Tests with middle-crack tension (M(T)) specimens made of Al 2324-T39 and Al 7050-T7451 are conducted to investigate the influence of low load truncation level on fatigue crack growth. The six different truncated s...Tests with middle-crack tension (M(T)) specimens made of Al 2324-T39 and Al 7050-T7451 are conducted to investigate the influence of low load truncation level on fatigue crack growth. The six different truncated spectra are obtained by removing the small cycles of which amplitudes are less than the specified percentages of the maximum amplitude in the basic flight-by-flight loading spectrum and the remainder of the spectrum is untouched. The tests indicate that the mean level of fatigue crack growth life (FCGL) increases as the load truncation level is enhanced. Considering both the time saving and the influence on FCGL, there is an applicable choice (i.e. spectrum S2 or spectrum S3 in this investigation) for full scale fatigue test. The scatter of FCGL becomes much larger than that under the basic spectrum when the load truncation level is increased to a specified high level, mainly due to the occurrence of crack slanting and branching under the high level truncated loading spectra.展开更多
Transitional metal alloy and compounds have been developed as the low cost and efficient bifunctional electrocatalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).However,a high mass loading o...Transitional metal alloy and compounds have been developed as the low cost and efficient bifunctional electrocatalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).However,a high mass loading of these catalysts is commonly needed to achieve acceptable catalytic performance,which could cause such problems as battery weight gain,mass transport blocking,and catalyst loss.We report herein the preparation of fine CoNi nanoparticles(5-6 nm)anchored inside a nitrogendoped defective carbon nanotube network(CoNi@N-DCNT)by a transient Joule heating method.When utilized as an electrocatalyst for oxygen reduction and evolution in alkaline media,the CoNi@N-DCNT film catalyst with a very low mass loading of 0.06 mg cm^(-2) showed excellent bifunctional catalytic performance.For ORR,the onset potential(Eonset)and the half-wave potential(E_(1/2))were 0.92 V versus reversible hydrogen electrode(vs.RHE)and 0.83 V(vs.RHE),respectively.For OER,the potential at the current density(J)of 10 mA cm^(-2)(E_(10))was 1.53 V,resulting in an overpotential of 300 mV much lower than that of the commercial RuO_(2) catalyst(320 mV).The potential gap between E_(1/2) and E_(10) was as small as 0.7 V.Considering the low mass loading,the mass activity at E_(10) reached at 123.2 A g^(-1),much larger than that of the RuO_(2) catalyst and literature results of transitional metal-based bifunctional catalysts.Moreover,the CoNi@N-DCNT film catalyst showed very good long-term stability during the ORR and OER test.The excellent bifunctional catalytic performance could be attributed to the synergistic effect of the bimetal alloy.展开更多
The hydroarylation reaction of terminal alkynes with arylboronic acids catalyzed by low(400 ppm) loadings of palladium has been developed. The reaction is broad in scope and high-yielding, even on multigram scale. It ...The hydroarylation reaction of terminal alkynes with arylboronic acids catalyzed by low(400 ppm) loadings of palladium has been developed. The reaction is broad in scope and high-yielding, even on multigram scale. It is suitable for the synthesis of alkenes labeled with deuterium, and for the late-stage modification of bioactive molecules.展开更多
The very long tradition of the activated sludge treatment model within the water industry has demonstrated very versatile possibilities to adopt the operation mode for different enhancements. By looking into other tre...The very long tradition of the activated sludge treatment model within the water industry has demonstrated very versatile possibilities to adopt the operation mode for different enhancements. By looking into other treatment models within the activated sludge family it is possible to find alternatives for the operation. This paper concentrates on the possibilities to improve even small WWTP with respect to energy savings. The small plant in Northern Sweden, called Rosvik WWTP, is given as an example. Some important findings related to the intermittent aeration mode may be summarized as follows: 1) An energy savings for the operation of the small WWTP with respect to aeration needs that resulted in a decrease of the energy power supply by more than 35%, as compared with the previous operation based on continuous aeration;2) The up to date effluent levels with respect to the main pollutants have remained at very good levels in 2020, P-level averages 0.16 mg P/l versus consent level <</span><span> </span><span style="font-family:Verdana;">0.5 mg P/l;COD-level 40 versus <</span><span> </span><span><span style="font-family:Verdana;">70 mg/l and BOD</span><sub><span style="font-family:Verdana;">7</span></sub><span style="font-family:Verdana;"> 9 versus <</span></span><span> </span><span><span style="font-family:Verdana;">15 mg/l;3) Sometimes, also improved sludge settling characteristics have been observed, thus providing improved discharge figures;4) The potential to develop an enhanced biological phosphorus removal. There are however </span><span style="font-family:Verdana;">some needed conditions to accomplish these improvements: 1) Reliable</span><span style="font-family:Verdana;"> on-line probes for both oxygen control, SS-concentration control and optionally also for nitrogen control;2) A flexible automation system that allows the needed process modifications to take place;3) And finally, very important dedicated and competent plant operators, with the needed curiosity for operation improvements.展开更多
