Joining dissimilar materials encounters significant engineering challenges due to the contrast in material properties that makes conventional welding not feasible.Magnetic Pulse Welding(MPW)offers a solidstate joining...Joining dissimilar materials encounters significant engineering challenges due to the contrast in material properties that makes conventional welding not feasible.Magnetic Pulse Welding(MPW)offers a solidstate joining technique that overcomes these issues by using impact to create strong bonds without melting the substrate materials.This study investigates the weldability of aluminum alloy Al-5754 with Al-7075 and MARS 380 steel,used in armouring solutions of defense systems,by the use of MPW.In this work,weldability windows are investigated by varying standoff distances between the coating material and its substrate(0.25-4.5 mm)and discharge energies(5-13 kJ)with both O-shape and U-shape inductors.Mechanical strength of the welded joints were assessed through single lap shear tests,identifying optimal welding parameters.Then,the velocity profiles of the flyer plates were measured using heterodyne velocimetry to understand the dynamics of the impact.Then,substructures assembled with the optimal welding conditions were subjected to ballistic testing using 7.62 mm×51 mm NATO and 9 mm×19 mm Parabellum munitions to evaluate the resilience of the welds under ballistic impact.The outcomes demonstrate that MPW effectively joins Al-5754 with both Al-7075 and MARS 380,producing robust welds capable of withstanding ballistic impacts under certain conditions.This research advances the application of MPW in lightweight ballistic protection of defense systems,contributing to the development of more resilient and lighter protective structures.展开更多
AIM:To evaluate the efficacy of high-dose proton pump inhibitors(PPIs)vs low-dose PPIs for patients with upper gastrointestinal bleeding.METHODS:PubMed,Embase,the Cochrane Library,and Web of Science were searched to i...AIM:To evaluate the efficacy of high-dose proton pump inhibitors(PPIs)vs low-dose PPIs for patients with upper gastrointestinal bleeding.METHODS:PubMed,Embase,the Cochrane Library,and Web of Science were searched to identify relevant randomized controlled trials(RCTs).Eligible trials were RCTs that compared high-dose PPI with low-dose PPI following endoscopic hemostasis.The primary endpoint was rebleeding;secondary endpoints were patient numbers that needed surgery,and mortality.The meta-analysis was performed with a fixed effects model or random effects model.RESULTS:Nine eligible RCTs including 1342 patients were retrieved.The results showed that high-dose intravenous PPI was not superior to low-dose intra-venous PPI in reducing rebleeding[odds ratio(OR)= 1.091,95%confidential interval(CI):0.777-1.532],need for surgery(OR=1.522,95%CI:0.643-3.605) and mortality(OR=1.022,95%CI:0.476-2.196).Subgroup analysis according to different region revealed no difference in rebleeding rate between Asian patients(OR=0.831,95%CI,0.467-1.480)and European patients(OR=1.263,95%CI:0.827-1.929).CONCLUSION:Low-dose intravenous PPI can achieve the same efficacy as high-dose PPI following endoscopic hemostasis.展开更多
Objective To investigate whether apoptosis induced by low-dose radiation (LDR) is regulated by mitochondrial pathways in testicular cells. Methods Male mice were exposed to whole-body LDR, and changes in mitochondri...Objective To investigate whether apoptosis induced by low-dose radiation (LDR) is regulated by mitochondrial pathways in testicular cells. Methods Male mice were exposed to whole-body LDR, and changes in mitochondrial function and in expression of apoptotic factors were analyzed in the testicular cells as follows. Total nitric-oxide synthase (T-NOS) and Na+/K+ ATPase activities were biochemically assayed. Reactive oxygen species (ROS) and mitochondrial membrane potential (Adjm) were determined by flow cytometry using fluorescent probes. Levels of mRNAs encoding cytochrome c (Cyt c) and apoptosis-inducing factor (AIF) were quantified by real-time reverse-transcription PCR (RT-PCR). Expression of Cyt c, AIF, caspase-9, and caspase-3 at the protein level was assessed by western blotting and immunohistochemistry. Results LDR induced an increase in T-NOS activity and ROS levels, and a decrease in Na+/K~ ATPase activity and mitochondrial A^m, in the testicular cells. The intensity of these effects increased with time after irradiation and with dose. The cells showed remarkable swelling and vacuolization of mitochondria, and displayed a time- and dose-dependent increase in the expression of Cyt c, AIF, procaspase-9, and procaspase-3. Activation of the two procaspases was confirmed by detection of the cleaved caspases. The changes in expression of the four apoptotic factors were mostly limited to spermatogonia and spermatocytes. Conclusion LDR can induce testicular cell apoptosis through mitochondrial signaling pathways展开更多
AIM: To investigate the clinical differences between small intestinal injuries in low-dose aspirin (LDA) users and in non-steroidal anti-inflammatory drug (NSAID) users who were examined by capsule endoscopy (CE) for ...AIM: To investigate the clinical differences between small intestinal injuries in low-dose aspirin (LDA) users and in non-steroidal anti-inflammatory drug (NSAID) users who were examined by capsule endoscopy (CE) for obscure gastrointestinal bleeding (OGIB).展开更多
Advances in the identification of molecular biomarkers and the development of targeted therapies have enhanced the prognosis of patients with advanced gastric cancer.Several established biomarkers have been widely int...Advances in the identification of molecular biomarkers and the development of targeted therapies have enhanced the prognosis of patients with advanced gastric cancer.Several established biomarkers have been widely integrated into routine clinical diagnostics of gastric cancer to guide personalized treatment.Human epidermal growth factor receptor 2(HER2)was the first molecular biomarker to be used in gastric cancer with trastuzumab being the first approved targeted therapy for HER2-positive gastric cancer.Programmed death-ligand 1 positivity and microsatellite instability can guide the use of immunotherapies,such as pembrolizumab and nivolumab.More recently,zolbetuximab has been approved for patients with claudin 18.2-positive diseases in some countries.More targeted therapies,including