期刊文献+
共找到841篇文章
< 1 2 43 >
每页显示 20 50 100
Longmen Grottoes
1
《ChinAfrica》 2018年第1期60-61,共2页
The Longmen Grottoes comprise more than 2,300 caves and niches carved into the steep limestone cliffs. These contain almost 110,000 stone Buddhist statues, more than 60 stupas and 2,800 inscriptions carved on steles. ... The Longmen Grottoes comprise more than 2,300 caves and niches carved into the steep limestone cliffs. These contain almost 110,000 stone Buddhist statues, more than 60 stupas and 2,800 inscriptions carved on steles. Luoyang was China's capital during the late North- ern Wei Dynasty (386-534) and early Tang Dynasty (618 907), and the most intensive period of carving dates from the end of the fifth century to the mid eighth century. 展开更多
关键词 longmen Grottoes longmen Grottoes comprise
原文传递
Active Tectonics of the Longmen Shan Region on the Eastern Margin of the Tibetan Plateau 被引量:38
2
作者 ZHOU Rongjun LI Yong +4 位作者 Alexander L.DENSMORE Michael A. ELLIS HE Yulin LI Yongzhao LI Xiaogang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第4期593-604,共12页
There is a massive amount of geomorphic evidence for active tectonics in the Longmen Shan at the eastern margin of the Tibetan plateau. We have surveyed some typical geomorphic markers including the Wenchuan-Maowen, B... There is a massive amount of geomorphic evidence for active tectonics in the Longmen Shan at the eastern margin of the Tibetan plateau. We have surveyed some typical geomorphic markers including the Wenchuan-Maowen, Beichuan-Yingxiu and Pengxian-Guanxian faults, terrace offsets, scarps, fault-controlled saddles, dextral shutter ridges, dextral channel offsets, graben, shatter belts, and pull-apart basins. Electron spin resonance (ESR) and thermoluminescence(TL) ages were obtained using silty sand taken from below the surface of the sediments. According to these data, we calculated the rates of thrusting and strike-slip, and the results indicate that Cenozoic tectonic shortening at the plateau margin is minor with the rate of thrusting less than 1.10 mm/a and the rate of strike-slipping less than 1.46 mm/a. The Longmen Shan is a zone of NNE-trending dextral shear with slip-dip ratio of 6:1-1.3:1. From NW to SE, the thrust component becomes smaller, whereas the strike-slip component becomes larger. 展开更多
关键词 TECTONICS strike-slip thrusting Late Cenozoic longmen Shan Tibetan plateau
在线阅读 下载PDF
Tectonic Evolution of the Middle Frontal Area of the Longmen Mountain Thrust Belt,Western Sichuan Basin,China 被引量:11
3
作者 JIN Wenzheng TANG Liangjie +3 位作者 YANG Keming WAN Guimei Lü Zhizhou YU Yixin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第1期92-102,共11页
By analyzing the balanced cross sections and subsidence history of the Longmen Mountain thrust belt, China, we concluded that it had experienced five tectonic stages: (1) the formation stage (T3x) of the miniatur... By analyzing the balanced cross sections and subsidence history of the Longmen Mountain thrust belt, China, we concluded that it had experienced five tectonic stages: (1) the formation stage (T3x) of the miniature of Longmen Mountain, early Indosinian movement, and Anxian tectonic movement created the Longmen Mountain; (2) the stable tectonic stage (J1) where weaker tectonic movement resulted in the Longmen Mountain thrust belt being slightly uplifted and slightly subsiding the foreland basin; (3) the intense tectonic stage (J2-3), namely the early Yanshan movement; (4) continuous tectonic movement (K-E), namely the late Yanshan movement and early Himalayan movement; and (5) the formation of Longmen Mountain (N-Q), namely the late Himalayan movement. During those tectonic deformation stages, the Anxian movement and Himalayan movement played important roles in the Longmen Mountain's formation. The Himalayan movement affected Longmen Mountain the most; the strata thrust intensively and were eroded severely. There are some klippes in the middle part of the Longmen Mountain thrust belt because a few nappes were pushed southeastward in later tectonic deformation. 展开更多
关键词 balanced cross section shortening rate subsidence history longmen Mountain thrust belt Sichuan basin
在线阅读 下载PDF
Meso-Cenozoic Tectonic Events Recorded by Apatite Fission Track in the Northern Longmen-Micang Mountains Region 被引量:9
