The purpose of this paper is to investigate the solutions of refinement equations of the form ψ(x)∑α∈Z α(α)ψ(Mx-α),x∈R, where the vector of functions ψ = (ψ1,..., ψr)^T is in (Lp(R^n))^r, 0 〈 ...The purpose of this paper is to investigate the solutions of refinement equations of the form ψ(x)∑α∈Z α(α)ψ(Mx-α),x∈R, where the vector of functions ψ = (ψ1,..., ψr)^T is in (Lp(R^n))^r, 0 〈 p≤∞, α(α), α ∈ Z^n, is a finitely supported sequence of r × r matrices called the refinement mask, and M is an s × s integer matrix such that limn→∞M^-n=0, In this article, we characterize the existence of an Lp=solution of the refinement equation for 0〈 p ≤∞, Our characterizations are based on the p-norm joint spectral radius.展开更多
文摘The purpose of this paper is to investigate the solutions of refinement equations of the form ψ(x)∑α∈Z α(α)ψ(Mx-α),x∈R, where the vector of functions ψ = (ψ1,..., ψr)^T is in (Lp(R^n))^r, 0 〈 p≤∞, α(α), α ∈ Z^n, is a finitely supported sequence of r × r matrices called the refinement mask, and M is an s × s integer matrix such that limn→∞M^-n=0, In this article, we characterize the existence of an Lp=solution of the refinement equation for 0〈 p ≤∞, Our characterizations are based on the p-norm joint spectral radius.