savolitinib for MET-positive patients,are currently under clinical investigation.However,the clinical application of these diagnostic approaches could be hampered by many existing challenges,including invasive and costly sampling methods,variability in immunohistochemistry interpretation,high costs and long turnaround times for next-generation sequencing,the absence of standardized and clinically validated diagnostic cut-off values for some biomarkers,and tumor heterogeneity.Novel testing and analysis techniques,such as artificial intelligence-assisted image analysis and multiplex immunohistochemistry,and emerging therapeutic strategies,including combination therapies that integrate immune checkpoint inhibitors with targeted therapies,offer potential solutions to some of these challenges.This article reviews recent progress in gastric cancer testing,outlines current challenges,and explores future directions for biomarker testing and targeted therapy for gastric cancer.展开更多
The rapid progress in the construction of heavy-haul and high-speed railways has led to a surge in rail defects and unforeseen failures.Addressing this issue necessitates the implementation of more sophisticated rail ...The rapid progress in the construction of heavy-haul and high-speed railways has led to a surge in rail defects and unforeseen failures.Addressing this issue necessitates the implementation of more sophisticated rail inspection methods,specifically involving real-time,precise detection,and assessment of rail defects.Current applications fail to address the evolving requirements,prompting the need for advancements.This paper provides a summary of various types of rail defects and outlines both traditional and innovative non-destructive inspection techniques,examining their fundamental features,benefits,drawbacks,and practical suitability for railway track inspection.It also explores potential enhancements to equipment and software.The comprehensive review draws upon pertinent international research and review papers.Furthermore,the paper introduces a fusion of inspection methods aimed at enhancing the overall reliability of defect detection.展开更多
The purpose of this study is to analyze the application of ultrasonic non-destructive testing technology in bridge engineering.During the research phase,based on literature collection and reading,as well as the analys...The purpose of this study is to analyze the application of ultrasonic non-destructive testing technology in bridge engineering.During the research phase,based on literature collection and reading,as well as the analysis of bridge inspection materials,the principle of ultrasonic non-destructive testing technology and its adaptability to bridge engineering are elaborated.Subsequently,starting from the preparation work before inspection until damage assessment,the entire process of ultrasonic non-destructive testing is studied,and finally,a technical system of ultrasonic non-destructive testing for bridge engineering that runs through the entire process is formed.It is hoped that this article can provide technical reference value for relevant units in China,and promote the high-quality development of China’s bridge engineering from a macro perspective.展开更多
With the depletion of fossil fuels and increasing environmental concerns,the development of renewable energy,such as wave energy,has become a critical component of global energy strategies.However,challenges persist i...With the depletion of fossil fuels and increasing environmental concerns,the development of renewable energy,such as wave energy,has become a critical component of global energy strategies.However,challenges persist in the field testing methodologies for wave energy converters(WECs).In this paper,a numerical wave field of the Dawanshan Island Sea Area in Zhuhai City is constructed based on the MIKE21 SW wave model and by using an NCEP wind field driving model.In conjunction with the IEC-62600-100 standard,by taking site testing of the“Wanshan”wave energy converter on which a sea trial has been conducted in Dawanshan Island of Zhuhai city as an example,research on-site testing method for a wave energy converter has been carried out.The wave measurement position for the“Wanshan”converter was determined by combining statistically analyzed field data with a validated numerical wave model.By comparing a valid wave height at the position where a wave rider is located with a valid wave height at the position where the“Wanshan”wave energy converter is situated,the correlation coefficient between simulation and observed data reached 0.90,with a root-mean-square error of 0.19.The representativeness of wave measurement data during site testing is verified and can be used as a basis for calculating the input energy of the“Wanshan”wave energy converter.展开更多
Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the su...Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the substantial pressures exerted by vehicles,trains,and other forms of transportation,but also efficiently transfer these loads to the underlying foundation,ensuring the stability and longevity of the roadway.In recent years,advancements in subgrade engineering technology have propelled the industry towards smarter,greener,and more sustainable practices,particularly in the areas of intelligent monitoring,disaster management,and innovative construction methods.This paper reviews the application and methodologies of intelligent testing equipment,including cone penetration testing(CPT)devices,soil resistivity testers,and intelligent rebound testers,in subgrade engineering.It examines the operating principles,advantages,limitations,and application ranges of these tools in subgrade testing.Additionally,the paper evaluates the practical use of advanced equipment from both domestic and international perspectives,addressing the challenges encountered by various instruments in realworld applications.These devices enable precise,comprehensive testing and evaluation of subgrade conditions at different stages,providing real-time data analysis and intelligent early warnings.This supports effective subgrade health management and maintenance.As intelligent technologies continue to evolve and integrate,these tools will increasingly enhance the accuracy,efficiency,and sustainability of subgrade monitoring.展开更多
Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by...Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided.展开更多
