Atherosclerotic cardiovascular disease is the main cause of mortality and morbidity in the world. Plasma levels of low density lipoprotein cholesterol (LDL-C) are positively correlated with the risk of atheroscleros...Atherosclerotic cardiovascular disease is the main cause of mortality and morbidity in the world. Plasma levels of low density lipoprotein cholesterol (LDL-C) are positively correlated with the risk of atherosclerosis. High plasma LDL concentrations in patients with hypercholesterolemia lead to build-up of LDL in the inner walls of the arteries, which becomes oxidized and promotes the formation of foam cells, consequently initiating atherosclerosis. Plasma LDL is mainly cleared through the LDL receptor (LDLR) pathway. Mutations in the LDLR cause familiar hyperch- olesterolemia and increase the risk of premature coronary heart disease. The expression of LDLR is regulated at the transcriptional level via the sterol regulatory element binding protein 2 (SREBP-2) and at the posttranslational levels mainly through proprotein convertase subtilisin/kexin-type 9 (PCSK9) and inducible degrader of the LDLR (IDOL). In this review, we summarize the latest advances in the studies of PCSK9.展开更多
Low bulk density expanding vermiculite is prepared, and the surface modification of hollow Al2O3-SiO2 microspheres and the composition of the low density ablative coating are studied. Organic silicon epoxy resin and p...Low bulk density expanding vermiculite is prepared, and the surface modification of hollow Al2O3-SiO2 microspheres and the composition of the low density ablative coating are studied. Organic silicon epoxy resin and phenolic aldehyde resin are applied as film forming matters to get a series of ablative coating having a density of 0.4-0.6 g/cm^3. The performance of the low density ablative coating is evaluated by mechanical, thermodynamic and oxygen acetylene ablation tests, and the results are as follows, adhesion is in the range of 2.97-4.63 MPa, conductivity is no more than 0.1 kcal/(m·h·℃ ), line ablation rate is no more than 0.30 mm/s, mass ablation rate is in the range of 0.11-0.18 mm/s.展开更多
The effects of oxidized low density lipoprotein (ox-LDL) on the proliferation of cultured human vascular smooth muscle cells (vSMC) were investigated in vitro. By using NaBr density gradient centrifugation, LDL wa...The effects of oxidized low density lipoprotein (ox-LDL) on the proliferation of cultured human vascular smooth muscle cells (vSMC) were investigated in vitro. By using NaBr density gradient centrifugation, LDL was isolated and purified from human plasma. Ox-LDL was produced from LDL by being incubated with CuSO4. ox-LDL was then added to the culture medium at different concentrations (35, 60, 85, 110, 135 and 160μg/mL) for 7 days. The influence of ox-LDL on vSMC proliferation was observed in growth curve, mitosis index, and in situ determination of apoptosis. The data were analyzed with SPSS 10.0 software. The results showed that the ox-LDL produced in vitro had a good purity and optimal oxidative degree, which was similar to the intrinsic ox-LDL in atherosclerotic plaque, ox-LDL at a concentration of 35 μg/mL demonstrated the strongest proliferation inducement, and at a concentration of 135 μg/mL, ox-LDL could inhibit the growth of vSMC. ox-LDL at concentrations of 35 and 50 μg/mL presented powerful mitotic trigger, and with the increase of ox-LDL concentration, the mitotic index of vSMC was decreased gradually, ox-LDL at higher concentrations promoted more apoptotic vSMCs, ox-LDL at lower concentrations triggered proliferation of vSMCs, and at higher concentrations induced apoptosis in vSMCs, ox-LDL played a promotional role in the pathogenesis and development of atherosclerosis by affecting vSMC proliferation and apoptosis.展开更多
Room temperature tensile tests of Fe-Mn-A1 C low density steels with four different chemical compositions were conducted to clarify the dominant deformation mechanisms. Parameters like product of strength and elongati...Room temperature tensile tests of Fe-Mn-A1 C low density steels with four different chemical compositions were conducted to clarify the dominant deformation mechanisms. Parameters like product of strength and elongation, as well as specific strength and curves of stress-strain relations were calculated. The microstructures and tensile fracture morphologies were observed by optical microscope, scanning electron microscope and transmission electron mi-croscope. The tensile behavior of low density steel was correlated to the microstructural evolution during plastic de formation, and the effects of elements, cooling process and heat treatment temperature on the mechanical properties of the steels were analyzed. The results show that the tensile strength of steels with different cooling modes is more than 1000 MPa. The highest tensile strength of 28Mn-12Al alloy reached 1230 MPa, with corresponding specific strength of 189.16 MPa· cm^3·g^-1 , while the specific strength of 28Mn-10Al alloy was 178.98 MPa·cm^3·g^-1 , and the excellent product of strength and elongation of 28Mn-SAl alloy was over 69.2 GPa·%. A large number of ferrite reduced the ductility and strain hardening rate of the alloy, while the existence of κ carbides may improve the strength but weaken the plasticity. Some fine κ carbides appeared in the water-quenched specimen, while coarse carbides were observed in the air-cooled specimen. High temperature heat treatment improved the decomposition ki- netics of 7 phase and the diffusion rate of carbon, thus speeded up the precipitation of fine κ carbides. The dominant deformation mechanism of low density steel was planar glide, including shear-band-induced plasticity and microband- induced plasticity.展开更多
A modified chitosan adsorbent was synthesized through a simple preparation procedure, and it demonstrated good adsorption performance for selective removal of low density lipoprotein in human plasma. Phase inversion ...A modified chitosan adsorbent was synthesized through a simple preparation procedure, and it demonstrated good adsorption performance for selective removal of low density lipoprotein in human plasma. Phase inversion technique was employed to form chitosan beads, to which epoxy groups were then introduced by reacting with ethyleneglycol diglycidylether, and tryptophan was subsequently coupled to the epoxy-activated beads.展开更多