4
作者 LEI Yongliang JIA Chengzao +3 位作者 LI Benliang WEI Guoqi CHEN Zhuxin SHI Xin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第1期153-165,共13页
There is a cross-cutting relationship between the E-W trending structures and the NE- trending structures in the northern Longmen-Micang Mountains region, which reflects possible regional tectonic transition and migra... There is a cross-cutting relationship between the E-W trending structures and the NE- trending structures in the northern Longmen-Micang Mountains region, which reflects possible regional tectonic transition and migration. Apatite fission track (AFT) analyses of 15 samples collected from this area yield apparent ages varying from 30.3±4.2 Ma to 111.7±9.0 Ma and confined-track-lengths ranging from 10.6±0.3 pm to 12.4±0.1 μm. Four specific groups were identified on the basis of the Track Age Spectrum Calculation (TASC) patterns, i.e., 143-112 Ma, 93.6-88 Ma, 42-40 Ma and -25.6 Ma. These age groups correspond to the spatial distributions of datasets and may represent four tectonic events. Together with the regional deformation patterns, the four age groups are interpreted to indicate tectonic superposition, transition and migration during the Meso-Cenozoic with the following possible order: (1) the Micang Mountains belt was dominated by the E-W trending structure during 143-112 Ma; (2) the contraction of the Longmen Mountains belt from the NW to the SE during 93.6-88 Ma led to the superposition of the NE-trending structures over the E-W trendinding structures; (3) dextral strike-slip shear dominated the Longmen Mountains belt at 42-40 Ma; (4) westward migration of the active tectonic belt occurred from 93.6-25.6 Ma in a break-back sequence in the northern Longmen Mountains belt. The Late Cenozoic tectonics in the northern Longmen Mountains belt are characterized by the dextral strike-slip shear and the occurrence of westward break-back sequence of deformations. As a result, north-south differences in deformations along the Longmen Mountains belt were intensified since the Miocene time and strains were mainly accumulated in the hinterland of the Longmen Mountains instead of being propagated to the foreland basin. 展开更多
关键词 apatite fission track tectonic events longmen Mountains Micang Mountains Meso-Cenozoic
在线阅读 下载PDF
Differential Tectonic Deformation of the Longmen Mountain Thrust Belt,Western Sichuan Basin,China 被引量:6
5
作者 TANG Liangjie YANG Keming +3 位作者 JIN Wenzheng WAN Guimei LüZhizhou YU Yixin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第1期158-169,共12页
Field investigation and seismic section explanation showed that the Longmen Mountain Thrust Belt has obvious differential deformation: zonation, segmentation and stratification. Zonation means that, from NW to NE, th... Field investigation and seismic section explanation showed that the Longmen Mountain Thrust Belt has obvious differential deformation: zonation, segmentation and stratification. Zonation means that, from NW to NE, the Longmen Mountain Thrust Belt can be divided into the Songpan- Garz~ Tectonic Belt, ductile deformation belt, base involved thrust belt, frontal fold-thrust belt, and foreland depression. Segmentation means that it can be divided into five segments from north to south: the northern segment, the Anxian Transfer Zone, the center segment, the Guanxian Transfer Zone and the southern segment. Stratification means that the detachment layers partition the structural styles in profile. The detachment layers in the Longmen Mountain Thrust Belt can be classified into three categories: the deep-level detachment layers, including the crust-mantle system detachment layer, intracrustal detachment layer, and Presinian system basal detachment layer; the middle-level detachment layers, including Cambrian-Ordovician detachment layer, Silurian detachment layer, etc.; and shallow-level detachment layers, including Upper Triassic Xujiahe Formation detachment layer and the Jurassic detachment layers. The multi-level detachment layers have a very important effect on the shaping and evolution of Longmen Mountain Thrust Belt. 展开更多
关键词 differential deformation detachment layer segmentation STRATIFICATION transfer zone zonation longmen Mountain Thrust Belt