The Sri Lankan national water authority, that is The National Water Supply and Drainage Board (NWS&DB) has taken a new wastewater treatment plant into operation at Ja Ela, North of Colombo. The plant has been in o...The Sri Lankan national water authority, that is The National Water Supply and Drainage Board (NWS&DB) has taken a new wastewater treatment plant into operation at Ja Ela, North of Colombo. The plant has been in operation since September 2011. In April 2012, it was concluded how a test of the aeration efficiency and a performance test should be carried out. The tests have been based on the actual loading of the plant and the analysis results from the daily process control. The evaluation of the aeration efficiency is not reported in this paper. The paper presents the overall performance of the water treatment part of the plant during start-up conditions, from fall 2011 through the first five months of 2012. The results from the operation are found in Table 1. An important circumstance at the plant is the current very low loading in comparison with the design load. This fact has resulted in an introduction of an intermittent mode of the aeration (nitrification) reactor. Based on operation figures, during more than a month (May 2012), it has been possible to give a realistic assessment of the overall performance. The most striking results are summarized as follows: 1) The intermittent operation has enabled an energy efficient operation of the plant. By the introduction of the intermittent aeration, the energy consumption has been reduced by around 75%, compared with the continuous operation mode;2) The plant performance during the intermittent operation has been improved with respect to virtually all important pollution variables. The most striking improvement is the discharge total P level, reflecting that a substantial enhanced biological phosphorus removal takes. The typical discharge levels found during May 2012, were compared with the earlier obtained values. It is important to underline that the loading on the plant has slightly increased during May as compared with the previous operation period.展开更多
A palladium catalytic system incorporating novel Fc-JosiPhos ligands enables efficient C–N bond formation with diverse(hetero)aryl halides under low palladium loading(0.1 mol%).We rationally designed novel ferrocenyl...A palladium catalytic system incorporating novel Fc-JosiPhos ligands enables efficient C–N bond formation with diverse(hetero)aryl halides under low palladium loading(0.1 mol%).We rationally designed novel ferrocenyl phosphine-derived JosiPhos ligands(L1–L3).These ligands incorporate a ferrocenyl group providing greater steric bulk than tert-butyl or cyclohexyl and superior electron donation to cyclohexyl,along with a tunable side chain.They delivered excellent yields in the catalytic coupling of challenging(hetero)aryl chlorides with hydrazine.The scalable synthesis of arylhydrazines(5mmol scale)and subsequent cyclization to pyrazoles(65%–91%yields)highlights their potential for industrial conversion.Furthermore,the modularity of this strategy supports late-stage pharmaceutical functionalization,exemplified by TRPC inhibitor intermediate.展开更多
There are two kinds of internationally recognized approaches in terms of lightweight design.One is based on fatigue accumulated damage theory to achieve better reliability by optimal structural design; another is to u...There are two kinds of internationally recognized approaches in terms of lightweight design.One is based on fatigue accumulated damage theory to achieve better reliability by optimal structural design; another is to use high performance lightweight materials.The former method takes very few considerations on the structural strengthening effects caused by the massive small loads in service.In order to ensure safety,the design is usually conservative,but the strength potential of the component is not fully exerted.In the latter method,cost is the biggest obstacle to lightweight materials in automotive applications.For the purpose of light weighting design on a fuel cell vehicle,the new design method is applied on drive shafts.The method is based on the low amplitude load strengthening characteristics of the material,and allows the stress,corresponding to test load,to enter into the strengthened range of the material.Under this condition,the light weighting design should assure that the reliability of the shaft is not impaired,even maximizes the strength potential of machine part in order to achieve the weight reduction and eventually to reduce the cost.At last,the feasibility of the design is verified by means of strength analysis and modal analysis based on the CAD model of light weighted shaft.The design applies to the load case of half shaft in independent axle,also provides technological reference for the structural lightweight design of vehicles and other machineries.展开更多
Tests of nine angle-steel concrete column (ASCC) specimens under low cyclic loading are described in a companion paper (Zheng and Ji, 2008). In this paper, the skeleton curves from the numerical simulation are pre...Tests of nine angle-steel concrete column (ASCC) specimens under low cyclic loading are described in a companion paper (Zheng and Ji, 2008). In this paper, the skeleton curves from the numerical simulation are presented, and show good agreement with the test results. Furthermore, parametric studies are conducted to explore the influence of factors such as the axial compression ratio, shear steel plate ratio, steel ratio, prismatic concrete compression strength, yield strength of angle steel and shear span ratio, etc., on the monotonic load-displacement curves of the ASCCs. Based on a statistical analysis of the calculated results, hysteretic models for load-displacement and moment-curvature are proposed, which agree well with the test results. Finally, some suggestions concerning the conformation of ASCCs are proposed, which could be useful in engineering practice.展开更多