Low density polyethylene(LDPE)/lignin blends were prepared using melt blending.Two kinds of compatibilizers, ethylene-vinylacetate(EVA) which is softer than LDPE and polyethylene grafted with maleic anhydride(PE-g-MA)...Low density polyethylene(LDPE)/lignin blends were prepared using melt blending.Two kinds of compatibilizers, ethylene-vinylacetate(EVA) which is softer than LDPE and polyethylene grafted with maleic anhydride(PE-g-MA) which is harder than LDPE were used to improve the interfacial adhesion.Scanning electron microscope(SEM) was used to investigate the dispersion of lignin in LDPE matrix.The results showed that both of the compatibilizers could improve the interaction between the low density polyethylene and l...展开更多
In this study, effects of oscillatory shear with different frequencies (0-2.5 Hz) and amplitudes (0-20 mm) on the mechanical properties and crystalline morphology of linear low density polyethylene (LLDPE) were ...In this study, effects of oscillatory shear with different frequencies (0-2.5 Hz) and amplitudes (0-20 mm) on the mechanical properties and crystalline morphology of linear low density polyethylene (LLDPE) were investigated. It was found that the mechanical properties of LLDPE are improved because of the more perfect crystalline structure when LLDPE crystallizes under low-frequency and small-amplitude (0.2 Hz/4 mm) oscillatory shear. The mechanical properties can be further improved by increasing either the frequency or the amplitude of oscillatory shear. The Young's modulus and tensile strength of LLDPE are improved by 27% and 20%, respectively, when the frequency is increased to 2.5 Hz and the amplitude is maintained at 4 mm; while the Young's modulus and tensile strength are improved by 49% and 47%, respectively, when the amplitude is increased to 20 mm and the frequency is remained as 0.2 Hz. The crystallinity and microstructure of LLDPE under different oscillatory shear conditions were investigated by using differential scanning calorimetry, wide angle X-ray diffraction and scanning electron microscopy to shed light on the mechanism for the improvement of mechanical properties.展开更多
Apolipoprotein B (apoB) is the main protein component of very low density lipoprotein (VLDL) and is necessary for the assembly and secretion of these triglyceride (TG)-rich particles. Following release from the ...Apolipoprotein B (apoB) is the main protein component of very low density lipoprotein (VLDL) and is necessary for the assembly and secretion of these triglyceride (TG)-rich particles. Following release from the liver, VLDL is converted to low density lipoprotein (LDL) in the plasma and increased production of VLDL can therefore play a detrimental role in cardiovascular disease. Increasing evidence has helped to establish VLDL assembly as a target for the treatment of dyslipidemias. Multiple factors are involved in the folding of the apoB protein and the formation of a secretion-competent VLDL particle. Failed VLDL assembly can initiate quality control mechanisms in the hepatocyte that target apoB for degradation. ApoB is a substrate for endoplasmic reticulum associated degradation (ERAD) by the ubiquitin proteasome system and for autophagy. Efficient targeting and disposal of apoB is a regu- lated process that modulates VLDL secretion and partitioning of TG. Emerging evidence suggests that significant overlap exists between these degradative pathways. For example, the insulin-mediated targeting of apoB to autop- hagy and postprandial activation of the unfolded protein response (UPR) may employ the same cellular machinery and regulatory cues. Changes in the quality control mechanisms for apoB impact hepatic physiology and pathology states, including insulin resistance and fatty liver. Insulin signaling, lipid metabolism and the hepatic UPR may impact VLDL production, particularly during the postprandial state. In this review we summarize our current understanding of VLDL assembly, apoB degradation, quality control mechanisms and the role of these processes in liver physiology and in pathologic states.展开更多
In order to investigate the roles of Wnt signal pathway in transformation of cardiac valvular myofibroblasts to the osteoblast-like phenotype, the primary cultured porcine aortic valve myofibroblasts were incubated wi...In order to investigate the roles of Wnt signal pathway in transformation of cardiac valvular myofibroblasts to the osteoblast-like phenotype, the primary cultured porcine aortic valve myofibroblasts were incubated with oxidized low density lipoprotein(ox-LDL, 50 mg/L), and divided into four groups according to the ox-LDL treatment time: control group, ox-LDL 24-h group, ox-LDL 48-h group, and ox-LDL 72-h group. Wnt signal pathway blocker Dickkopf-1(DDK-1, 100 μg/L) was added in ox-LDL 72-h group. The expression of α-smooth muscle actin(α-SMA), bone morphogenetic protein 2(BMP2), alkaline phosphatase(ALP), and osteogenic transcription factor Cbfa-1 was detected by Western blotting, and that of β-catenin, a key mediator of Wnt signal pathway by immunocytochemical staining method. The Wnt/β-catenin was observed and the transformation of myofibroblasts to the osteoblast-like phenotype was examined. The expression of α-SMA, BMP2, ALP and Cbfa-1 proteins in the control group was weaker than in the ox-LDL-treated groups. In ox-LDL-treated groups, the protein expression of α-SMA, BMP2, ALP, and Cbfa-1 was significantly increased in a time-dependent manner as compared with the control group, and there was significant difference among the three ox-LDL-treated groups(P〈0.05 for all); β-catenin protein was also up-regulated in the ox-LDL-treated groups in a time-dependent manner as compared with the control group(P〈0.05), and its transfer from cytoplasm to nucleus and accumulation in the nucleus were increased in the same fashion(P〈0.05). After addition of DKK-1, the expression of α-SMA, bone-related proteins and β-catenin protein was significantly reduced as compared with ox-LDL 72-h group(P〈0.05). The Wnt/ β-catenin signaling pathway may play an important role in transformation of valvular myofibroblasts to the osteoblast-like phenotype.展开更多