在线阅读 下载PDF
Deep Background of Wenchuan Earthquake and the Upper Crust Structure beneath the Longmen Shan and Adjacent Areas 被引量:12
6
作者 LI Qiusheng GAO Rui +5 位作者 WANG Haiyan ZHANG Jisheng LU Zhanwu LI Pengwu GUAN Ye HE Rizheng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第4期733-739,共7页
By analyzing the deep seismic sounding profiles across the Longmen Shan,this paper focuses on the study of the relationship between the upper crust structure of the Longmen Shan area and the Wenchuan earthquake.The Lo... By analyzing the deep seismic sounding profiles across the Longmen Shan,this paper focuses on the study of the relationship between the upper crust structure of the Longmen Shan area and the Wenchuan earthquake.The Longmen Shan thrust belt marks not only the topographical change,but also the lateral velocity variation between the eastern Tibetan Plateau and the Sichuan Basin.A low-velocity layer has consistently been found in the crust beneath the eastern edge of the Tibetan Plateau,and ends beneath the western Sichuan Basin.The low-velocity layer at a depth of-20 km beneath the eastern edge of the Tibetan Plateau has been considered as the deep condition for favoring energy accumulation that formed the great Wenchuan earthquake. 展开更多
关键词 the longmen Shan deep seismic sounding profile upper crust structure Wenchuan Earthquake
在线阅读 下载PDF
The Coupling Relationship between the Uplift of Longmen Shan and the Subsidence of Foreland Basin,Sichuan,China 被引量:4
7
作者 LI Yong YAN Liang +5 位作者 SHAO Chongjian WANG Zhengjiang YAN Zhaokun YU Qian ZHOU Rongjun LI Haibin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第2期379-395,共17页
Depending on the analysis of the coeval sedimentary geometry and subsidence mechanism in the Longmen Shan foreland basin, three models about the coupling relationship between Longmen Shan uplift and foreland basin sub... Depending on the analysis of the coeval sedimentary geometry and subsidence mechanism in the Longmen Shan foreland basin, three models about the coupling relationship between Longmen Shan uplift and foreland basin subsidence since the Indosinian have been proposed:(1) crustal shortening and its related wide wedge-shaped foreland basin,(2) crustal isostatic rebound and its related tabular foreland basin, and(3) lower crustal flow and its related narrow wedge-shaped foreland basin. Based on the narrow wedge-shaped foreland basin developed since 4 Ma, it is believed that the narrow crustal shortening and tectonic load driven by lower crustal flow is a primary driver for the present Longmen Shan uplift and the Wenchuan(Ms 8.0) earthquake. 展开更多
关键词 coupling relationship foreland basin subsidence longmen Shan uplift eastern margin of Tibetan Plateau SICHUAN China Proto-Tethys
在线阅读 下载PDF
Interpreting the Coseismic Uplift and Subsidence of the Longmen Shan Foreland Basin System during the Wenchuan Earthquake by a Elastic Flexural Model 被引量:4
8
作者 YAN Zhaokun LI Yong +4 位作者 SHAO Chongjian ZHOU Rongjun YAN Liang ZHAO Guohua YAN Binglei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第2期555-566,共12页
The coseismic surface uplift of the Longmen Shan(LMS) created an instantaneous topographic load over the western margin of the Sichuan Basin, where surface subsidence, decreasing eastward, has been measured using se... The coseismic surface uplift of the Longmen Shan(LMS) created an instantaneous topographic load over the western margin of the Sichuan Basin, where surface subsidence, decreasing eastward, has been measured using several methods, such as GPS, SAR and levelling. Using an elastic flexural model, we aim to interpret the coseismic surface uplift and subsidence, and constrain the effective lithospheric elastic thickness(Te) of the Sichuan Basin. Using different effective elastic thickness values for the Sichuan Basin, a series of subsidence curves were computed by the elastic flexure model equation for a broken elastic plate. The curves, produced by models using an effective elastic thickness of 30–40 km, provided the best fit to the general pattern of observed coseismic subsidence of the Sichuan Basin. However, the calculated subsidence(-40–70 cm) at the front of the LMS is evidently lower than the observed values(-100 cm), suggesting that the effective elastic thickness therein should be lower. These results indicate that the lithospheric strength may decrease westward from the Sichuan Basin to the LMS. 展开更多