AIM:To assess the efficacy and advantages of 4-wk pegylated interferon a-2a(peg-IFN-a2a) monotherapy for chronic hepatitis C patients with strong predictors of sustained virologic response(SVR).METHODS:Patients(n = 33...AIM:To assess the efficacy and advantages of 4-wk pegylated interferon a-2a(peg-IFN-a2a) monotherapy for chronic hepatitis C patients with strong predictors of sustained virologic response(SVR).METHODS:Patients(n = 33) with genotype 2 and low viral load(< 100 KIU/mL),who became HCV RNA negative after 1 wk of IFN treatment,were randomly allocated to receive a 4-or 12-wk treatment course at a ratio of 2:1,respectively,with a subsequent 24-wk follow-up period.Peg-IFN-a2a was administered subcutaneously at a dose of 180 μg or 90 μg once weekly.SVR was defined as absence of serum HCV RNA at the end of the follow-up period.RESULTS:All patients completed the treatment schedule,and more than half were symptom-free during the treatment.In the 4-wk treatment group,20 of 22(91%) patients achieved SVR.Two patients relapsed,but achieved SVR following re-treatment with peg-IFN-a2a alone.In the 12-wk treatment group,11 of 11(100%) patients attained SVR.CONCLUSION:Our results show that a 4-wk course of peg-IFN-a2a monotherapy can achieve a high SVR rate in "IFN-sensitive" patients,without negatively affecting outcome.展开更多
To find the deformation properties of chloride saline soil under the influence of a low temperature environment and different loads,two types of chloride saline soil were selected and their deformation process was tes...To find the deformation properties of chloride saline soil under the influence of a low temperature environment and different loads,two types of chloride saline soil were selected and their deformation process was tested in the laboratory and analyzed during the cooling process in the sensitive cryogenic temperature range.The research results show that high-chloride-salt saline soil underwent little volume change under the no-load condition during the cooling process.Under staticload and dynamic-load conditions,different degrees of settlement deformation occurred;throughout the entire cooling process,another chloride saline soil with a high proportion of sulfate salt underwent volume expansion under no-load and static-load conditions.Under the no-load condition,a certain degree of settlement deformation occurred.Deformation properties were evaluated at different time points during the cooling process for two kinds of chloride saline soil.Finally,deformation characteristics of chloride saline soil were analyzed from the perspective of salt type and crystallization variation under the action of a low-temperature environment and different loads.展开更多
Platinum catalysts play a major role in the large scale commercialization of direct methanol fuel cells(DMFC).Here,we present a procedure to create a nanostructural graphene-platinum(Gr Pt)composite containing a small...Platinum catalysts play a major role in the large scale commercialization of direct methanol fuel cells(DMFC).Here,we present a procedure to create a nanostructural graphene-platinum(Gr Pt)composite containing a small amount(5.3 wt%)of platinum nanoparticles coated with at least four layers of graphene.The composite,as Gr Pt ink,was deposited on a glassy carbon electrode and its electrocatalytic activity in a methanol oxidation reaction(MOR)was evaluated in a 1 M CH3OH/1 M NaOH solution.The results indicated an enhanced catalytic performance of GrPt towards MOR in alkaline media compared with the Pt/C material.Electron energy-loss spectroscopy and X-ray photoelectron spectroscopy(recorded before and after the electrochemical assays)were employed to analyze the changes in the chemical composition of the nanomaterial and to explain the transformations that took place at the electrode surface.Our findings suggest that growing of graphene on platinum nanoparticles improve the catalytic performance of platinum-graphene composites towards MOR in alkaline media.展开更多
With the increasing application of anammox for the treatment of high-strength industrial wastewater,application of anammox in municipal sewage has been gaining more attention.Sludge granulation in particular enhances ...With the increasing application of anammox for the treatment of high-strength industrial wastewater,application of anammox in municipal sewage has been gaining more attention.Sludge granulation in particular enhances the enrichment and retention of anammox bacteria in municipal sewage treatment systems.However,the performance of granular sludge under continuous and varying hydraulic loading shock remains little understood.In this study,the robustness of anammox granular sludge in treating lowstrength municipal sewage under various shock loadings was investigated.Results showed that an upflow anaerobic sludge blanket(UASB)reactor with anammox granules performed well,with anammox specific activity up to 0.28 kg N/kg VSS/day and anti-loading shock capability up to 187.2 L/day during the 8-month testing period.The accumulation rate of N2O(<0.01 kg N/kg VSS/day)in the liquid phase was seven times higher than that of the gas phase,which could be mainly attributed to the incomplete denitrification and insufficient carbon source.However,only a small part of the produced N2O escaped into the atmosphere.High-throughput sequencing and molecular ecological network analyses also identified the bacterial diversity and community structure,indicating the potential resistance against loading shock.The composition and structural analyses showed that polysaccharides were an important functional component in the tightly bound extracellular polymeric substances(TB-EPS),which was the major EPS layer of anammox granules.Scanning electron microscopy(SEM)also showed that the gaps in between the anammoxclusters in the granules inhibit the flotation of the sludge and ensure efficient settling and retention of anammox granules.展开更多
The ballistic properties of a low solid loading composite solid propellant family (Butalites) was studied experimentally by using propellant formulations based on hydroxy-terminated polybutadiene pre-polymer (HTPB...The ballistic properties of a low solid loading composite solid propellant family (Butalites) was studied experimentally by using propellant formulations based on hydroxy-terminated polybutadiene pre-polymer (HTPB) as fuel binder main backbone, mono and bi-modal system ammonium perchlorate oxidizer (AP), copper chromite (CC) as burning rate accelerator and aluminum powder (A1) as metallic fuel. Higher pressures and AP contents as well as smaller AP particle size were found to increase burning rate. The same behavior verified with AI and CC addition. A significant increase of burning rate was recorded when CC added to the aluminized formulations compared with the non-aluminized of the same oxidizer solid loading and particle size.展开更多