Objective: To investigate the molecular mechanisms and effective target ponits of lipid-lowering drug, Rhizoma Curcumae Longae, and study the effect of curcumin on the expression of low density lipoprotein (LDL) re...Objective: To investigate the molecular mechanisms and effective target ponits of lipid-lowering drug, Rhizoma Curcumae Longae, and study the effect of curcumin on the expression of low density lipoprotein (LDL) receptors in macrophages in mice. Methods. Macrophages in mice were treated with curcumin, which was purified from the ethanolly extraction of Rhizoma Curcumae Longae for 24 h. The LDL receptors expressed in the macrophages were determined by enzyme-linked immunosorbent assay (ELISA) and assay of Dil labeled LDL uptake by flow cytometer. Results: It was found for the first time that 10 μmol/L-50 μmol/L curcumin could obviously up-regulate the expression of LDL receptor in macrophages in mice, and a dose-effect relationship was demonstrated. Conclusion: One of the lipid-lowering mechanisms of traditional Chinese medicine, Rhizoma Curcumae Longae, was completed by the effect of curcumin through the up-regulation of the expression of LDL receptor.展开更多
Summary:In the present study, we examined the regulation of the expression and function of ABCA1 by modified LDL (ox-LDL) in vitro. After incubation with apoA-I for 24 h, RAW264.7 cells effluxed 37.65 % cholesterol lo...Summary:In the present study, we examined the regulation of the expression and function of ABCA1 by modified LDL (ox-LDL) in vitro. After incubation with apoA-I for 24 h, RAW264.7 cells effluxed 37.65 % cholesterol loaded by acetyl LDL (ac-LDL), and 9.78 % cholesterol in ox-LDL group. The level of ABCA1 mRNA increased about three times either when cells were incubated with 100 μg /mL ac-LDL or with 100 μg /mL ox-LDL. However, the level of ABCA1 protein rose by 1.57 times in ac-LDL group and 1.26 times in ox-LDL group. These results demonstrated that ox-LDL had different effect on the expression and function of ABCA1, ox-LDL might decrease the cholesterol efflux mediated by ABCA1 through other unknown mechanisms.展开更多
Oxidized low density lipoprotein (ox-LDL) molecule is one of the most important modified lipoproteins produced during the oxidative stress. Modified lipoproteins have been defined as being part of the immune inflamm...Oxidized low density lipoprotein (ox-LDL) molecule is one of the most important modified lipoproteins produced during the oxidative stress. Modified lipoproteins have been defined as being part of the immune inflammatory mechanisms in association with oxidant stress. We have reported the accumulation of ox-LDL in Balb/c mice liver after bile duct ligation previously. Here, we investigated this finding in human beings with obstructive jaundice. Our study demonstrates that obstructive jaundice results in tremendous accumulation of ox-LDL in the liver tissue of patients.展开更多
Monocyte chemoattractant protein-1(MCP-1), a potent chemoattractant, is thought to play an important role in migration of monocytes into atherosclerotic lesions. The present study was designed to investigate the capac...Monocyte chemoattractant protein-1(MCP-1), a potent chemoattractant, is thought to play an important role in migration of monocytes into atherosclerotic lesions. The present study was designed to investigate the capacity of human peripheral blood monocytes to express MCP-1 and effects of native very low density lipoprotein (VLDL) and oxidized VLDL(OX-VLDL) on the expression. The total RNA was extracted from cultured monocytes, which were exposed to VLDL and OX-VLDL, and the media conditioned by monocytes were collected. MCP-1 mRNA expression was examined by Northern blot analysis. MCP-1 protein in conditioned media was determined by using sandwich ELISA. The results showed that monocytes can express MCP-1 after a 24 h incubation at 37℃,and the expression was markedly increased by a exposure to OX-VLDL, whereas the expression was slightly increased when exposed to VLDL. It suggests that the capacity of monocytes to produce MCP-1 that recruits and activates circulating monocytes may be of considerable importance in atherogenesis, and oxidation of VLDL enhances its potential to promote atherogenesis.展开更多
A great challenge faced by wireless sensor networks(WSNs) is to reduce energy consumption of sensor nodes. Fortunately, the data gathering via random sensing can save energy of sensor nodes. Nevertheless, its randomne...A great challenge faced by wireless sensor networks(WSNs) is to reduce energy consumption of sensor nodes. Fortunately, the data gathering via random sensing can save energy of sensor nodes. Nevertheless, its randomness and density usually result in difficult implementations, high computation complexity and large storage spaces in practical settings. So the deterministic sparse sensing matrices are desired in some situations. However,it is difficult to guarantee the performance of deterministic sensing matrix by the acknowledged metrics. In this paper, we construct a class of deterministic sparse sensing matrices with statistical versions of restricted isometry property(St RIP) via regular low density parity check(RLDPC) matrices. The key idea of our construction is to achieve small mutual coherence of the matrices by confining the column weights of RLDPC matrices such that St RIP is satisfied. Besides, we prove that the constructed sensing matrices have the same scale of measurement numbers as the dense measurements. We also propose a data gathering method based on RLDPC matrix. Experimental results verify that the constructed sensing matrices have better reconstruction performance, compared to the Gaussian, Bernoulli, and CSLDPC matrices. And we also verify that the data gathering via RLDPC matrix can reduce energy consumption of WSNs.展开更多