关键词 flexural model longmen Shan Wenchuan Earthquake coseismic uplift and subsidence foreland basin system
在线阅读 下载PDF
The Deep Geophysical Structure of the Middle Section of the Longmen Mountains Tectonic Belt and its Relation to the Wenchuan Earthquake 被引量:4
9
作者 YU Nian WANG Xuben +3 位作者 HU Xiangyun CAI Xuelin KAN Aike ZHAO Ning 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第2期483-497,共15页
Investigation of the deep geophysical structure of the Longmen Mountains tectonic belt and its relation to the Wenchuan Earthquake is important for the study of earthquakes.By using magnetotelluric sounding profiles o... Investigation of the deep geophysical structure of the Longmen Mountains tectonic belt and its relation to the Wenchuan Earthquake is important for the study of earthquakes.By using magnetotelluric sounding profiles of the Luqu-Zhongjiang and Anxian-Suining; seismic sounding profiles of the Sichuan Maowen-Chongqing Gongtan,the Qinghai Huashi Gorge-Sichuan Jianyang,and the Batang-Zizhong; and magnetogravimetric data of the Longmen Mountains region,the deep geophysical structure of the Songpan-Ganzi block,the western Sichuan foreland basin,and the Longmen Mountains tectonic belt and their relation was discussed.The eastward extrusion of the Qinghai-Tibet Plateau thrusts the Songpan-Ganzi block upon the Yangtze block,which obstructs the eastward movement of the Qinghai-Tibet Plateau.The Maoxian-Wenchuan,Beichuan-Yingxiu,and Anxian-Guanxian faults of the Longmen Mountains fault belt dip to northwest with different dip angles and gradually converge in the deeper parts.Geophysical structure suggests that an intracrustal low-velocity,low-resistivity,and high-conductivity layer is common between the middle and upper crust west of the Longmen Mountains tectonic belt but not in the upper Yangtze block.The Sichuan Basin has a thick low-resistance sedimentary layer on a stable high-resistance basement; moreover,there are secondary paleohighs and depression structures at the lower part of the western Sichuan foreland basin with characteristic of high magnetic anomalies,whereas the Songpan-Ganzi block has a high resisitivity cover of upper crust and continues to a low-resistance layer.Considering the Longmen Mountains tectonic belt as the boundary,there are Bouguer gravity anomalies of "one belt between two zones." Thus,we infer that there is a corresponding relation between the inferred crystalline basement of the Songpan block and the underlying basin basement of the Longmen Mountains fault belt.Furthermore,there may be an extensive ancient Yangtze block,which is west of the Ruoergai block.In addition,the crust-mantle ductile shear zone under the Longmen Mountains tectonic belt is the main fault,whereas the Beichuan-Yingxiu and Anxian-Guanxian faults at the surface are earthquake faults.The Wenchuan Ms 8.0 earthquake might be attributed to the collision of the Yangtze block and the Qinghai-Tibet Plateau.The eastward obduction of the eastern edge of the Qinghai-Tibet Plateau and eastward subduction of its deeper part under the influence of the collision of the Indian,Pacific,and Philippine Plates with the Eurasia Plate might have caused the Longmen Mountains tectonic belt to cut the Moho and extend to the middle and upper crust; thus,creating high stress concentration and rapid energy release zone. 展开更多
关键词 longmen Mountains tectonic belt Wenchuan earthquake magnetotelluric sounding seismic sounding Songpan-Ganzi folded belt Qinghai-Tibet plateau
在线阅读 下载PDF
Crustal Uplift in the Longmen Shan Mountains Revealed by Isostatic Gravity Anomalies along the Eastern Margin of the Tibetan Plateau 被引量:3
10
作者 LI Yong YAN Zhaokun +4 位作者 ZHOU Rongjun YAN Liang DONG Shunli SHAO Chongjian Svirchev LAURENCE 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第1期56-73,共18页