Objective To investigate the contraceptive mechanism of combination regimen of low- dose gossypol acetic acid (GA) with steroid hormones [desogestre/ethinylestradiol/ testosterone undeeanote(DSG/EE/TU)]. Methods A...Objective To investigate the contraceptive mechanism of combination regimen of low- dose gossypol acetic acid (GA) with steroid hormones [desogestre/ethinylestradiol/ testosterone undeeanote(DSG/EE/TU)]. Methods Adult male rats were randomly divided into four groups. Group GH: rats were fed orally with gossypol acetic acid (GA, 12.5 mg/kg) and desogestrel (DSG, 0.125 mg/kg)/ ethinylestradiol (EE, 0.025 mg/kg)/testosterone undecanoate (TU, 100 mg/kg per day, qd X4 weeks or 10 weeks); group G: a single dose of GA (12.5 mg/kg per day, qd X 4 weeks or I0 weeks); group H: the same dosage of DSG/EE/TUas in group GH; group C: rats were treated with vehicle (1% methyl cellulose) as the control. Expression of protein kinase C alpha (PKC-a) and cyclin D1 in rat testes were tested mainly by immunohistochemistry (IHC) and Western blotting. Results IHC results showed that protein PKC- a was expressed mainly in interstitial tissue of testis among seminiferous tubule. The expression of PKC-oc in groups H and GH at week 10 was decreased greatly compared with that in group C. The protein cyclin D1 was expressed mainly in residual body of seminiferous tubule eavosurface and interstitial tissue among seminiferous tubule of testis. Western blotting results showed that the expression of PKC-a in groups H and GH at week 10 was decreased significantly compared with that in group C (P〈0.05). The expression of cyclin D1 in groups G, H or GH at week 10 rose significantly compared with that in group C (P 〈0.05).Conclusion The administration of low-dose gossypol acetic acid with steroid hormones for 10 weeks can decrease the expression of PKC-a greatly.展开更多
Penetration testing plays a critical role in ensuring security in an increasingly interconnected world. Despite advancements in technology leading to smaller, more portable devices, penetration testing remains reliant...Penetration testing plays a critical role in ensuring security in an increasingly interconnected world. Despite advancements in technology leading to smaller, more portable devices, penetration testing remains reliant on traditional laptops and computers, which, while portable, lack true ultra-portability. This paper explores the potential impact of developing a dedicated, ultra-portable, low-cost device for on-the-go penetration testing. Such a device could replicate the core functionalities of advanced penetration testing tools, including those found in Kali Linux, within a compact form factor that fits easily into a pocket. By offering the convenience and portability akin to a smartphone, this innovative device could redefine the way penetration testers operate, enabling them to carry essential tools wherever they go and ensuring they are always prepared to conduct security assessments efficiently. This approach aims to revolutionize penetration testing by merging high functionality with unparalleled portability.展开更多
Low-dose radiation therapy has emerged as a promising modality for cancer treatment because of its ability to stimulate antitumor immune responses while minimizing damage to healthy tissues.However,the significant het...Low-dose radiation therapy has emerged as a promising modality for cancer treatment because of its ability to stimulate antitumor immune responses while minimizing damage to healthy tissues.However,the significant heterogeneity in immune responses among patients complicates its clinical application,hindering outcome prediction and treatment personalization.Artificial intelligence(AI)offers a transformative solution by integrating multidimensional data such as immunomics,radiomics,and clinical features to decode complex immune pa-tterns and predict individual therapeutic outcomes.This editorial explored the potential of AI to address immune response heterogeneity in low-dose radiation therapy and proposed an AI-driven framework for precision immunotherapy.While promising,challenges,including data standardization,model interpre-tability,and clinical validation,must be overcome to ensure successful integration into oncological practice.展开更多
Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are ...Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are attractive at different scales.Each method requires minimal sample volume,is low cost,and includes a relatively rapid measurement turnaround time.However,recent micro-scale test results–including scratch test results and nanoindentation results–exhibit tangible variance and uncertainty,suggesting a need to correlate mineral composition mapping to elastic modulus mapping to isolate the relative impact of specific minerals.Different research labs often utilize different interpretation methods,and it is clear that future micro-mechanical tests may benefit from standardized testing and interpretation procedures.The objectives of this study are to seek options for standardized testing and interpretation procedures,through two specific objectives:(1)Quantify chemical and physical controls on micro-mechanical properties and(2)Quantify the source of uncertainties associated with nanoindentation measurements.To reach these goals,we conducted mechanical tests on three different scales:triaxial compression tests,scratch tests,and nanoindentation tests.We found that mineral phase weight percentage is highly correlated with nanoindentation elastic modulus distribution.Finally,we conclude that nanoindentation testing is a mineralogy and microstructure-based method and generally yields significant uncertainty and overestimation.The uncertainty of the testing method is largely associated with not mapping pore space a priori.Lastly,the uncertainty can be reduced by combining phase mapping and modulus mapping with substantial and random data sampling.展开更多