To explore the functions of very low density lipoprotein receptor (VLDL-R) subtype II in lipoprotein metabolism and foam cells formation, the recombinant plasmid with the two subtypes cDNA was constructed respectively...To explore the functions of very low density lipoprotein receptor (VLDL-R) subtype II in lipoprotein metabolism and foam cells formation, the recombinant plasmid with the two subtypes cDNA was constructed respectively, the ldl-A7 cell lines were transfected and two cell lines expressing VLDL-R were obtained: one stably expressing the VLDLR with the O-linked sugar region (type I VLDLR) and the other without the O-linked sugar region (type II VLDLR). In the study on binding of VLDLR to their nuclein labeled natural ligands (VLDL and β-VLDL), it was found that surface binding of 125I-VLDL or 125I-β-VLDL of ldl-A7 cells transfected with type I VLDLR recombinant (ldl-A7-VRI) was more higher than that of ldl-A7 cells transfected with type II VLDLR recombinant (ldl-A7-VRII). After being incubated with VLDL for different time, the contents of triglyceride and total cholesterol in cells were mensurated, and the formation of foam cells and accumulation of lipid in cells was observed by oil-red O staining. The results showed that the contents of triglyceride and total cholesterol in ldl-A7-VR I were much higher than those in ldl-A7-VR II, and ldl-A7-VR I could transform into foam cells notably. It was suggested that type I VLDLR binds with relative higher affinity to VLDL and β-VLDL, and internalizes much more lipoprotein into cells. As a result, we can conclude that type I VLDLR plays a more important role in lipoprotein metabolism and foam cells formation than type II VLDLR.展开更多
Aim:The oxidized low-density lipoprotein(OxLDL) plays an important role in atherosclerosis yet it remains unclear if it damages circulating erythrocytes. Method: In this study。
The strain-induced martensite transformation is of great importance in the strain hardening process of ferrite based low-density steel.Based on the microstructure analysis,the texture evolution and martensite transfor...The strain-induced martensite transformation is of great importance in the strain hardening process of ferrite based low-density steel.Based on the microstructure analysis,the texture evolution and martensite transformation behavior in the strain hardening process were studied.The results show that martensite transformation accompanied by TWIP effect and high density dislocations maintains the continuous hardening stage.As the strain increases,the texture of retained austenite evolves towards the F orientation{111}<112>,which is not conducive to martensite transformation.After the strain of 5%,the number of austenite grains with high Schmid factor orientations is gradually increased,and then significantly reduced when the strain is over 10%due to the occurrence of martensitic transformation,which results in a high martensitic transformation rate.However,the unfavorable orientation and the reduced grain size of austenite slow down the martensite transformation at the final hardening stage.Moreover,because of the coordination deformation of austenite grains,strain preferentially spreads between adjacent austenite grains.Consequently,the martensite transformation rate in strain hardening process is dependent on the orientation and grain size evolution of austenite,leading to a differential contribution to each strain hardening stage.展开更多
In this study,the infuence of solid particle erosion on the fracture strength of low density polyethylene(LDPE)film under con-trolled conditions is investigated through impact experiments.The variations in the residua...In this study,the infuence of solid particle erosion on the fracture strength of low density polyethylene(LDPE)film under con-trolled conditions is investigated through impact experiments.The variations in the residual fracture stress as well as the residual fracture strain of the LDPE flm after solid particle impact against the impact angle(α),impact velocity(νp)and impact duration(t)are analysed.The study revealed that the fracture stress and the fracture strain of the LDPE film decrease with an increase in the impact duration,and the degradation rate increases with the impact velocity and impact angle.Furthermore,the fracture stress and the fracture strain of LDPE film decrease exponentially against the impact energy under the same particle impact angle condition,and the reductions of fracture stress and fracture strain increase quasi-linearly with the sine-squared impact angle under the same impact energy.The study proposes empirical models to predict the attenuation of the fracture stress and the fracture strain of LDPE films due to the finite particle impact energy.展开更多
To investigate the mechanism of LDL oxidation i n vivo , LDL was incubated with endothelium cell (EC),artery smooth muscle cel l (ASMC) and macrophage, and then the change of myeloperoxidase (MPO) activity i n ce...To investigate the mechanism of LDL oxidation i n vivo , LDL was incubated with endothelium cell (EC),artery smooth muscle cel l (ASMC) and macrophage, and then the change of myeloperoxidase (MPO) activity i n cell and medium and the oxidation of LDL by those three cells were assessed. T he result showed that LDL promoted the activity of cellular and secretive myelop eroxidase which was concentration\|dependent on LDL; with elevation of MPO activ ity, oxidation of LDL intensified, which was expressed by the formation of conju gated dienes and the elevation of thiobarbituric acid teactive substance (TBARS ). Macrophage's MPO activity went up with the increase of LDL at both low and h igh concentration; EC's MPO activity went up with the increase of LDL only at h igh concentration and ASMC's MPO activity wasn't sensitive to LDL concentratio n change. The results suggest that Macrophage might be crucial to the oxidation of LDL in vivo , in which MPO might play an important role.展开更多