This study examines the relationship between high positive isostatic gravity anomalies (IGA), steep topography and lower crustal extrusion at the eastern margin of the Tibetan Plateau. IGA data has revealed uplift a... This study examines the relationship between high positive isostatic gravity anomalies (IGA), steep topography and lower crustal extrusion at the eastern margin of the Tibetan Plateau. IGA data has revealed uplift and extrusion of lower crustal flow in the Longmen Shan Mountains (the LMS). Firstly, The high positive IGA zone corresponds to the LMS orogenic belt. It is shown that abrupt changes in IGA correspond to zones of abrupt change of topography, crustal thickness and rock density along the LMS. Secondly, on the basis of the Airy isostasy theory, simulations and inversions of the positive IGA were conducted using three-dimensional bodies. The results indicated that the LMS lacks a mountain root, and that the top surface of the lower crust has been elevated by 11 km, leading to positive IGA, tectonic load and density load. Thirdly, according to Watts's flexural isostasy model, elastic deflection occurs, suggesting that the limited (i.e. narrow) tectonic and density load driven by lower crustal flow in the LMS have led to asymmetric flexural subsidence in the foreland basin and lifting of the forebulge. Finally, based on the correspondence between zones of extremely high positive IGA and the presence of the Precambrian Pengguan-Baoxing complexes in the LMS, the first appearance of erosion gravels from the complexes in the Dayi Conglomerate layer of the Chengdu Basin suggest that positive IGA and lower crustal flow in the LMS took place at 3.6 Ma or slightly earlier. 展开更多
关键词 isostatic gravity anomalies crustal uplift longmen Shan Mountains lower crustal flow foreland basin the eastern margin of the Tibetan Plateau
在线阅读 下载PDF
Application of the Material Balance Method in Paleoelevation Recovery: A Case Study of the Longmen Mountains Foreland Basin on the Eastern Margin of the Tibetan Plateau 被引量:4
11
作者 YAN Zhaokun LI Yong +6 位作者 LI Haibing DONG Shunli ZHAO Guohua LI Jingbo LI Fensheng YAN Liang ZHENG Lilong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第2期598-609,共12页
We applied the material balance principle of the denudation volume and sedimentary flux to study the denudation-accumulation system between the Longmen Mountains (Mts.) and the foreland basin. The amount of sediment... We applied the material balance principle of the denudation volume and sedimentary flux to study the denudation-accumulation system between the Longmen Mountains (Mts.) and the foreland basin. The amount of sediment in each sedimentation stage of the basin was estimated to obtain the denudation volume, erosion thickness and deposit thickness since the Late Triassic Epoch, to enable us to recover the paleoelevation of the provenance and the sedimentary area. The results show the following: (1) Since the Late Triassic Epoch, the elevation of the surface of the Longmen Mts. has uplifted from 0 m to 2751 m, and the crust of the Longmen Mts. has uplifted by 9.8 km. Approximately 72% of the materials introduced have been denuded from the mountains. (2) It is difficult to recover the paleoelevation of each stage of the Longmen Mts. foreland basin quantitatively by the present-day techniques and data. (3) The formation of the Longmen Mts. foreland basin consisted of three stages of thrust belt tectonic load and three stages of thrust belt erosional unload. During tectonic loading stages (Late Triassic Epoch, Late Jurassic-Early Cretaceous, Late Cretaceous-Miocene), the average elevation of Longmen Mts. was lower (approximately 700-1700 m). During erosional unloading stages (Early and Middle Jurassic, Middle Cretaceous and Jiaguan, Late Cenozoic), the average elevation of Longmen Mts. was high at approximately 2000-2800m. 展开更多
关键词 longmen Mountains foreland basin material balance method paleoelevation recovery the eastern margin of the Tibetan Plateau
在线阅读 下载PDF
Rock Damage Structure of the South Longmen-Shan Fault in the 2008 M8 Wenchuan Earthquake Viewed with Fault-Zone Trapped Waves and Scientific Drilling 被引量:9
12
作者 LI Yonggang XU Zhiqin LI Haibing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第2期444-467,共24页
