This paper focuses on the robust stability for time-delay systems of neutral type. A new complete Lyapunov-Krasovskii function (LKF) is developed. Based on this function and discretization, stability conditions in ter...This paper focuses on the robust stability for time-delay systems of neutral type. A new complete Lyapunov-Krasovskii function (LKF) is developed. Based on this function and discretization, stability conditions in terms of linear matrix inequalities are obtained. A class of time-varying uncertainty of system matrices can be studied by the method.展开更多
In this paper,a class of quaternion-valued cellular neural networks(QVCNNS)with time-varying delays are considered.Combining graph theory with the continuation theorem of Mawhin’s coincidence degree theory as well as...In this paper,a class of quaternion-valued cellular neural networks(QVCNNS)with time-varying delays are considered.Combining graph theory with the continuation theorem of Mawhin’s coincidence degree theory as well as Lyapunov functional method,we establish new criteria on the existence and exponential stability of periodic solutions for QVCNNS by removing the assumptions for the boundedness on the activation functions and the assumptions that the values of the activation functions are zero at origin.Hence,our results are less conservative and new.展开更多
基金the National High Technology Research and Development Program (863) of China(No. 2006AA05Z148)
文摘This paper focuses on the robust stability for time-delay systems of neutral type. A new complete Lyapunov-Krasovskii function (LKF) is developed. Based on this function and discretization, stability conditions in terms of linear matrix inequalities are obtained. A class of time-varying uncertainty of system matrices can be studied by the method.
基金Supported by the Innovation Platform Open Fund in Hunan Province Colleges and Universities of China(201485).
文摘In this paper,a class of quaternion-valued cellular neural networks(QVCNNS)with time-varying delays are considered.Combining graph theory with the continuation theorem of Mawhin’s coincidence degree theory as well as Lyapunov functional method,we establish new criteria on the existence and exponential stability of periodic solutions for QVCNNS by removing the assumptions for the boundedness on the activation functions and the assumptions that the values of the activation functions are zero at origin.Hence,our results are less conservative and new.