Metal hydroxides (MAH) consisting of magnesium hydroxide and aluminum hydroxide with a mass ratio of 1:2 were surface-modified by y-diethoxyphosphorous ester propyldiethoxymethylsilane, boric acid and diphenylsilan...Metal hydroxides (MAH) consisting of magnesium hydroxide and aluminum hydroxide with a mass ratio of 1:2 were surface-modified by y-diethoxyphosphorous ester propyldiethoxymethylsilane, boric acid and diphenylsilanediol in xylene under dibutyl tin dilaurate catalyst at 140 ℃. Phosphorus, silicon and boron elements covalently bonded to metal hydroxide particles were detected by X-ray photoelectron spectroscopy. The degradation behavior of the surface-modified MAH was characterized by thermogravimetric analysis. The results show that linear low density polyethylene (LLDPE) composite, filled with 50% (mass fraction) of MAH modified by 5.0% (mass fraction) of modifiers, passes the V-0 rating of UL-94 test and shows the limited oxygen index of 34%, and its heat release rate and average effective heat combustion in a cone calorimeter measurement decrease obviously; The mechanical properties of MAH can be improved by surface-modification. The uniform dispersion of particles and strong interfacial bonding between particles and matrix are obtained.展开更多
基金D.W.Z.is a Scholar of the Alberta Heritage Foundation for Medical Research and is supported in part by a Canadian Institutes of Health Research New Investigator AwardZhang laboratory is supported by Canadian Foundation for Innovation,grants from a Grant-in-Aidfor Heart and Stroke Foundation of CanadaPfizer Canada, the Canadian Institutes of Health Research(MOP 93794), and Mazankowski Alberta Heart Institute
文摘Atherosclerotic cardiovascular disease is the main cause of mortality and morbidity in the world. Plasma levels of low density lipoprotein cholesterol (LDL-C) are positively correlated with the risk of atherosclerosis. High plasma LDL concentrations in patients with hypercholesterolemia lead to build-up of LDL in the inner walls of the arteries, which becomes oxidized and promotes the formation of foam cells, consequently initiating atherosclerosis. Plasma LDL is mainly cleared through the LDL receptor (LDLR) pathway. Mutations in the LDLR cause familiar hyperch- olesterolemia and increase the risk of premature coronary heart disease. The expression of LDLR is regulated at the transcriptional level via the sterol regulatory element binding protein 2 (SREBP-2) and at the posttranslational levels mainly through proprotein convertase subtilisin/kexin-type 9 (PCSK9) and inducible degrader of the LDLR (IDOL). In this review, we summarize the latest advances in the studies of PCSK9.
文摘Low bulk density expanding vermiculite is prepared, and the surface modification of hollow Al2O3-SiO2 microspheres and the composition of the low density ablative coating are studied. Organic silicon epoxy resin and phenolic aldehyde resin are applied as film forming matters to get a series of ablative coating having a density of 0.4-0.6 g/cm^3. The performance of the low density ablative coating is evaluated by mechanical, thermodynamic and oxygen acetylene ablation tests, and the results are as follows, adhesion is in the range of 2.97-4.63 MPa, conductivity is no more than 0.1 kcal/(m·h·℃ ), line ablation rate is no more than 0.30 mm/s, mass ablation rate is in the range of 0.11-0.18 mm/s.
基金This project was supported by a grant from Provincial Outstanding Youth Program for Henan Province Committee of Sciences and Technology (No. 19972002).
文摘The effects of oxidized low density lipoprotein (ox-LDL) on the proliferation of cultured human vascular smooth muscle cells (vSMC) were investigated in vitro. By using NaBr density gradient centrifugation, LDL was isolated and purified from human plasma. Ox-LDL was produced from LDL by being incubated with CuSO4. ox-LDL was then added to the culture medium at different concentrations (35, 60, 85, 110, 135 and 160μg/mL) for 7 days. The influence of ox-LDL on vSMC proliferation was observed in growth curve, mitosis index, and in situ determination of apoptosis. The data were analyzed with SPSS 10.0 software. The results showed that the ox-LDL produced in vitro had a good purity and optimal oxidative degree, which was similar to the intrinsic ox-LDL in atherosclerotic plaque, ox-LDL at a concentration of 35 μg/mL demonstrated the strongest proliferation inducement, and at a concentration of 135 μg/mL, ox-LDL could inhibit the growth of vSMC. ox-LDL at concentrations of 35 and 50 μg/mL presented powerful mitotic trigger, and with the increase of ox-LDL concentration, the mitotic index of vSMC was decreased gradually, ox-LDL at higher concentrations promoted more apoptotic vSMCs, ox-LDL at lower concentrations triggered proliferation of vSMCs, and at higher concentrations induced apoptosis in vSMCs, ox-LDL played a promotional role in the pathogenesis and development of atherosclerosis by affecting vSMC proliferation and apoptosis.
基金Sponsored by Postdoctoral Science Foundation of China(2014M561648)
文摘Room temperature tensile tests of Fe-Mn-A1 C low density steels with four different chemical compositions were conducted to clarify the dominant deformation mechanisms. Parameters like product of strength and elongation, as well as specific strength and curves of stress-strain relations were calculated. The microstructures and tensile fracture morphologies were observed by optical microscope, scanning electron microscope and transmission electron mi-croscope. The tensile behavior of low density steel was correlated to the microstructural evolution during plastic de formation, and the effects of elements, cooling process and heat treatment temperature on the mechanical properties of the steels were analyzed. The results show that the tensile strength of steels with different cooling modes is more than 1000 MPa. The highest tensile strength of 28Mn-12Al alloy reached 1230 MPa, with corresponding specific strength of 189.16 MPa· cm^3·g^-1 , while the specific strength of 28Mn-10Al alloy was 178.98 MPa·cm^3·g^-1 , and the excellent product of strength and elongation of 28Mn-SAl alloy was over 69.2 GPa·%. A large number of ferrite reduced the ductility and strain hardening rate of the alloy, while the existence of κ carbides may improve the strength but weaken the plasticity. Some fine κ carbides appeared in the water-quenched specimen, while coarse carbides were observed in the air-cooled specimen. High temperature heat treatment improved the decomposition ki- netics of 7 phase and the diffusion rate of carbon, thus speeded up the precipitation of fine κ carbides. The dominant deformation mechanism of low density steel was planar glide, including shear-band-induced plasticity and microband- induced plasticity.