This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.I... This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.Immediately after the mainshock,two Wenchuan Fault Scientific Drilling (WFSD) boreholes were drilled at WFSD-1 and WFSD-2 sites approximately 400 m and 1 km west of the surface rupture along the Yinxiu-Beichuan fault (YBF),the middle fault strand of the south LSF zone.Two boreholes met the principal slip of Wenchuan earthquake along the YBF at depths of 589-m and 1230-m,respectively.The slip is accompanied with a 100-200-m-wide zone consisting of fault gouge,breccia,cataclasite and fractures.Close to WFSD-1 site,the nearly-vertical slip of ~4.3-m with a 190-m wide zone of highly fractured rocks restricted to the hanging wall of the YBF was found at the ground surface after the Wenchuan earthquake.A dense linear seismic array was deployed across the surface rupture at this venue to record FZTWs generated by aftershocks.Observations and 3-D finite-difference simulations of FZTWs recorded at this cross-fault array and network stations close to the YBF show a distinct low-velocity zone composed by severely damaged rocks along the south LSF at seismogenic depths.The zone is several hundred meters wide along the principal slip,within which seismic velocities are reduced by ~30-55% from wall-rock velocities and with the maximum velocity reduction in the ~200-m-wide rupture core zone at shallow depth.The FZTW-inferred geometry and physical properties of the south LSF rupture zone at shallow depth are in general consistent with the results from petrological and structural analyses of cores and well log at WFSD boreholes.We interpret this remarkable low-velocity zone as being a break-down zone during dynamic rupture in the 2008 M8 earthquake.We examined the FZTWS generated by similar earthquakes before and after the 2008 mainshock and observed that seismic velocities within fault core zone was reduced by ~10% due to severe damage of fault rocks during the M8 mainshock.Scientific drilling and locations of aftershocks generating prominent FZTWs also indicate rupture bifurcation along the YBF and the Anxian-Guangxian fault (AGF),two strands of the south LSF at shallow depth.A combination of seismic,petrologic and geologic study at the south LSF leads to further understand the relationship between the fault-zone structure and rupture dynamics,and the amplification of ground shaking strength along the low-velocity fault zone due to its waveguide effect. 展开更多
关键词 Rupture zone rock damage structure scientific drilling fault-zone trapped waves Wenchuan Earthquake longmen-Shan Fault
在线阅读 下载PDF
Structural Styles of Longmen Mountain Thrust Belt,SW China 被引量:1
13
作者 金文正 汤良杰 +3 位作者 杨克明 万桂梅 吕志洲 余一欣 《Journal of Earth Science》 SCIE CAS CSCD 2010年第1期19-31,共13页
Through field geological investigation and seismic interpretation of the Longmen (龙门) Mountain thrust belt, we summarized the following structural styles: thrust belt, fault-related fold (fault bend fold, fault ... Through field geological investigation and seismic interpretation of the Longmen (龙门) Mountain thrust belt, we summarized the following structural styles: thrust belt, fault-related fold (fault bend fold, fault propagation fold, and fault decollement fold), pop-up, triangle zone, duplex, superimposed fold, ductile deformation structures, reverse thrust fault, klippe, decollement structure,etc.. These structural styles have evident distribution characteristics; they had zonation and segmentation in plane. The zonation presents as the thrust nappe tectonic zone to the west of Tongjichang (通济场) fault, fault-related folds between Tongjichang fault and Guankou (关口) fault, and low and mild folds to the east of Guankou fault. The segmentation is evidenced as the scale of reverse thrust faults was minor between Tongjichang No. 1 fault and Tongjichang No. 2 fault. The distance between these two faults became long in the Daynanbao (大园包) structure, and there developed typical fault propagation fold and pop-up between these two faults. Furthermore, the structures had stratifi-cation in profile. The salt layer of T21 provided good conditions for the formation and development of large listric thrust faults; the thrust fault slipped in the salt layer and formed decollement structures and fault-related fold. At the same time, there formed duplex and reverse thrust faults between the two decollement layers. 展开更多
关键词 longmen Mountain thrust belt structural style DUPLEX ZONATION SEGMENTATION stratification.