Previous studies showed that an axisymmetric hub-initiated disturbance defined as partial surge may initiate the stall of a transonic compressor; to reveal the instability evolution under full-span incompressible flow...Previous studies showed that an axisymmetric hub-initiated disturbance defined as partial surge may initiate the stall of a transonic compressor; to reveal the instability evolution under full-span incompressible flow for different levels of hub loading and B parameter, an experimental investigation is conducted on a single-stage low-speed compressor. Experimental results show that under a uniform inflow condition without inlet flow distortion, a modal-type stall inception dominates in this low-speed compressor. When an inlet screen introducing hub distortion is used to increase the hub loading, a compressor stall is initiated by a modal wave, but large disturbances are present in the hub region before the compressor stall, which become stronger as the hub loading increases. Under high hub loading and large B parameter(implemented by adding hub distortion through an inlet screen and enlarging the outlet plenum volume, respectively), a compressor stall is triggered by an axisymmetric hub-initiated disturbance, which is much different from the modal-like disturbances. The beginning of this axisymmetric disturbance may be captured over 800 rotor revolutions prior to the onset of stall, and the amplitude grows with time. The disturbance is hub-initiated because the disturbance signal at the hub is detected much earlier than that at the tip; meanwhile, the frequency of this axisymmetric disturbance changes with the length of the inlet duct. The characteristics of instability evolution in the low-speed compressor are also compared with those in a transonic compressor.展开更多
This work explored the way to improve hot modulus q/' rupture (HMOR) and refractoriness under load (RUL) by adding mild-calcined coal gangue (MCG) in Al2O3 -SiO2 ultra low cement (ULC) castables, making use o...This work explored the way to improve hot modulus q/' rupture (HMOR) and refractoriness under load (RUL) by adding mild-calcined coal gangue (MCG) in Al2O3 -SiO2 ultra low cement (ULC) castables, making use of the in-situ effect of the MCG during heating-up. The influence of respective additions of 5%, 10% and 1.5% of the MCG powders calcined at 700℃ was investigated on HMOR at 1400 ℃ and RUL of the castables. With increased addition of the MCG, HMOR and RUL become significantly enhanced. At 10% of the MCG addition, HMOR reaches 3 MPa, as compared to 0. 3 MPa in the case of no MCG addition. RUL of the specimens dried at 110 ℃for 24 h can be increased by some 270 ℃ with 10% of the MCG addition. RUL 0.11 the specimens preheated at 1 500℃ for 3 h maintains the growth trend with the MCG addition increasing. The microstructure of the heated castable samples was investigated by means of SEM. The in-situ formed needle-like and interlaced mullite in the matrix is contributive to the tmprovement.展开更多
In recent years, the development and application of high performance fiber reinforced concrete or cementitious composites are increasing due to their high ductility and energy absorption characteristics. However, it i...In recent years, the development and application of high performance fiber reinforced concrete or cementitious composites are increasing due to their high ductility and energy absorption characteristics. However, it is difficult to obtain the required properties of the FRCC by simply adding fiber to the concrete matrix. Many researchers are paying attention to fiber reinforced polymers (FRP) for the reinforcement of construction structures because of their significant advantages over high strain rates. However, the actual FRP products are skill-dependent, and the quality may not be uniform. Therefore, in this study, two-way punching tests were carried out to evaluate the performances of FRP strengthened and steel and polyvinyl alcohol (PVA) fiber reinforced concrete specimens for impact and static loads. The FRP reinforced normal concrete (NC), steel fiber reinforced concrete (SFRC), and PVA FRCC specimens showed twice the amount of enhanced dissipated energy (total energy) under impact loadings than the non-retrofitted specimens. In the low-velocity impact test of the two-way NC specimens strengthened by FRPs, the total dissipated energy increased by 4 to 5 times greater than the plain NC series. For the two-way specimens, the total energy increased by 217% between the non-retrofitted SFRC and NC specimens. The total dissipated energy of the CFRP retrofitted SFRC was twice greater than that of the plain SFRC series. The PVA FRCC specimens showed 4 times greater dissipated energy than for the energy of the plain NC specimens. For the penetration of two-way specimens with fibers, the Hughes formula considering the tensile strength of concrete was a better predictor than other empirical formulae.展开更多
基金National Natural Science Foundation of China (10802003)
文摘Tests with middle-crack tension (M(T)) specimens made of Al 2324-T39 and Al 7050-T7451 are conducted to investigate the influence of low load truncation level on fatigue crack growth. The six different truncated spectra are obtained by removing the small cycles of which amplitudes are less than the specified percentages of the maximum amplitude in the basic flight-by-flight loading spectrum and the remainder of the spectrum is untouched. The tests indicate that the mean level of fatigue crack growth life (FCGL) increases as the load truncation level is enhanced. Considering both the time saving and the influence on FCGL, there is an applicable choice (i.e. spectrum S2 or spectrum S3 in this investigation) for full scale fatigue test. The scatter of FCGL becomes much larger than that under the basic spectrum when the load truncation level is increased to a specified high level, mainly due to the occurrence of crack slanting and branching under the high level truncated loading spectra.
