BACKGROUND The common clinical method to evaluate blood loss during pancreaticoduoden-ectomy(PD)is visual inspection,but most scholars believe that this method is extremely subjective and inaccurate.Currently,there is...BACKGROUND The common clinical method to evaluate blood loss during pancreaticoduoden-ectomy(PD)is visual inspection,but most scholars believe that this method is extremely subjective and inaccurate.Currently,there is no accurate,objective me-thod to evaluate the amount of blood loss in PD patients.We retrospectively analyzed the clinical data of 341 patients who underwent PD in Shandong Provincial Hospital from March 2017 to February 2019.According to different surgical methods,they were divided into an open PD(OPD)group and a laparoscopic PD(LPD)group.The differences and correlations between the in-traoperative estimation of blood loss(IEBL)obtained by visual inspection and the intraoperative calculation of blood loss(ICBL)obtained using the Hb loss method were analyzed.ICBL,IEBL and perioperative calculation of blood loss(PCBL)were compared between the two groups,and single-factor regression analysis was performed.RESULTS There was no statistically significant difference in the preoperative general patient information between the two groups(P>0.05).PD had an ICBL of 743.2(393.0,1173.1)mL and an IEBL of 100.0(50.0,300.0)mL(P<0.001).There was also a certain correlation between the two(r=0.312,P<0.001).Single-factor analysis of ICBL showed that a history of diabetes[95%confidence interval(CI):53.82-549.62;P=0.017]was an independent risk factor for ICBL.In addition,the single-factor analysis of PCBL showed that body mass index(BMI)(95%CI:0.62-76.75;P=0.046)and preoperative total bilirubin>200μmol/L(95%CI:7.09-644.26;P=0.045)were independent risk factors for PCBL.The ICBLs of the LPD group and OPD group were 767.7(435.4,1249.0)mL and 663.8(347.7,1138.2)mL,respectively(P>0.05).The IEBL of the LPD group 200.0(50.0,200.0)mL was slightly greater than that of the OPD group 100.0(50.0,300.0)mL(P>0.05).PCBL was greater in the LPD group than the OPD group[1061.6(612.3,1632.3)mL vs 806.1(375.9,1347.6)mL](P<0.05).CONCLUSION The ICBL in patients who underwent PD was greater than the IEBL,but there is a certain correlation between the two.The Hb loss method can be used to evaluate intraoperative blood loss.A history of diabetes,preoperative bilirubin>200μmol/L and high BMI increase the patient's risk of bleeding.展开更多
Regarding mobile machinery, particularly agricultural tractors, there is an ongoing competition for the most suitable technology to achieve optimum functionality with maximum efficiency. In this competition, the effic...Regarding mobile machinery, particularly agricultural tractors, there is an ongoing competition for the most suitable technology to achieve optimum functionality with maximum efficiency. In this competition, the efficiency of electric series-hybrid powertrains (ESHPs) is often depicted as worse than the efficiency of mechanical-hydraulic power-split powertrains (MHPSPs). On closer inspection of these statements, however, systematic errors, such as unequal balance limits, neglected size effects and nonlinearities, non-observance of recent technical developments and standards, or erroneous application of research results regarding MHPSPs on ESHPs are often evident. For verification (and under avoidance of the systematic errors mentioned above), the losses of an ESHP of 150 kW power are for example calculated and compared with the losses of a typical MHPSP of the same power. The comparison of the losses shows that the ESHP clearly exceeds the efficiency of the comparative MHPSP in the main working range and that there is still potential for improvement.展开更多
We present a theoretic model to calculate skin depths and eddy-current power losses for a magnetic position sensor. Eddy-current, arised from the operation of an alternating-current excitation, induces secondary curre...We present a theoretic model to calculate skin depths and eddy-current power losses for a magnetic position sensor. Eddy-current, arised from the operation of an alternating-current excitation, induces secondary currents and fields between magnetic material and magnetic position sensor. In this paper, a magnetic position sensor system is simplified to be an outer-winding coil along the axial direction of a low carbon steel bar. The analytical model is derived from basic field and circuit theory considering a linear approximation for a nonlinear permeability. Thus the skin depths and eddy-current power losses from the model in eddy-current modeling techniques at various frequencies of an excited current source can be calculated. The proposed configuration is capable of predicting the skin depths and eddy-current power losses for a magnetic position sensor and has a consistence with experiments.展开更多