文摘A modified chitosan adsorbent was synthesized through a simple preparation procedure, and it demonstrated good adsorption performance for selective removal of low density lipoprotein in human plasma. Phase inversion technique was employed to form chitosan beads, to which epoxy groups were then introduced by reacting with ethyleneglycol diglycidylether, and tryptophan was subsequently coupled to the epoxy-activated beads.
基金supported by the National Natural Science Foundation of China(Nos.50533050,20634050)
文摘Low density polyethylene(LDPE)/lignin blends were prepared using melt blending.Two kinds of compatibilizers, ethylene-vinylacetate(EVA) which is softer than LDPE and polyethylene grafted with maleic anhydride(PE-g-MA) which is harder than LDPE were used to improve the interfacial adhesion.Scanning electron microscope(SEM) was used to investigate the dispersion of lignin in LDPE matrix.The results showed that both of the compatibilizers could improve the interaction between the low density polyethylene and l...
基金financially supported by the National Natural Science Foundation of China(Nos.51373153 and 51073139)the Zhejiang Provincial Natural Science Foundation of China(No.LY13E030002)the Zhejiang Leading Team of S&T Innovation(No.2011R50005)
文摘In this study, effects of oscillatory shear with different frequencies (0-2.5 Hz) and amplitudes (0-20 mm) on the mechanical properties and crystalline morphology of linear low density polyethylene (LLDPE) were investigated. It was found that the mechanical properties of LLDPE are improved because of the more perfect crystalline structure when LLDPE crystallizes under low-frequency and small-amplitude (0.2 Hz/4 mm) oscillatory shear. The mechanical properties can be further improved by increasing either the frequency or the amplitude of oscillatory shear. The Young's modulus and tensile strength of LLDPE are improved by 27% and 20%, respectively, when the frequency is increased to 2.5 Hz and the amplitude is maintained at 4 mm; while the Young's modulus and tensile strength are improved by 49% and 47%, respectively, when the amplitude is increased to 20 mm and the frequency is remained as 0.2 Hz. The crystallinity and microstructure of LLDPE under different oscillatory shear conditions were investigated by using differential scanning calorimetry, wide angle X-ray diffraction and scanning electron microscopy to shed light on the mechanism for the improvement of mechanical properties.
文摘Apolipoprotein B (apoB) is the main protein component of very low density lipoprotein (VLDL) and is necessary for the assembly and secretion of these triglyceride (TG)-rich particles. Following release from the liver, VLDL is converted to low density lipoprotein (LDL) in the plasma and increased production of VLDL can therefore play a detrimental role in cardiovascular disease. Increasing evidence has helped to establish VLDL assembly as a target for the treatment of dyslipidemias. Multiple factors are involved in the folding of the apoB protein and the formation of a secretion-competent VLDL particle. Failed VLDL assembly can initiate quality control mechanisms in the hepatocyte that target apoB for degradation. ApoB is a substrate for endoplasmic reticulum associated degradation (ERAD) by the ubiquitin proteasome system and for autophagy. Efficient targeting and disposal of apoB is a regu- lated process that modulates VLDL secretion and partitioning of TG. Emerging evidence suggests that significant overlap exists between these degradative pathways. For example, the insulin-mediated targeting of apoB to autop- hagy and postprandial activation of the unfolded protein response (UPR) may employ the same cellular machinery and regulatory cues. Changes in the quality control mechanisms for apoB impact hepatic physiology and pathology states, including insulin resistance and fatty liver. Insulin signaling, lipid metabolism and the hepatic UPR may impact VLDL production, particularly during the postprandial state. In this review we summarize our current understanding of VLDL assembly, apoB degradation, quality control mechanisms and the role of these processes in liver physiology and in pathologic states.
基金supported by grants from the National Nature Science Foundation of China(No.81070190)the Foundation of Natural Sciences of Hubei Province of China(No.2014CFB962)
文摘In order to investigate the roles of Wnt signal pathway in transformation of cardiac valvular myofibroblasts to the osteoblast-like phenotype, the primary cultured porcine aortic valve myofibroblasts were incubated with oxidized low density lipoprotein(ox-LDL, 50 mg/L), and divided into four groups according to the ox-LDL treatment time: control group, ox-LDL 24-h group, ox-LDL 48-h group, and ox-LDL 72-h group. Wnt signal pathway blocker Dickkopf-1(DDK-1, 100 μg/L) was added in ox-LDL 72-h group. The expression of α-smooth muscle actin(α-SMA), bone morphogenetic protein 2(BMP2), alkaline phosphatase(ALP), and osteogenic transcription factor Cbfa-1 was detected by Western blotting, and that of β-catenin, a key mediator of Wnt signal pathway by immunocytochemical staining method. The Wnt/β-catenin was observed and the transformation of myofibroblasts to the osteoblast-like phenotype was examined. The expression of α-SMA, BMP2, ALP and Cbfa-1 proteins in the control group was weaker than in the ox-LDL-treated groups. In ox-LDL-treated groups, the protein expression of α-SMA, BMP2, ALP, and Cbfa-1 was significantly increased in a time-dependent manner as compared with the control group, and there was significant difference among the three ox-LDL-treated groups(P〈0.05 for all); β-catenin protein was also up-regulated in the ox-LDL-treated groups in a time-dependent manner as compared with the control group(P〈0.05), and its transfer from cytoplasm to nucleus and accumulation in the nucleus were increased in the same fashion(P〈0.05). After addition of DKK-1, the expression of α-SMA, bone-related proteins and β-catenin protein was significantly reduced as compared with ox-LDL 72-h group(P〈0.05). The Wnt/ β-catenin signaling pathway may play an important role in transformation of valvular myofibroblasts to the osteoblast-like phenotype.