BACKGROUND Radiotherapy(RT)is a cornerstone of cancer treatment.Compared with conven-tional high-dose radiation,low-dose radiation(LDR)causes less damage to normal tissues while potentially modulating immune responses...BACKGROUND Radiotherapy(RT)is a cornerstone of cancer treatment.Compared with conven-tional high-dose radiation,low-dose radiation(LDR)causes less damage to normal tissues while potentially modulating immune responses and inhibiting tumor growth.LDR stimulates both innate and adaptive immunity,enhancing the activity of natural killer cells,dendritic cells,and T cells.However,the me-chanisms underlying the effects of LDR on the immune system remain unclear.AIM To explore the history,research hotspots,and emerging trends in immune response to LDR literature over the past two decades.METHODS Publications on immune responses to LDR were retrieved from the Web of Science Core Collection.Bibliometric tools,including CiteSpace and HistCite,were used to identify historical features,active topics,and emerging trends in this field.RESULTS Analysis of 1244 publications over the past two decades revealed a significant surge in research on immune responses to LDR,particularly in the last decade.Key journals such as INR J Radiat Biol,Cancers,and Radiat Res published pivotal studies.Citation networks identified key studies by authors like Twyman-Saint Victor C(2015)and Vanpouille-Box C(2017).Keyword analysis revealed hotspots such as ipilimumab,stereotactic body RT,and targeted therapy,possibly identifying future research directions.Temporal variations in keyword clusters and alluvial flow maps illustrate the evolution of research themes over time.CONCLUSION This bibliometric analysis provides valuable insights into the evolution of studies on responses to LDR,highlights research trends,and identifies emerging areas for further investigation.展开更多
The China Spallation Neutron Source(CSNS)is the fourth pulsed accelerator-driven neutron source in the world,and it achieved its design target of 100 kW in 2020.The planned China Spallation Neutron Source Phase II(CSN...The China Spallation Neutron Source(CSNS)is the fourth pulsed accelerator-driven neutron source in the world,and it achieved its design target of 100 kW in 2020.The planned China Spallation Neutron Source Phase II(CSNS-II)commenced in 2024.The CSNS-II linac design primarily involves the addition of a radio-frequency ion source and a section of a superconducting linear accelerator composed of two types of superconducting cavities,namely double-spoke and six-cell elliptical cavities,after the drift tube linac(DTL).The development of the double-spoke superconducting cavity began in early 2021,and by January 2023,the welding,post-processing,and vertical tests of two 324 MHz double-spoke cavity prototypes were completed,with vertical test gradients of 11.6 and 15 MV/m,and Q_(0)≥3×10^(10)@E_(acc)≤10 MV/m.The R&D of the cryomodule began in January 2022.In October 2023,the clean assembly of the double-spoke cavity string and cold mass installation of the cryomodule commenced,with the installation of the cryomodule and valve box completing in two months.In January 2024,a horizontal test of the cryomodule was completed,making it the first double-spoke cavity cryomodule in China.The test results showed that the maximum gradients of the two superconducting cavities at a pulse width of 4 ms and repetition frequency of 25 Hz were 12.8 and 15.2 MV/m,respectively.This article provides a detailed introduction to the double-spoke superconducting cavity,tuner,coupler,and cryomodule,elaborates on the clean assembly of the cavity string and cold mass installation of the cryomodule,and provides a detailed analysis of the horizontal test results.展开更多
Knowledge of the dynamic modulus of bituminous mixtures is practical and theoretically meaningful in pavement design,construction,and monitoring.The tests in the laboratory for the determination of asphalt concrete(AC...Knowledge of the dynamic modulus of bituminous mixtures is practical and theoretically meaningful in pavement design,construction,and monitoring.The tests in the laboratory for the determination of asphalt concrete(AC)moduli include the resilient modulus through the indirect tensile test(EN 12697-26),the complex modulus through the four point bending beam(EN 12697-26),the asphalt mixture performance tester(AMPT)and the simple performance tester(SPT)(AASHTO T342).Unfortunately,the tests above are time-consuming and quite expensive.On the other hand,the standard ASTM E1876 for resonant tests applies only to very thin(stocky)cylindrical samples(with a thickness-to-radius ratio,t/r,lower than 0.5)while the typical AC samples produced in the laboratory do not satisfy the ASTM E1876 requirements.Consequently,the main objective of this study is to set up and implement a tentative method to extend the range of applicability of the standard ASTM E1876 to common AC samples.The methodology was to carry out resonant tests on slender samples and to cut each of them into stocky samples(these latter complying with ASTM E1876 requirements in terms of t/r),deriving the master curve per material.These master curves allowed for deriving the value of the dynamic modulus for the given selected sample under its particular test conditions during the resonant test(i.e.,temperature and frequency).Consequently,simplified formulae were provided for AC samples.Results were compared to Witczak's estimates.These formulae provide an approximate tool to carry out low-cost and high-speed inferences at the laboratory stage on common AC samples,whatever their thickness is.Additional studies are needed to investigate the reliability of the method further and reduce uncertainties.展开更多
In recent years,the application scenarios of electrical and electronic products have become increasingly diverse worldwide.The impact of climatic environmental tests on the performance of related products has attracte...In recent years,the application scenarios of electrical and electronic products have become increasingly diverse worldwide.The impact of climatic environmental tests on the performance of related products has attracted much attention,and formulating scientific and reasonable environmental test plans has become an important step to ensure product quality and reliability.展开更多