基金the financial supports from the National Natural Science Foundation of China(21975281,21773293,21603264)CAS Pioneer Hundred Talents Program+2 种基金the National Key Research and Development Program of China(2016YFA0203301)Jiangsu Planned Projects for Postdoctoral Research Funds(2019K048)Suzhou Science and Technology Plan Project(SYG201926)。
文摘Transitional metal alloy and compounds have been developed as the low cost and efficient bifunctional electrocatalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).However,a high mass loading of these catalysts is commonly needed to achieve acceptable catalytic performance,which could cause such problems as battery weight gain,mass transport blocking,and catalyst loss.We report herein the preparation of fine CoNi nanoparticles(5-6 nm)anchored inside a nitrogendoped defective carbon nanotube network(CoNi@N-DCNT)by a transient Joule heating method.When utilized as an electrocatalyst for oxygen reduction and evolution in alkaline media,the CoNi@N-DCNT film catalyst with a very low mass loading of 0.06 mg cm^(-2) showed excellent bifunctional catalytic performance.For ORR,the onset potential(Eonset)and the half-wave potential(E_(1/2))were 0.92 V versus reversible hydrogen electrode(vs.RHE)and 0.83 V(vs.RHE),respectively.For OER,the potential at the current density(J)of 10 mA cm^(-2)(E_(10))was 1.53 V,resulting in an overpotential of 300 mV much lower than that of the commercial RuO_(2) catalyst(320 mV).The potential gap between E_(1/2) and E_(10) was as small as 0.7 V.Considering the low mass loading,the mass activity at E_(10) reached at 123.2 A g^(-1),much larger than that of the RuO_(2) catalyst and literature results of transitional metal-based bifunctional catalysts.Moreover,the CoNi@N-DCNT film catalyst showed very good long-term stability during the ORR and OER test.The excellent bifunctional catalytic performance could be attributed to the synergistic effect of the bimetal alloy.
基金financial support from the National Natural Science Foundation of China (No. 21472033)the National Key R&D Program of China (No. 2018YFB1501604)the Fundamental Research Funds for the Central Universities (No. PA2020GDKC0021)。
文摘The hydroarylation reaction of terminal alkynes with arylboronic acids catalyzed by low(400 ppm) loadings of palladium has been developed. The reaction is broad in scope and high-yielding, even on multigram scale. It is suitable for the synthesis of alkenes labeled with deuterium, and for the late-stage modification of bioactive molecules.
文摘The very long tradition of the activated sludge treatment model within the water industry has demonstrated very versatile possibilities to adopt the operation mode for different enhancements. By looking into other treatment models within the activated sludge family it is possible to find alternatives for the operation. This paper concentrates on the possibilities to improve even small WWTP with respect to energy savings. The small plant in Northern Sweden, called Rosvik WWTP, is given as an example. Some important findings related to the intermittent aeration mode may be summarized as follows: 1) An energy savings for the operation of the small WWTP with respect to aeration needs that resulted in a decrease of the energy power supply by more than 35%, as compared with the previous operation based on continuous aeration;2) The up to date effluent levels with respect to the main pollutants have remained at very good levels in 2020, P-level averages 0.16 mg P/l versus consent level <</span><span> </span><span style="font-family:Verdana;">0.5 mg P/l;COD-level 40 versus <</span><span> </span><span><span style="font-family:Verdana;">70 mg/l and BOD</span><sub><span style="font-family:Verdana;">7</span></sub><span style="font-family:Verdana;"> 9 versus <</span></span><span> </span><span><span style="font-family:Verdana;">15 mg/l;3) Sometimes, also improved sludge settling characteristics have been observed, thus providing improved discharge figures;4) The potential to develop an enhanced biological phosphorus removal. There are however </span><span style="font-family:Verdana;">some needed conditions to accomplish these improvements: 1) Reliable</span><span style="font-family:Verdana;"> on-line probes for both oxygen control, SS-concentration control and optionally also for nitrogen control;2) A flexible automation system that allows the needed process modifications to take place;3) And finally, very important dedicated and competent plant operators, with the needed curiosity for operation improvements.