文摘Objective: To investigate the molecular mechanisms and effective target ponits of lipid-lowering drug, Rhizoma Curcumae Longae, and study the effect of curcumin on the expression of low density lipoprotein (LDL) receptors in macrophages in mice. Methods. Macrophages in mice were treated with curcumin, which was purified from the ethanolly extraction of Rhizoma Curcumae Longae for 24 h. The LDL receptors expressed in the macrophages were determined by enzyme-linked immunosorbent assay (ELISA) and assay of Dil labeled LDL uptake by flow cytometer. Results: It was found for the first time that 10 μmol/L-50 μmol/L curcumin could obviously up-regulate the expression of LDL receptor in macrophages in mice, and a dose-effect relationship was demonstrated. Conclusion: One of the lipid-lowering mechanisms of traditional Chinese medicine, Rhizoma Curcumae Longae, was completed by the effect of curcumin through the up-regulation of the expression of LDL receptor.
文摘Summary:In the present study, we examined the regulation of the expression and function of ABCA1 by modified LDL (ox-LDL) in vitro. After incubation with apoA-I for 24 h, RAW264.7 cells effluxed 37.65 % cholesterol loaded by acetyl LDL (ac-LDL), and 9.78 % cholesterol in ox-LDL group. The level of ABCA1 mRNA increased about three times either when cells were incubated with 100 μg /mL ac-LDL or with 100 μg /mL ox-LDL. However, the level of ABCA1 protein rose by 1.57 times in ac-LDL group and 1.26 times in ox-LDL group. These results demonstrated that ox-LDL had different effect on the expression and function of ABCA1, ox-LDL might decrease the cholesterol efflux mediated by ABCA1 through other unknown mechanisms.
文摘Oxidized low density lipoprotein (ox-LDL) molecule is one of the most important modified lipoproteins produced during the oxidative stress. Modified lipoproteins have been defined as being part of the immune inflammatory mechanisms in association with oxidant stress. We have reported the accumulation of ox-LDL in Balb/c mice liver after bile duct ligation previously. Here, we investigated this finding in human beings with obstructive jaundice. Our study demonstrates that obstructive jaundice results in tremendous accumulation of ox-LDL in the liver tissue of patients.
文摘Monocyte chemoattractant protein-1(MCP-1), a potent chemoattractant, is thought to play an important role in migration of monocytes into atherosclerotic lesions. The present study was designed to investigate the capacity of human peripheral blood monocytes to express MCP-1 and effects of native very low density lipoprotein (VLDL) and oxidized VLDL(OX-VLDL) on the expression. The total RNA was extracted from cultured monocytes, which were exposed to VLDL and OX-VLDL, and the media conditioned by monocytes were collected. MCP-1 mRNA expression was examined by Northern blot analysis. MCP-1 protein in conditioned media was determined by using sandwich ELISA. The results showed that monocytes can express MCP-1 after a 24 h incubation at 37℃,and the expression was markedly increased by a exposure to OX-VLDL, whereas the expression was slightly increased when exposed to VLDL. It suggests that the capacity of monocytes to produce MCP-1 that recruits and activates circulating monocytes may be of considerable importance in atherogenesis, and oxidation of VLDL enhances its potential to promote atherogenesis.
基金supported by the National Natural Science Foundation of China(61307121)ABRP of Datong(2017127)the Ph.D.’s Initiated Research Projects of Datong University(2013-B-17,2015-B-05)
文摘A great challenge faced by wireless sensor networks(WSNs) is to reduce energy consumption of sensor nodes. Fortunately, the data gathering via random sensing can save energy of sensor nodes. Nevertheless, its randomness and density usually result in difficult implementations, high computation complexity and large storage spaces in practical settings. So the deterministic sparse sensing matrices are desired in some situations. However,it is difficult to guarantee the performance of deterministic sensing matrix by the acknowledged metrics. In this paper, we construct a class of deterministic sparse sensing matrices with statistical versions of restricted isometry property(St RIP) via regular low density parity check(RLDPC) matrices. The key idea of our construction is to achieve small mutual coherence of the matrices by confining the column weights of RLDPC matrices such that St RIP is satisfied. Besides, we prove that the constructed sensing matrices have the same scale of measurement numbers as the dense measurements. We also propose a data gathering method based on RLDPC matrix. Experimental results verify that the constructed sensing matrices have better reconstruction performance, compared to the Gaussian, Bernoulli, and CSLDPC matrices. And we also verify that the data gathering via RLDPC matrix can reduce energy consumption of WSNs.