The efficiency of energy conversion from mechanical to electrical in AC generators is not entirely optimal,as power losses are converted into heat.Accurate thermal modeling and temperature measurement of advanced elec...The efficiency of energy conversion from mechanical to electrical in AC generators is not entirely optimal,as power losses are converted into heat.Accurate thermal modeling and temperature measurement of advanced electric machines with complex structures are mandatory to confirm their reliability and safe operation.In a unique axial transverse flux switching permanent magnet(ATFSPM)generator,due to its high power density,large stray loss from leakage flux,compact topology,and totally enclosed structure,thermal analysis is of paramount significance.In this paper,thermal modeling and analysis of ATFSPM are carried out in detail using a three-dimensional(3D)finite element analysis(FEA)to evaluate the thermal condition for a precise performance improvement.To begin,all loss sources are accurately derived using 3-D FEA and analytical methods,taking into account the temperature dependence of material properties,and then losses are coupled to the thermal model as heat sources.Afterward,aiming for realistic thermal modelling,the convection heat transfer in the different regions of internal and external areas as well as thin layers of interface gaps between components are all considered.In addition,the prototype of ATFSPM is supplied to validate the accuracy of 3-D FEA temperature prediction.Furthermore,a novel technique is carried out to effectively improve thermal performance,enhance the efficiency,and limit hot-spot temperatures.The steady-state and transient temperature results demonstrate the high accuracy of the thermal modeling,enhance the secure operation of the ATFSPM,and facilitate increased loading utilizing the proposed technique.(1)展开更多
Multilevel inverters have gained much attention for its operation involving applications ranging values of high power rating. This paper proposes a switching topology for asymmetric multilevel inverter utilizing less ...Multilevel inverters have gained much attention for its operation involving applications ranging values of high power rating. This paper proposes a switching topology for asymmetric multilevel inverter utilizing less number of power electronics components. When the number of the output level increases, it requires more switching states and eventually the number of switching components. The increased number of switches results in higher switching losses which may lead to power loss, and reduction of efficiency of the overall conversion system. The salient feature of this proposed topology is that the module can be used as a sub multiple level structure and can be extended for any number of level with minimal increase in the switching components.展开更多
This paper presents a thermal management framework for 120 kV hybrid commutated converter(HCC)valves,addressing critical cooling challenges in multi-hundred-MW power conversion systems.Power loss calculations under ra...This paper presents a thermal management framework for 120 kV hybrid commutated converter(HCC)valves,addressing critical cooling challenges in multi-hundred-MW power conversion systems.Power loss calculations under rated(1.0 p.u.)and overload(1.2 p.u.)conditions demonstrate that HCC valves achieve comparable loss levels to line commutated converter counterparts while enabling active turn-off control.Comparative analysis of radiator configurations identifies 2-parallel branch connections as optimal.Integrated thermal-fluid models combining 3D finite element analysis and computational fluid dynamics reveal significant temperature gradients and flow maldistribution in baseline designs.On this basis,this paper modifies the flow from equal flow resistance allocation to heat-based allocation and it reduces maximum integrated gate-commutated thyristor temperature rise by 7.3%at 1.2 p.u.with minimal pressure drop variation.Experimental validation confirms the proposed cooling strategy enhances valve safety margins through improved heat dissipation balance,providing a validated theoretical foundation for high-power converter thermal design.展开更多
基金Supported by Shandong Provincial Natural Science Foundation General Project,No.ZR2020MH248。
文摘BACKGROUND The common clinical method to evaluate blood loss during pancreaticoduoden-ectomy(PD)is visual inspection,but most scholars believe that this method is extremely subjective and inaccurate.Currently,there is no accurate,objective me-thod to evaluate the amount of blood loss in PD patients.We retrospectively analyzed the clinical data of 341 patients who underwent PD in Shandong Provincial Hospital from March 2017 to February 2019.According to different surgical methods,they were divided into an open PD(OPD)group and a laparoscopic PD(LPD)group.The differences and correlations between the in-traoperative estimation of blood loss(IEBL)obtained by visual inspection and the intraoperative calculation of blood loss(ICBL)obtained using the Hb loss method were analyzed.ICBL,IEBL and perioperative calculation of blood loss(PCBL)were compared between the two groups,and single-factor regression analysis was performed.RESULTS There was no statistically significant difference in the preoperative general patient information between the two groups(P>0.05).PD had an ICBL of 743.2(393.0,1173.1)mL and an IEBL of 100.0(50.0,300.0)mL(P<0.001).There was also a certain correlation between the two(r=0.312,P<0.001).Single-factor analysis of ICBL showed that a history of diabetes[95%confidence interval(CI):53.82-549.62;P=0.017]was an independent risk factor for ICBL.In addition,the single-factor analysis of PCBL showed that body mass index(BMI)(95%CI:0.62-76.75;P=0.046)and preoperative total bilirubin>200μmol/L(95%CI:7.09-644.26;P=0.045)were independent risk factors for PCBL.The ICBLs of the LPD group and OPD group were 767.7(435.4,1249.0)mL and 663.8(347.7,1138.2)mL,respectively(P>0.05).The IEBL of the LPD group 200.0(50.0,200.0)mL was slightly greater than that of the OPD group 100.0(50.0,300.0)mL(P>0.05).PCBL was greater in the LPD group than the OPD group[1061.6(612.3,1632.3)mL vs 806.1(375.9,1347.6)mL](P<0.05).CONCLUSION The ICBL in patients who underwent PD was greater than the IEBL,but there is a certain correlation between the two.The Hb loss method can be used to evaluate intraoperative blood loss.A history of diabetes,preoperative bilirubin>200μmol/L and high BMI increase the patient's risk of bleeding.