In high-risk industrial environments like nuclear power plants,precise defect identification and localization are essential for maintaining production stability and safety.However,the complexity of such a harsh enviro...In high-risk industrial environments like nuclear power plants,precise defect identification and localization are essential for maintaining production stability and safety.However,the complexity of such a harsh environment leads to significant variations in the shape and size of the defects.To address this challenge,we propose the multivariate time series segmentation network(MSSN),which adopts a multiscale convolutional network with multi-stage and depth-separable convolutions for efficient feature extraction through variable-length templates.To tackle the classification difficulty caused by structural signal variance,MSSN employs logarithmic normalization to adjust instance distributions.Furthermore,it integrates classification with smoothing loss functions to accurately identify defect segments amid similar structural and defect signal subsequences.Our algorithm evaluated on both the Mackey-Glass dataset and industrial dataset achieves over 95%localization and demonstrates the capture capability on the synthetic dataset.In a nuclear plant's heat transfer tube dataset,it captures 90%of defect instances with75%middle localization F1 score.展开更多
This article introduces the composition and working principle of home appliance control board automation testing equipment,elaborates on the importance of key technical indicators,explains the integrated design of fun...This article introduces the composition and working principle of home appliance control board automation testing equipment,elaborates on the importance of key technical indicators,explains the integrated design of functional modules,signal processing modules,and data analysis modules,and covers aspects such as the application of machine learning algorithms and the establishment of fault waveform databases.Finally,it looks forward to the development of intelligent testing systems and emphasizes the importance of building a standardized testing system.展开更多
基金funded on the one hand by Agence de l'Innovation de Défense(AID)grant reference number 2021650044on the other hand by Ecole Centrale de Nantes。
文摘Joining dissimilar materials encounters significant engineering challenges due to the contrast in material properties that makes conventional welding not feasible.Magnetic Pulse Welding(MPW)offers a solidstate joining technique that overcomes these issues by using impact to create strong bonds without melting the substrate materials.This study investigates the weldability of aluminum alloy Al-5754 with Al-7075 and MARS 380 steel,used in armouring solutions of defense systems,by the use of MPW.In this work,weldability windows are investigated by varying standoff distances between the coating material and its substrate(0.25-4.5 mm)and discharge energies(5-13 kJ)with both O-shape and U-shape inductors.Mechanical strength of the welded joints were assessed through single lap shear tests,identifying optimal welding parameters.Then,the velocity profiles of the flyer plates were measured using heterodyne velocimetry to understand the dynamics of the impact.Then,substructures assembled with the optimal welding conditions were subjected to ballistic testing using 7.62 mm×51 mm NATO and 9 mm×19 mm Parabellum munitions to evaluate the resilience of the welds under ballistic impact.The outcomes demonstrate that MPW effectively joins Al-5754 with both Al-7075 and MARS 380,producing robust welds capable of withstanding ballistic impacts under certain conditions.This research advances the application of MPW in lightweight ballistic protection of defense systems,contributing to the development of more resilient and lighter protective structures.
基金Supported by First Affiliated Hospital,Guangxi Medical University
文摘AIM:To evaluate the efficacy of high-dose proton pump inhibitors(PPIs)vs low-dose PPIs for patients with upper gastrointestinal bleeding.METHODS:PubMed,Embase,the Cochrane Library,and Web of Science were searched to identify relevant randomized controlled trials(RCTs).Eligible trials were RCTs that compared high-dose PPI with low-dose PPI following endoscopic hemostasis.The primary endpoint was rebleeding;secondary endpoints were patient numbers that needed surgery,and mortality.The meta-analysis was performed with a fixed effects model or random effects model.RESULTS:Nine eligible RCTs including 1342 patients were retrieved.The results showed that high-dose intravenous PPI was not superior to low-dose intra-venous PPI in reducing rebleeding[odds ratio(OR)= 1.091,95%confidential interval(CI):0.777-1.532],need for surgery(OR=1.522,95%CI:0.643-3.605) and mortality(OR=1.022,95%CI:0.476-2.196).Subgroup analysis according to different region revealed no difference in rebleeding rate between Asian patients(OR=0.831,95%CI,0.467-1.480)and European patients(OR=1.263,95%CI:0.827-1.929).CONCLUSION:Low-dose intravenous PPI can achieve the same efficacy as high-dose PPI following endoscopic hemostasis.
基金supported by the National Natural Science Foundation of China (30970681)Basic Research and Operating Expenses of Jilin University (200903116)
文摘Objective To investigate whether apoptosis induced by low-dose radiation (LDR) is regulated by mitochondrial pathways in testicular cells. Methods Male mice were exposed to whole-body LDR, and changes in mitochondrial function and in expression of apoptotic factors were analyzed in the testicular cells as follows. Total nitric-oxide synthase (T-NOS) and Na+/K+ ATPase activities were biochemically assayed. Reactive oxygen species (ROS) and mitochondrial membrane potential (Adjm) were determined by flow cytometry using fluorescent probes. Levels of mRNAs encoding cytochrome c (Cyt c) and apoptosis-inducing factor (AIF) were quantified by real-time reverse-transcription PCR (RT-PCR). Expression of Cyt c, AIF, caspase-9, and caspase-3 at the protein level was assessed by western blotting and immunohistochemistry. Results LDR induced an increase in T-NOS activity and ROS levels, and a decrease in Na+/K~ ATPase activity and mitochondrial A^m, in the testicular cells. The intensity of these effects increased with time after irradiation and with dose. The cells showed remarkable swelling and vacuolization of mitochondria, and displayed a time- and dose-dependent increase in the expression of Cyt c, AIF, procaspase-9, and procaspase-3. Activation of the two procaspases was confirmed by detection of the cleaved caspases. The changes in expression of the four apoptotic factors were mostly limited to spermatogonia and spermatocytes. Conclusion LDR can induce testicular cell apoptosis through mitochondrial signaling pathways
文摘AIM: To investigate the clinical differences between small intestinal injuries in low-dose aspirin (LDA) users and in non-steroidal anti-inflammatory drug (NSAID) users who were examined by capsule endoscopy (CE) for obscure gastrointestinal bleeding (OGIB).
