation of electronic properties in large-scale materials remains challenging.Quantum computation has the potential to offer advantages in memory footprint and computational scaling.However,general and viable quantum algorithms for simulating large-scale materials are still limited.We propose and implement random-state quantum algorithms to calculate electronic-structure properties of real materials.Using a random state circuit on a small number of qubits,we employ real-time evolution with first-order Trotter decomposition and Hadamard test to obtain electronic density of states,and we develop a modified quantum phase estimation algorithm to calculate real-space local density of states via direct quantum measurements.Furthermore,we validate these algorithms by numerically computing the density of states and spatial distributions of electronic states in graphene,twisted bilayer graphene quasicrystals,and fractal lattices,covering system sizes from hundreds to thousands of atoms.Our results manifest that the random-state quantum algorithms provide a general and qubit-efficient route to scalable simulations of electronic properties in large-scale periodic and aperiodic materials. 展开更多
关键词 periodic materials random state circuit random state quantum algorithms electronic structure properties density states aperiodic materials quantum algorithms quantum computation
原文传递
Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization
16
作者 Songsong Zhang Huazhong Jin +5 位作者 Zhiwei Ye Jia Yang Jixin Zhang Dongfang Wu Xiao Zheng Dingfeng Song 《Computers, Materials & Continua》 2026年第1期1141-1159,共19页
Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal... Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics. 展开更多
关键词 multi-label feature selection federated learning manifold regularization sparse constraints hybrid breeding optimization algorithm particle swarm optimizatio algorithm privacy protection
在线阅读 下载PDF
The Research on Low-Light Autonomous Driving Object Detection Method
17
作者 Jianhua Yang Zhiwei Lv Changling Huo 《Computers, Materials & Continua》 2026年第1期1611-1628,共18页
Aiming at the scale adaptation of automatic driving target detection algorithms in low illumination environments and the shortcomings in target occlusion processing,this paper proposes a YOLO-LKSDS automatic driving d... Aiming at the scale adaptation of automatic driving target detection algorithms in low illumination environments and the shortcomings in target occlusion processing,this paper proposes a YOLO-LKSDS automatic driving detection model.Firstly,the Contrast-Limited Adaptive Histogram Equalisation(CLAHE)image enhancement algorithm is improved to increase the image contrast and enhance the detailed features of the target;then,on the basis of the YOLOv5 model,the Kmeans++clustering algorithm is introduced to obtain a suitable anchor frame,and SPPELAN spatial pyramid pooling is improved to enhance the accuracy and robustness of the model for multi-scale target detection.Finally,an improved SEAM(Separated and Enhancement Attention Module)attention mechanism is combined with the DIOU-NMS algorithm to optimize the model’s performance when dealing with occlusion and dense scenes.Compared with the original model,the improved YOLO-LKSDS model achieves a 13.3%improvement in accuracy,a 1.7%improvement in mAP,and 240,000 fewer parameters on the BDD100K dataset.In order to validate the generalization of the improved algorithm,we selected the KITTI dataset for experimentation,which shows that YOLOv5’s accuracy improves by 21.1%,recall by 36.6%,and mAP50 by 29.5%,respectively,on the KITTI dataset.The deployment of this paper’s algorithm is verified by an edge computing platform,where the average speed of detection reaches 24.4 FPS while power consumption remains below 9 W,demonstrating high real-time capability and energy efficiency. 展开更多
关键词 Low-light images image enhancement target detection algorithm deployment
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
18
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Highly stable self-rectifying memristor integrated arrays for simulated annealing neuromorphic computing
19
作者 Jiang Bian Yingfang Zhu +13 位作者 Shaoan Yan Yin Tang Jiayue Guo Gang Li Jiang Zhao Qing Zhong Qingjiang Li Sen Liu Rui Liu Qilai Chen Yongguang Xiao Xiaojian Zhu Qinghua Li Minghua Tang 《Nano Research》 2026年第1期1089-1101,共13页
This work presents a high-stability self-rectifying memristor(SRM)array based on the Pt/TaO_(x)/Ti structure,with an indepth investigation of the performance and potential applications of the device.The device demonst... This work presents a high-stability self-rectifying memristor(SRM)array based on the Pt/TaO_(x)/Ti structure,with an indepth investigation of the performance and potential applications of the device.The device demonstrates excellent rectification and on/off ratios,along with low-power readout,multi-state storage,and multi-level switching capabilities,highlighting its practicality and adaptability.Notably,the device exhibits outstanding fluctuation suppression and exceptional uniformity.The coefficient of variation(CV)of the rectification ratio,calculated as 0.11497 at 3 V,indicates its high stability under multiple cycles and low-voltage operation,making it well-suited for large-scale integration and operational applications.Moreover,the stability of the rectification ratio further reinforces its potential as a hardware foundation for large-scale inmemory computing systems.By combining the neuromorphic characteristics of the device with a simulated annealing algorithm and optimizing the annealing temperature function,the system emulates biological neuron behavior,enabling fast and efficient image restoration tasks.Experimental results demonstrate that this approach significantly outperforms traditional algorithms in both optimization speed and repair accuracy.The present study offers a novel perspective for the design of in-memory computing hardware and showcases promising applications in neuromorphic computing and image processing. 展开更多
关键词 self-rectifying memristor in-memory computing simulated annealing algorithm neuromorphic computing
原文传递
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:2
20
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA machine learning
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部