文摘Regarding mobile machinery, particularly agricultural tractors, there is an ongoing competition for the most suitable technology to achieve optimum functionality with maximum efficiency. In this competition, the efficiency of electric series-hybrid powertrains (ESHPs) is often depicted as worse than the efficiency of mechanical-hydraulic power-split powertrains (MHPSPs). On closer inspection of these statements, however, systematic errors, such as unequal balance limits, neglected size effects and nonlinearities, non-observance of recent technical developments and standards, or erroneous application of research results regarding MHPSPs on ESHPs are often evident. For verification (and under avoidance of the systematic errors mentioned above), the losses of an ESHP of 150 kW power are for example calculated and compared with the losses of a typical MHPSP of the same power. The comparison of the losses shows that the ESHP clearly exceeds the efficiency of the comparative MHPSP in the main working range and that there is still potential for improvement.
文摘We present a theoretic model to calculate skin depths and eddy-current power losses for a magnetic position sensor. Eddy-current, arised from the operation of an alternating-current excitation, induces secondary currents and fields between magnetic material and magnetic position sensor. In this paper, a magnetic position sensor system is simplified to be an outer-winding coil along the axial direction of a low carbon steel bar. The analytical model is derived from basic field and circuit theory considering a linear approximation for a nonlinear permeability. Thus the skin depths and eddy-current power losses from the model in eddy-current modeling techniques at various frequencies of an excited current source can be calculated. The proposed configuration is capable of predicting the skin depths and eddy-current power losses for a magnetic position sensor and has a consistence with experiments.
基金supported by research grants of the Iran National Science Foundation(INSF)under grant No.98002866。
文摘The efficiency of energy conversion from mechanical to electrical in AC generators is not entirely optimal,as power losses are converted into heat.Accurate thermal modeling and temperature measurement of advanced electric machines with complex structures are mandatory to confirm their reliability and safe operation.In a unique axial transverse flux switching permanent magnet(ATFSPM)generator,due to its high power density,large stray loss from leakage flux,compact topology,and totally enclosed structure,thermal analysis is of paramount significance.In this paper,thermal modeling and analysis of ATFSPM are carried out in detail using a three-dimensional(3D)finite element analysis(FEA)to evaluate the thermal condition for a precise performance improvement.To begin,all loss sources are accurately derived using 3-D FEA and analytical methods,taking into account the temperature dependence of material properties,and then losses are coupled to the thermal model as heat sources.Afterward,aiming for realistic thermal modelling,the convection heat transfer in the different regions of internal and external areas as well as thin layers of interface gaps between components are all considered.In addition,the prototype of ATFSPM is supplied to validate the accuracy of 3-D FEA temperature prediction.Furthermore,a novel technique is carried out to effectively improve thermal performance,enhance the efficiency,and limit hot-spot temperatures.The steady-state and transient temperature results demonstrate the high accuracy of the thermal modeling,enhance the secure operation of the ATFSPM,and facilitate increased loading utilizing the proposed technique.(1)
文摘Multilevel inverters have gained much attention for its operation involving applications ranging values of high power rating. This paper proposes a switching topology for asymmetric multilevel inverter utilizing less number of power electronics components. When the number of the output level increases, it requires more switching states and eventually the number of switching components. The increased number of switches results in higher switching losses which may lead to power loss, and reduction of efficiency of the overall conversion system. The salient feature of this proposed topology is that the module can be used as a sub multiple level structure and can be extended for any number of level with minimal increase in the switching components.
基金National Key Research and Development Program,Grant/Award Number:2023YFB2405900。
文摘This paper presents a thermal management framework for 120 kV hybrid commutated converter(HCC)valves,addressing critical cooling challenges in multi-hundred-MW power conversion systems.Power loss calculations under rated(1.0 p.u.)and overload(1.2 p.u.)conditions demonstrate that HCC valves achieve comparable loss levels to line commutated converter counterparts while enabling active turn-off control.Comparative analysis of radiator configurations identifies 2-parallel branch connections as optimal.Integrated thermal-fluid models combining 3D finite element analysis and computational fluid dynamics reveal significant temperature gradients and flow maldistribution in baseline designs.On this basis,this paper modifies the flow from equal flow resistance allocation to heat-based allocation and it reduces maximum integrated gate-commutated thyristor temperature rise by 7.3%at 1.2 p.u.with minimal pressure drop variation.Experimental validation confirms the proposed cooling strategy enhances valve safety margins through improved heat dissipation balance,providing a validated theoretical foundation for high-power converter thermal design.