文摘The Sri Lankan national water authority, that is The National Water Supply and Drainage Board (NWS&DB) has taken a new wastewater treatment plant into operation at Ja Ela, North of Colombo. The plant has been in operation since September 2011. In April 2012, it was concluded how a test of the aeration efficiency and a performance test should be carried out. The tests have been based on the actual loading of the plant and the analysis results from the daily process control. The evaluation of the aeration efficiency is not reported in this paper. The paper presents the overall performance of the water treatment part of the plant during start-up conditions, from fall 2011 through the first five months of 2012. The results from the operation are found in Table 1. An important circumstance at the plant is the current very low loading in comparison with the design load. This fact has resulted in an introduction of an intermittent mode of the aeration (nitrification) reactor. Based on operation figures, during more than a month (May 2012), it has been possible to give a realistic assessment of the overall performance. The most striking results are summarized as follows: 1) The intermittent operation has enabled an energy efficient operation of the plant. By the introduction of the intermittent aeration, the energy consumption has been reduced by around 75%, compared with the continuous operation mode;2) The plant performance during the intermittent operation has been improved with respect to virtually all important pollution variables. The most striking improvement is the discharge total P level, reflecting that a substantial enhanced biological phosphorus removal takes. The typical discharge levels found during May 2012, were compared with the earlier obtained values. It is important to underline that the loading on the plant has slightly increased during May as compared with the previous operation period.
基金supported by the National Natural Science Foundation of China(2210829)We thank Analysis&Testing Laboratory for Life Sciences and Medicine of Air Force Medical University for HR MS analysis.
文摘A palladium catalytic system incorporating novel Fc-JosiPhos ligands enables efficient C–N bond formation with diverse(hetero)aryl halides under low palladium loading(0.1 mol%).We rationally designed novel ferrocenyl phosphine-derived JosiPhos ligands(L1–L3).These ligands incorporate a ferrocenyl group providing greater steric bulk than tert-butyl or cyclohexyl and superior electron donation to cyclohexyl,along with a tunable side chain.They delivered excellent yields in the catalytic coupling of challenging(hetero)aryl chlorides with hydrazine.The scalable synthesis of arylhydrazines(5mmol scale)and subsequent cyclization to pyrazoles(65%–91%yields)highlights their potential for industrial conversion.Furthermore,the modularity of this strategy supports late-stage pharmaceutical functionalization,exemplified by TRPC inhibitor intermediate.
基金supported by National Natural Science Foundation of China (Grant No. 50875173)Shanghai Municipal Education Commission Key Foundation of China (Grant No. 09ZZ157)Shanghai Leading Academic Discipline Project of China (Grant No. J50503)
文摘There are two kinds of internationally recognized approaches in terms of lightweight design.One is based on fatigue accumulated damage theory to achieve better reliability by optimal structural design; another is to use high performance lightweight materials.The former method takes very few considerations on the structural strengthening effects caused by the massive small loads in service.In order to ensure safety,the design is usually conservative,but the strength potential of the component is not fully exerted.In the latter method,cost is the biggest obstacle to lightweight materials in automotive applications.For the purpose of light weighting design on a fuel cell vehicle,the new design method is applied on drive shafts.The method is based on the low amplitude load strengthening characteristics of the material,and allows the stress,corresponding to test load,to enter into the strengthened range of the material.Under this condition,the light weighting design should assure that the reliability of the shaft is not impaired,even maximizes the strength potential of machine part in order to achieve the weight reduction and eventually to reduce the cost.At last,the feasibility of the design is verified by means of strength analysis and modal analysis based on the CAD model of light weighted shaft.The design applies to the load case of half shaft in independent axle,also provides technological reference for the structural lightweight design of vehicles and other machineries.
基金the New Century Excellent Talents in University Under Grant No.290Heilongjiang Key Program on Science and Technology Under Grant No. GC04A609arbin Key Program on Science and Technology Under Grant No. 2004AA9CS187.
文摘Tests of nine angle-steel concrete column (ASCC) specimens under low cyclic loading are described in a companion paper (Zheng and Ji, 2008). In this paper, the skeleton curves from the numerical simulation are presented, and show good agreement with the test results. Furthermore, parametric studies are conducted to explore the influence of factors such as the axial compression ratio, shear steel plate ratio, steel ratio, prismatic concrete compression strength, yield strength of angle steel and shear span ratio, etc., on the monotonic load-displacement curves of the ASCCs. Based on a statistical analysis of the calculated results, hysteretic models for load-displacement and moment-curvature are proposed, which agree well with the test results. Finally, some suggestions concerning the conformation of ASCCs are proposed, which could be useful in engineering practice.