基金This project was supported by a grant from National Natu-ral Sciences Foundation of China (No .30300134)
文摘To explore the functions of very low density lipoprotein receptor (VLDL-R) subtype II in lipoprotein metabolism and foam cells formation, the recombinant plasmid with the two subtypes cDNA was constructed respectively, the ldl-A7 cell lines were transfected and two cell lines expressing VLDL-R were obtained: one stably expressing the VLDLR with the O-linked sugar region (type I VLDLR) and the other without the O-linked sugar region (type II VLDLR). In the study on binding of VLDLR to their nuclein labeled natural ligands (VLDL and β-VLDL), it was found that surface binding of 125I-VLDL or 125I-β-VLDL of ldl-A7 cells transfected with type I VLDLR recombinant (ldl-A7-VRI) was more higher than that of ldl-A7 cells transfected with type II VLDLR recombinant (ldl-A7-VRII). After being incubated with VLDL for different time, the contents of triglyceride and total cholesterol in cells were mensurated, and the formation of foam cells and accumulation of lipid in cells was observed by oil-red O staining. The results showed that the contents of triglyceride and total cholesterol in ldl-A7-VR I were much higher than those in ldl-A7-VR II, and ldl-A7-VR I could transform into foam cells notably. It was suggested that type I VLDLR binds with relative higher affinity to VLDL and β-VLDL, and internalizes much more lipoprotein into cells. As a result, we can conclude that type I VLDLR plays a more important role in lipoprotein metabolism and foam cells formation than type II VLDLR.
基金supported by National Natural Science Foundation of China(NSFC10572159)supported by "111 Project" entitled "Biomechanics&Tissue Repair Engineering"(No.:B06023)Chongqing Science&Technology Council(CSTC 2006ba5010)
文摘Aim:The oxidized low-density lipoprotein(OxLDL) plays an important role in atherosclerosis yet it remains unclear if it damages circulating erythrocytes. Method: In this study。
基金the National Natural Science Foundation of China(No.51974184)National MCF Energy R&D Program of China(No.2018YFE0306102)+1 种基金Independent Research Project of State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS 2019-Z008)the Science and Technology Commission of Shanghai Municipality(No.19DZ2270200)。
文摘The strain-induced martensite transformation is of great importance in the strain hardening process of ferrite based low-density steel.Based on the microstructure analysis,the texture evolution and martensite transformation behavior in the strain hardening process were studied.The results show that martensite transformation accompanied by TWIP effect and high density dislocations maintains the continuous hardening stage.As the strain increases,the texture of retained austenite evolves towards the F orientation{111}<112>,which is not conducive to martensite transformation.After the strain of 5%,the number of austenite grains with high Schmid factor orientations is gradually increased,and then significantly reduced when the strain is over 10%due to the occurrence of martensitic transformation,which results in a high martensitic transformation rate.However,the unfavorable orientation and the reduced grain size of austenite slow down the martensite transformation at the final hardening stage.Moreover,because of the coordination deformation of austenite grains,strain preferentially spreads between adjacent austenite grains.Consequently,the martensite transformation rate in strain hardening process is dependent on the orientation and grain size evolution of austenite,leading to a differential contribution to each strain hardening stage.
基金the National Natural Science Foundation of China(Grant Nos.92052202,and 11702122).
文摘In this study,the infuence of solid particle erosion on the fracture strength of low density polyethylene(LDPE)film under con-trolled conditions is investigated through impact experiments.The variations in the residual fracture stress as well as the residual fracture strain of the LDPE flm after solid particle impact against the impact angle(α),impact velocity(νp)and impact duration(t)are analysed.The study revealed that the fracture stress and the fracture strain of the LDPE film decrease with an increase in the impact duration,and the degradation rate increases with the impact velocity and impact angle.Furthermore,the fracture stress and the fracture strain of LDPE film decrease exponentially against the impact energy under the same particle impact angle condition,and the reductions of fracture stress and fracture strain increase quasi-linearly with the sine-squared impact angle under the same impact energy.The study proposes empirical models to predict the attenuation of the fracture stress and the fracture strain of LDPE films due to the finite particle impact energy.
文摘To investigate the mechanism of LDL oxidation i n vivo , LDL was incubated with endothelium cell (EC),artery smooth muscle cel l (ASMC) and macrophage, and then the change of myeloperoxidase (MPO) activity i n cell and medium and the oxidation of LDL by those three cells were assessed. T he result showed that LDL promoted the activity of cellular and secretive myelop eroxidase which was concentration\|dependent on LDL; with elevation of MPO activ ity, oxidation of LDL intensified, which was expressed by the formation of conju gated dienes and the elevation of thiobarbituric acid teactive substance (TBARS ). Macrophage's MPO activity went up with the increase of LDL at both low and h igh concentration; EC's MPO activity went up with the increase of LDL only at h igh concentration and ASMC's MPO activity wasn't sensitive to LDL concentratio n change. The results suggest that Macrophage might be crucial to the oxidation of LDL in vivo , in which MPO might play an important role.
基金Project(20574020) supported by the National Natural Science Foundation of ChinaProject(20061001) supported by the Opening Project of the Key Laboratory of Polymer Processing Engineering, Ministry of Education, ChinaProject (20060106-2) supported by Guangdong Key Projects
文摘Metal hydroxides (MAH) consisting of magnesium hydroxide and aluminum hydroxide with a mass ratio of 1:2 were surface-modified by y-diethoxyphosphorous ester propyldiethoxymethylsilane, boric acid and diphenylsilanediol in xylene under dibutyl tin dilaurate catalyst at 140 ℃. Phosphorus, silicon and boron elements covalently bonded to metal hydroxide particles were detected by X-ray photoelectron spectroscopy. The degradation behavior of the surface-modified MAH was characterized by thermogravimetric analysis. The results show that linear low density polyethylene (LLDPE) composite, filled with 50% (mass fraction) of MAH modified by 5.0% (mass fraction) of modifiers, passes the V-0 rating of UL-94 test and shows the limited oxygen index of 34%, and its heat release rate and average effective heat combustion in a cone calorimeter measurement decrease obviously; The mechanical properties of MAH can be improved by surface-modification. The uniform dispersion of particles and strong interfacial bonding between particles and matrix are obtained.