基金support by grants from Capital’s Funds for Health Improvement and Research(Grant No.2024-2-1024)Beijing Natural Science Foundation(Grant No.7232018).
文摘Advances in the identification of molecular biomarkers and the development of targeted therapies have enhanced the prognosis of patients with advanced gastric cancer.Several established biomarkers have been widely integrated into routine clinical diagnostics of gastric cancer to guide personalized treatment.Human epidermal growth factor receptor 2(HER2)was the first molecular biomarker to be used in gastric cancer with trastuzumab being the first approved targeted therapy for HER2-positive gastric cancer.Programmed death-ligand 1 positivity and microsatellite instability can guide the use of immunotherapies,such as pembrolizumab and nivolumab.More recently,zolbetuximab has been approved for patients with claudin 18.2-positive diseases in some countries.More targeted therapies,including savolitinib for MET-positive patients,are currently under clinical investigation.However,the clinical application of these diagnostic approaches could be hampered by many existing challenges,including invasive and costly sampling methods,variability in immunohistochemistry interpretation,high costs and long turnaround times for next-generation sequencing,the absence of standardized and clinically validated diagnostic cut-off values for some biomarkers,and tumor heterogeneity.Novel testing and analysis techniques,such as artificial intelligence-assisted image analysis and multiplex immunohistochemistry,and emerging therapeutic strategies,including combination therapies that integrate immune checkpoint inhibitors with targeted therapies,offer potential solutions to some of these challenges.This article reviews recent progress in gastric cancer testing,outlines current challenges,and explores future directions for biomarker testing and targeted therapy for gastric cancer.
文摘The rapid progress in the construction of heavy-haul and high-speed railways has led to a surge in rail defects and unforeseen failures.Addressing this issue necessitates the implementation of more sophisticated rail inspection methods,specifically involving real-time,precise detection,and assessment of rail defects.Current applications fail to address the evolving requirements,prompting the need for advancements.This paper provides a summary of various types of rail defects and outlines both traditional and innovative non-destructive inspection techniques,examining their fundamental features,benefits,drawbacks,and practical suitability for railway track inspection.It also explores potential enhancements to equipment and software.The comprehensive review draws upon pertinent international research and review papers.Furthermore,the paper introduces a fusion of inspection methods aimed at enhancing the overall reliability of defect detection.
文摘The purpose of this study is to analyze the application of ultrasonic non-destructive testing technology in bridge engineering.During the research phase,based on literature collection and reading,as well as the analysis of bridge inspection materials,the principle of ultrasonic non-destructive testing technology and its adaptability to bridge engineering are elaborated.Subsequently,starting from the preparation work before inspection until damage assessment,the entire process of ultrasonic non-destructive testing is studied,and finally,a technical system of ultrasonic non-destructive testing for bridge engineering that runs through the entire process is formed.It is hoped that this article can provide technical reference value for relevant units in China,and promote the high-quality development of China’s bridge engineering from a macro perspective.
基金supported by the“National Ocean Technology Center Innovation Fund”under Project No.N3220Z002,led by Ning Jia.The official website of the National Ocean Technology Center is accessible at:http://www.notcsoa.org.cn/.
文摘With the depletion of fossil fuels and increasing environmental concerns,the development of renewable energy,such as wave energy,has become a critical component of global energy strategies.However,challenges persist in the field testing methodologies for wave energy converters(WECs).In this paper,a numerical wave field of the Dawanshan Island Sea Area in Zhuhai City is constructed based on the MIKE21 SW wave model and by using an NCEP wind field driving model.In conjunction with the IEC-62600-100 standard,by taking site testing of the“Wanshan”wave energy converter on which a sea trial has been conducted in Dawanshan Island of Zhuhai city as an example,research on-site testing method for a wave energy converter has been carried out.The wave measurement position for the“Wanshan”converter was determined by combining statistically analyzed field data with a validated numerical wave model.By comparing a valid wave height at the position where a wave rider is located with a valid wave height at the position where the“Wanshan”wave energy converter is situated,the correlation coefficient between simulation and observed data reached 0.90,with a root-mean-square error of 0.19.The representativeness of wave measurement data during site testing is verified and can be used as a basis for calculating the input energy of the“Wanshan”wave energy converter.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars(Grant No.42225206)National Natural Science Foundation of China(42207180,42477209,42302320).
文摘Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the substantial pressures exerted by vehicles,trains,and other forms of transportation,but also efficiently transfer these loads to the underlying foundation,ensuring the stability and longevity of the roadway.In recent years,advancements in subgrade engineering technology have propelled the industry towards smarter,greener,and more sustainable practices,particularly in the areas of intelligent monitoring,disaster management,and innovative construction methods.This paper reviews the application and methodologies of intelligent testing equipment,including cone penetration testing(CPT)devices,soil resistivity testers,and intelligent rebound testers,in subgrade engineering.It examines the operating principles,advantages,limitations,and application ranges of these tools in subgrade testing.Additionally,the paper evaluates the practical use of advanced equipment from both domestic and international perspectives,addressing the challenges encountered by various instruments in realworld applications.These devices enable precise,comprehensive testing and evaluation of subgrade conditions at different stages,providing real-time data analysis and intelligent early warnings.This supports effective subgrade health management and maintenance.As intelligent technologies continue to evolve and integrate,these tools will increasingly enhance the accuracy,efficiency,and sustainability of subgrade monitoring.