基金Supported by Clinical Research Funds from Department of Gastroenterology and Hepatology,Kashiwa Hospital,Jikei University School of Medicine
文摘AIM:To assess the efficacy and advantages of 4-wk pegylated interferon a-2a(peg-IFN-a2a) monotherapy for chronic hepatitis C patients with strong predictors of sustained virologic response(SVR).METHODS:Patients(n = 33) with genotype 2 and low viral load(< 100 KIU/mL),who became HCV RNA negative after 1 wk of IFN treatment,were randomly allocated to receive a 4-or 12-wk treatment course at a ratio of 2:1,respectively,with a subsequent 24-wk follow-up period.Peg-IFN-a2a was administered subcutaneously at a dose of 180 μg or 90 μg once weekly.SVR was defined as absence of serum HCV RNA at the end of the follow-up period.RESULTS:All patients completed the treatment schedule,and more than half were symptom-free during the treatment.In the 4-wk treatment group,20 of 22(91%) patients achieved SVR.Two patients relapsed,but achieved SVR following re-treatment with peg-IFN-a2a alone.In the 12-wk treatment group,11 of 11(100%) patients attained SVR.CONCLUSION:Our results show that a 4-wk course of peg-IFN-a2a monotherapy can achieve a high SVR rate in "IFN-sensitive" patients,without negatively affecting outcome.
基金supported by National Natural Science Foundation of China (No. 41501062)
文摘To find the deformation properties of chloride saline soil under the influence of a low temperature environment and different loads,two types of chloride saline soil were selected and their deformation process was tested in the laboratory and analyzed during the cooling process in the sensitive cryogenic temperature range.The research results show that high-chloride-salt saline soil underwent little volume change under the no-load condition during the cooling process.Under staticload and dynamic-load conditions,different degrees of settlement deformation occurred;throughout the entire cooling process,another chloride saline soil with a high proportion of sulfate salt underwent volume expansion under no-load and static-load conditions.Under the no-load condition,a certain degree of settlement deformation occurred.Deformation properties were evaluated at different time points during the cooling process for two kinds of chloride saline soil.Finally,deformation characteristics of chloride saline soil were analyzed from the perspective of salt type and crystallization variation under the action of a low-temperature environment and different loads.
基金financially supported by Romanian National Authority for Scientific Research and Innovation (ANCSI) by NUCLEU Program PN 18 03 02 02
文摘Platinum catalysts play a major role in the large scale commercialization of direct methanol fuel cells(DMFC).Here,we present a procedure to create a nanostructural graphene-platinum(Gr Pt)composite containing a small amount(5.3 wt%)of platinum nanoparticles coated with at least four layers of graphene.The composite,as Gr Pt ink,was deposited on a glassy carbon electrode and its electrocatalytic activity in a methanol oxidation reaction(MOR)was evaluated in a 1 M CH3OH/1 M NaOH solution.The results indicated an enhanced catalytic performance of GrPt towards MOR in alkaline media compared with the Pt/C material.Electron energy-loss spectroscopy and X-ray photoelectron spectroscopy(recorded before and after the electrochemical assays)were employed to analyze the changes in the chemical composition of the nanomaterial and to explain the transformations that took place at the electrode surface.Our findings suggest that growing of graphene on platinum nanoparticles improve the catalytic performance of platinum-graphene composites towards MOR in alkaline media.
基金financially supported by the National Natural Science Foundation of China (Nos. 21707155, 41671471, 41322012 and 91851204)the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB15020303)+4 种基金the National Key R&D Program (No. 2016YFA0602303)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (No. 2017BT01Z176)the special fund from the State Key Joint Laboratory of Environment Simulation and Pollution Control (Research Center for Eco-environmental Sciences, Chinese Academy of Sciences) (No. 18Z02ESPCR)the support of a Humboldt Research Fellowship (No. 1152633)Program of the Youth Innovation Promotion Association (CAS)
文摘With the increasing application of anammox for the treatment of high-strength industrial wastewater,application of anammox in municipal sewage has been gaining more attention.Sludge granulation in particular enhances the enrichment and retention of anammox bacteria in municipal sewage treatment systems.However,the performance of granular sludge under continuous and varying hydraulic loading shock remains little understood.In this study,the robustness of anammox granular sludge in treating lowstrength municipal sewage under various shock loadings was investigated.Results showed that an upflow anaerobic sludge blanket(UASB)reactor with anammox granules performed well,with anammox specific activity up to 0.28 kg N/kg VSS/day and anti-loading shock capability up to 187.2 L/day during the 8-month testing period.The accumulation rate of N2O(<0.01 kg N/kg VSS/day)in the liquid phase was seven times higher than that of the gas phase,which could be mainly attributed to the incomplete denitrification and insufficient carbon source.However,only a small part of the produced N2O escaped into the atmosphere.High-throughput sequencing and molecular ecological network analyses also identified the bacterial diversity and community structure,indicating the potential resistance against loading shock.The composition and structural analyses showed that polysaccharides were an important functional component in the tightly bound extracellular polymeric substances(TB-EPS),which was the major EPS layer of anammox granules.Scanning electron microscopy(SEM)also showed that the gaps in between the anammoxclusters in the granules inhibit the flotation of the sludge and ensure efficient settling and retention of anammox granules.