原文传递
Episodic Orogeny Deduced from Coeval Sedimentary Sequences in the Foreland Basin and Its Implication for Uplift Process of Longmen Mountain,China 被引量:3
14
作者 LI Yong SU De-chen +4 位作者 ZHOU Rong-jun LI Hai-bing Alexander L.DENSMORE YAN Liang YAN Zhao-kun 《Journal of Mountain Science》 SCIE CSCD 2013年第1期29-42,共14页
Longmen Mountain located at the boundary between the Sichuan Basin and Tibetan Plateau,representing the steepest gradient of any edges of the plateau.Three endmember models of uplift process and mechanism have been pr... Longmen Mountain located at the boundary between the Sichuan Basin and Tibetan Plateau,representing the steepest gradient of any edges of the plateau.Three endmember models of uplift process and mechanism have been proposed,including crustal thickening,crustal flow,and crustal isostatic rebound.Here we use coeval sedimentary sequences in the foreland basin to restraint uplift process and mechanism in the Longmen Mountain.The more than 10,000 m thick Late TriassicQuaternary strata filled in this foreland basin and can be divided into six megasequences that are distinguished as two distinct types.The first type is the wedge-shaped megasequences which are sedimentary response of strong active thrust loading events,characterized by a high rate of subsidence and sediment accumulation,coarsening-upward succession and a dual-sourced sediment supply.This type includes Late Triassic,Late Jurassic to Early Cretaceous and Late Cretaceous to Paleogene megasequences.The second type is the tabular megasequences,characterized by the low rate of subsidence and sediment accumulation,finingupward succession,and a single-sourced sediment supply,which is sedimentary response of isostatic rebound and erosion unloading.This type includes the Early to Middle Jurassic,Middle Cretaceous and Neogene to Quaternary megasequences.Basing on sedimentary,active tectonic,geomorphic evidence,we infer that the direction has been reversed from SSWdirected sinistral strike-slip to NNE-directed dextral strike-slip during 40-3.6 Ma,and since 3.6 Ma,the Longmen Mountain thrust belt belong to times of isostatic rebound and erosional unloading with NNEdirected dextral strike-slip.This suggests that crustal isostatic rebound is a primary driver for uplift and topography of the present Longmen Mountain.The Wenchuan(Ms8.0) earthquake,which ruptured a large thrust fault with NNE-directed dextral strikeslip along the range front,is an active manifestation of this crustal isostatic rebound process with dextral strike-slipping and shortening.This process may be the cause for the Wenchuan Earthquake and the apparent paradox of high relief,little shortening,the relative dearth of historical seismicity in the region. 展开更多
关键词 Wedge-shaped megasequence Tabular megasequence Orogenic loading Erosional unloading Uplift process longmen Mountain Foreland basin
原文传递
DEFORMATIONAL AND METAMORPHIC HISTORY OF THE CENTRAL LONGMEN MOUNTAINS, SICHUAN CHINA
15
作者 Chris J.L. Wilson 1, Brenton A. Worley 1, Shefa Chen 1, Mathew J. Harrowfield 1,Liu Shugen 2,Luo Zhili 2 2 Chengdu University of Technology, Chengdu 6 《地学前缘》 EI CAS CSCD 2000年第S1期273-274,共2页
The Longmen Mountains and adjacent regions on the eastern margin of the Tibetan plateau can be divided into three tectonic units: the eastern Songpan—Garzê fold belt, the Longmen Mountains (Longmen Shan) Thrust... The Longmen Mountains and adjacent regions on the eastern margin of the Tibetan plateau can be divided into three tectonic units: the eastern Songpan—Garzê fold belt, the Longmen Mountains (Longmen Shan) Thrust—Nappe belt and the Western Sichuan foreland basin that occupies the western part of the Sichuan basin. The Longmen Shan Thrust—Nappe belt is subdivided by six northwest\|dipping major listric thrusts, with accompanying duplexes and imbricate fans, into five large\|scale nappes (Chen & Wilson, 1996). In the inner Longmen Shan, the nappe units have incorporated both Mesoproterozoic basement and Sinian (Neoproterozoic) to Triassic cover sequences as “thick\|skinned" horses. Whereas, in the frontal Longmen Shan, Sinian to Cretaceous cover sediments have been stripped from the basement as “thin\|skinned" fold and thrust sheets, including extensively distributed klippen structures. Pre\|thrusting extension during Devonian to middle Late Triassic times resulted in syndepositional normal faults. Structural inversion of these faults initiated the “Peng Xian—Guan Xian basement complex", Jiuding Shan and Tangwangzhai nappes, during an early episode of the Indosinian Orogeny (Norian to Rhaetian). This was followed by episodic thrusting during latest Triassic to Early Cretaceous times to develop the Guan Xian—An Xian and Southeastern Marginal nappes that have incorporated sediments from the neighbouring foreland basin into the frontal part of the Thrust—Nappe belt. Differential thrusting occurred across the Thrust—Nappe belt during a Late Miocene reactivation of the pre\|existing faults. 展开更多