文摘Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided.
文摘Objective To investigate the contraceptive mechanism of combination regimen of low- dose gossypol acetic acid (GA) with steroid hormones [desogestre/ethinylestradiol/ testosterone undeeanote(DSG/EE/TU)]. Methods Adult male rats were randomly divided into four groups. Group GH: rats were fed orally with gossypol acetic acid (GA, 12.5 mg/kg) and desogestrel (DSG, 0.125 mg/kg)/ ethinylestradiol (EE, 0.025 mg/kg)/testosterone undecanoate (TU, 100 mg/kg per day, qd X4 weeks or 10 weeks); group G: a single dose of GA (12.5 mg/kg per day, qd X 4 weeks or I0 weeks); group H: the same dosage of DSG/EE/TUas in group GH; group C: rats were treated with vehicle (1% methyl cellulose) as the control. Expression of protein kinase C alpha (PKC-a) and cyclin D1 in rat testes were tested mainly by immunohistochemistry (IHC) and Western blotting. Results IHC results showed that protein PKC- a was expressed mainly in interstitial tissue of testis among seminiferous tubule. The expression of PKC-oc in groups H and GH at week 10 was decreased greatly compared with that in group C. The protein cyclin D1 was expressed mainly in residual body of seminiferous tubule eavosurface and interstitial tissue among seminiferous tubule of testis. Western blotting results showed that the expression of PKC-a in groups H and GH at week 10 was decreased significantly compared with that in group C (P〈0.05). The expression of cyclin D1 in groups G, H or GH at week 10 rose significantly compared with that in group C (P 〈0.05).Conclusion The administration of low-dose gossypol acetic acid with steroid hormones for 10 weeks can decrease the expression of PKC-a greatly.
文摘Penetration testing plays a critical role in ensuring security in an increasingly interconnected world. Despite advancements in technology leading to smaller, more portable devices, penetration testing remains reliant on traditional laptops and computers, which, while portable, lack true ultra-portability. This paper explores the potential impact of developing a dedicated, ultra-portable, low-cost device for on-the-go penetration testing. Such a device could replicate the core functionalities of advanced penetration testing tools, including those found in Kali Linux, within a compact form factor that fits easily into a pocket. By offering the convenience and portability akin to a smartphone, this innovative device could redefine the way penetration testers operate, enabling them to carry essential tools wherever they go and ensuring they are always prepared to conduct security assessments efficiently. This approach aims to revolutionize penetration testing by merging high functionality with unparalleled portability.
文摘Low-dose radiation therapy has emerged as a promising modality for cancer treatment because of its ability to stimulate antitumor immune responses while minimizing damage to healthy tissues.However,the significant heterogeneity in immune responses among patients complicates its clinical application,hindering outcome prediction and treatment personalization.Artificial intelligence(AI)offers a transformative solution by integrating multidimensional data such as immunomics,radiomics,and clinical features to decode complex immune pa-tterns and predict individual therapeutic outcomes.This editorial explored the potential of AI to address immune response heterogeneity in low-dose radiation therapy and proposed an AI-driven framework for precision immunotherapy.While promising,challenges,including data standardization,model interpre-tability,and clinical validation,must be overcome to ensure successful integration into oncological practice.
基金support of this project through the Southwest Regional Partnership on Carbon Sequestration(Grant No.DE-FC26-05NT42591)Improving Production in the Emerging Paradox Oil Play(Grant No.DE-FE0031775).
文摘Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are attractive at different scales.Each method requires minimal sample volume,is low cost,and includes a relatively rapid measurement turnaround time.However,recent micro-scale test results–including scratch test results and nanoindentation results–exhibit tangible variance and uncertainty,suggesting a need to correlate mineral composition mapping to elastic modulus mapping to isolate the relative impact of specific minerals.Different research labs often utilize different interpretation methods,and it is clear that future micro-mechanical tests may benefit from standardized testing and interpretation procedures.The objectives of this study are to seek options for standardized testing and interpretation procedures,through two specific objectives:(1)Quantify chemical and physical controls on micro-mechanical properties and(2)Quantify the source of uncertainties associated with nanoindentation measurements.To reach these goals,we conducted mechanical tests on three different scales:triaxial compression tests,scratch tests,and nanoindentation tests.We found that mineral phase weight percentage is highly correlated with nanoindentation elastic modulus distribution.Finally,we conclude that nanoindentation testing is a mineralogy and microstructure-based method and generally yields significant uncertainty and overestimation.The uncertainty of the testing method is largely associated with not mapping pore space a priori.Lastly,the uncertainty can be reduced by combining phase mapping and modulus mapping with substantial and random data sampling.