文摘The ballistic properties of a low solid loading composite solid propellant family (Butalites) was studied experimentally by using propellant formulations based on hydroxy-terminated polybutadiene pre-polymer (HTPB) as fuel binder main backbone, mono and bi-modal system ammonium perchlorate oxidizer (AP), copper chromite (CC) as burning rate accelerator and aluminum powder (A1) as metallic fuel. Higher pressures and AP contents as well as smaller AP particle size were found to increase burning rate. The same behavior verified with AI and CC addition. A significant increase of burning rate was recorded when CC added to the aluminized formulations compared with the non-aluminized of the same oxidizer solid loading and particle size.
基金the supports of the National Natural Science Foundation of China (Nos.51636001 and 51706008)Aeronautics Power Foundation of China (No.6141B090315)China Postdoctoral Science Foundation (No.2017M610742)
文摘Previous studies showed that an axisymmetric hub-initiated disturbance defined as partial surge may initiate the stall of a transonic compressor; to reveal the instability evolution under full-span incompressible flow for different levels of hub loading and B parameter, an experimental investigation is conducted on a single-stage low-speed compressor. Experimental results show that under a uniform inflow condition without inlet flow distortion, a modal-type stall inception dominates in this low-speed compressor. When an inlet screen introducing hub distortion is used to increase the hub loading, a compressor stall is initiated by a modal wave, but large disturbances are present in the hub region before the compressor stall, which become stronger as the hub loading increases. Under high hub loading and large B parameter(implemented by adding hub distortion through an inlet screen and enlarging the outlet plenum volume, respectively), a compressor stall is triggered by an axisymmetric hub-initiated disturbance, which is much different from the modal-like disturbances. The beginning of this axisymmetric disturbance may be captured over 800 rotor revolutions prior to the onset of stall, and the amplitude grows with time. The disturbance is hub-initiated because the disturbance signal at the hub is detected much earlier than that at the tip; meanwhile, the frequency of this axisymmetric disturbance changes with the length of the inlet duct. The characteristics of instability evolution in the low-speed compressor are also compared with those in a transonic compressor.
文摘This work explored the way to improve hot modulus q/' rupture (HMOR) and refractoriness under load (RUL) by adding mild-calcined coal gangue (MCG) in Al2O3 -SiO2 ultra low cement (ULC) castables, making use of the in-situ effect of the MCG during heating-up. The influence of respective additions of 5%, 10% and 1.5% of the MCG powders calcined at 700℃ was investigated on HMOR at 1400 ℃ and RUL of the castables. With increased addition of the MCG, HMOR and RUL become significantly enhanced. At 10% of the MCG addition, HMOR reaches 3 MPa, as compared to 0. 3 MPa in the case of no MCG addition. RUL of the specimens dried at 110 ℃for 24 h can be increased by some 270 ℃ with 10% of the MCG addition. RUL 0.11 the specimens preheated at 1 500℃ for 3 h maintains the growth trend with the MCG addition increasing. The microstructure of the heated castable samples was investigated by means of SEM. The in-situ formed needle-like and interlaced mullite in the matrix is contributive to the tmprovement.
文摘In recent years, the development and application of high performance fiber reinforced concrete or cementitious composites are increasing due to their high ductility and energy absorption characteristics. However, it is difficult to obtain the required properties of the FRCC by simply adding fiber to the concrete matrix. Many researchers are paying attention to fiber reinforced polymers (FRP) for the reinforcement of construction structures because of their significant advantages over high strain rates. However, the actual FRP products are skill-dependent, and the quality may not be uniform. Therefore, in this study, two-way punching tests were carried out to evaluate the performances of FRP strengthened and steel and polyvinyl alcohol (PVA) fiber reinforced concrete specimens for impact and static loads. The FRP reinforced normal concrete (NC), steel fiber reinforced concrete (SFRC), and PVA FRCC specimens showed twice the amount of enhanced dissipated energy (total energy) under impact loadings than the non-retrofitted specimens. In the low-velocity impact test of the two-way NC specimens strengthened by FRPs, the total dissipated energy increased by 4 to 5 times greater than the plain NC series. For the two-way specimens, the total energy increased by 217% between the non-retrofitted SFRC and NC specimens. The total dissipated energy of the CFRP retrofitted SFRC was twice greater than that of the plain SFRC series. The PVA FRCC specimens showed 4 times greater dissipated energy than for the energy of the plain NC specimens. For the penetration of two-way specimens with fibers, the Hughes formula considering the tensile strength of concrete was a better predictor than other empirical formulae.