文摘BACKGROUND Radiotherapy(RT)is a cornerstone of cancer treatment.Compared with conven-tional high-dose radiation,low-dose radiation(LDR)causes less damage to normal tissues while potentially modulating immune responses and inhibiting tumor growth.LDR stimulates both innate and adaptive immunity,enhancing the activity of natural killer cells,dendritic cells,and T cells.However,the me-chanisms underlying the effects of LDR on the immune system remain unclear.AIM To explore the history,research hotspots,and emerging trends in immune response to LDR literature over the past two decades.METHODS Publications on immune responses to LDR were retrieved from the Web of Science Core Collection.Bibliometric tools,including CiteSpace and HistCite,were used to identify historical features,active topics,and emerging trends in this field.RESULTS Analysis of 1244 publications over the past two decades revealed a significant surge in research on immune responses to LDR,particularly in the last decade.Key journals such as INR J Radiat Biol,Cancers,and Radiat Res published pivotal studies.Citation networks identified key studies by authors like Twyman-Saint Victor C(2015)and Vanpouille-Box C(2017).Keyword analysis revealed hotspots such as ipilimumab,stereotactic body RT,and targeted therapy,possibly identifying future research directions.Temporal variations in keyword clusters and alluvial flow maps illustrate the evolution of research themes over time.CONCLUSION This bibliometric analysis provides valuable insights into the evolution of studies on responses to LDR,highlights research trends,and identifies emerging areas for further investigation.
文摘The China Spallation Neutron Source(CSNS)is the fourth pulsed accelerator-driven neutron source in the world,and it achieved its design target of 100 kW in 2020.The planned China Spallation Neutron Source Phase II(CSNS-II)commenced in 2024.The CSNS-II linac design primarily involves the addition of a radio-frequency ion source and a section of a superconducting linear accelerator composed of two types of superconducting cavities,namely double-spoke and six-cell elliptical cavities,after the drift tube linac(DTL).The development of the double-spoke superconducting cavity began in early 2021,and by January 2023,the welding,post-processing,and vertical tests of two 324 MHz double-spoke cavity prototypes were completed,with vertical test gradients of 11.6 and 15 MV/m,and Q_(0)≥3×10^(10)@E_(acc)≤10 MV/m.The R&D of the cryomodule began in January 2022.In October 2023,the clean assembly of the double-spoke cavity string and cold mass installation of the cryomodule commenced,with the installation of the cryomodule and valve box completing in two months.In January 2024,a horizontal test of the cryomodule was completed,making it the first double-spoke cavity cryomodule in China.The test results showed that the maximum gradients of the two superconducting cavities at a pulse width of 4 ms and repetition frequency of 25 Hz were 12.8 and 15.2 MV/m,respectively.This article provides a detailed introduction to the double-spoke superconducting cavity,tuner,coupler,and cryomodule,elaborates on the clean assembly of the cavity string and cold mass installation of the cryomodule,and provides a detailed analysis of the horizontal test results.
文摘Knowledge of the dynamic modulus of bituminous mixtures is practical and theoretically meaningful in pavement design,construction,and monitoring.The tests in the laboratory for the determination of asphalt concrete(AC)moduli include the resilient modulus through the indirect tensile test(EN 12697-26),the complex modulus through the four point bending beam(EN 12697-26),the asphalt mixture performance tester(AMPT)and the simple performance tester(SPT)(AASHTO T342).Unfortunately,the tests above are time-consuming and quite expensive.On the other hand,the standard ASTM E1876 for resonant tests applies only to very thin(stocky)cylindrical samples(with a thickness-to-radius ratio,t/r,lower than 0.5)while the typical AC samples produced in the laboratory do not satisfy the ASTM E1876 requirements.Consequently,the main objective of this study is to set up and implement a tentative method to extend the range of applicability of the standard ASTM E1876 to common AC samples.The methodology was to carry out resonant tests on slender samples and to cut each of them into stocky samples(these latter complying with ASTM E1876 requirements in terms of t/r),deriving the master curve per material.These master curves allowed for deriving the value of the dynamic modulus for the given selected sample under its particular test conditions during the resonant test(i.e.,temperature and frequency).Consequently,simplified formulae were provided for AC samples.Results were compared to Witczak's estimates.These formulae provide an approximate tool to carry out low-cost and high-speed inferences at the laboratory stage on common AC samples,whatever their thickness is.Additional studies are needed to investigate the reliability of the method further and reduce uncertainties.
文摘In recent years,the application scenarios of electrical and electronic products have become increasingly diverse worldwide.The impact of climatic environmental tests on the performance of related products has attracted much attention,and formulating scientific and reasonable environmental test plans has become an important step to ensure product quality and reliability.
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(2024ZD0608100)the National Natural Science Foundation of China(62332017,U22A2022)
文摘In high-risk industrial environments like nuclear power plants,precise defect identification and localization are essential for maintaining production stability and safety.However,the complexity of such a harsh environment leads to significant variations in the shape and size of the defects.To address this challenge,we propose the multivariate time series segmentation network(MSSN),which adopts a multiscale convolutional network with multi-stage and depth-separable convolutions for efficient feature extraction through variable-length templates.To tackle the classification difficulty caused by structural signal variance,MSSN employs logarithmic normalization to adjust instance distributions.Furthermore,it integrates classification with smoothing loss functions to accurately identify defect segments amid similar structural and defect signal subsequences.Our algorithm evaluated on both the Mackey-Glass dataset and industrial dataset achieves over 95%localization and demonstrates the capture capability on the synthetic dataset.In a nuclear plant's heat transfer tube dataset,it captures 90%of defect instances with75%middle localization F1 score.
文摘This article introduces the composition and working principle of home appliance control board automation testing equipment,elaborates on the importance of key technical indicators,explains the integrated design of functional modules,signal processing modules,and data analysis modules,and covers aspects such as the application of machine learning algorithms and the establishment of fault waveform databases.Finally,it looks forward to the development of intelligent testing systems and emphasizes the importance of building a standardized testing system.