关键词 longmen MOUNTAINS Songpan—Garzê fold BELT Wenchuan—Mouwen SHEAR zone Wenchuan—Mouwen fault METAMORPHIC BELT transpressional SHEAR Himalayan OROGENY Indosinian OROGENY
在线阅读 下载PDF
Fault Characteristics in Longmen Mountain Thrust Belt, Western Sichuan Foreland Basin, China
16
作者 万桂梅 汤良杰 +3 位作者 杨克明 金文正 吕志洲 余一欣 《Journal of China University of Geosciences》 SCIE CSCD 2008年第6期611-624,共14页
Through field geological survey, the authors found that abundant thrust faults developed in the Longmen (龙门) Mountain thrust belt. These faults can be divided into thrust faults and strike-slip faults according to... Through field geological survey, the authors found that abundant thrust faults developed in the Longmen (龙门) Mountain thrust belt. These faults can be divided into thrust faults and strike-slip faults according to their formation mechanisms and characteristics. Furthermore, these faults can be graded into primary fault, secondary fault, third-level fault, and fourth-level fault according to their scale and role in the tectonic evolution of Longmen Mountain thrust belt. Each thrustfault is such as composed of several secondary faults, Qingchuan (青川)-Maowen (茂汶) fault zone is composed of Qiaozhuang (乔庄) fault, Qingxi (青溪) fault, Maowen fault, Ganyanggou (赶羊沟) fault, etc.. The Longmen Mountain thrust belt experienced early Indosinian movement, Anxian (安县) movement, Yanshan (燕山) movement, and Himalayan movement, and the faults formed gradually from north to south. 展开更多
关键词 longmen Mountain thrust belt characteristics of fault fault grade evolution of fault
原文传递
Characteristics of Nappes and Segmentation of the Longmen Mountains Thrust Belt, Western Sichuan Basin, China
17
作者 Wenzheng Jin Junpeng Wang +1 位作者 Zehong Cui Zhixu Ye 《Open Journal of Geology》 2018年第3期247-262,共16页
In order to reveal the nature of the segmentation of Longmen Mountains Thrust Belt caused by the three nappes (Jiaoziding, Jiudingshan, and Baoxing Nappe), several methods are applied in this paper, including field in... In order to reveal the nature of the segmentation of Longmen Mountains Thrust Belt caused by the three nappes (Jiaoziding, Jiudingshan, and Baoxing Nappe), several methods are applied in this paper, including field investigation, seismic explanation and balanced crossed section, etc. Results of research reveal that nappes in Longmen Mountains vary in geometry, kinematics, and dynamics. Jiaoziding Nappe has generally behaved in a ductile manner, whereas Jiudingshan Nappe has been rigid, and the rheology of Baoxing Nappe has been intermediate between that of the other two nappes. The development of nappes has resulted in tectonic segmentation of Longmen Mountains: the main structural style of the northern segment is thrust faulting, with Jiaoziding Nappe representing a giant syncline. Given its ductility, it absorbed lots of stress, with the least amount of tectonic shortening in the SE part of the nappe. In the middle segment, the deformation is controlled by the rigid Jiudingshan Nappe, whose frontal area records lots of tectonic shortening. Deformation in the southern segment is intermediate in character between that of the other two segments, characterized by horizontal zonation, as demonstrated by fault development, and vertical stratification, which indicates that fault development was controlled by lithology. 展开更多
关键词 NAPPE TECTONIC Evolution Segmentation DECOLLEMENT Layer longmen MOUNTAINS THRUST BELT
暂未订购
Structural and(U-Th)/He thermochronological constraints on the Longmen Shan thrusting-gliding klippes,eastern margin of Tibetan Plateau 被引量:1
18
作者 Xiaohan LIN Danping YAN +4 位作者 Liang QIU Zhicheng ZHOU Huajie SONG Fei KONG Chao DU 《Science China Earth Sciences》 2025年第4期1142-1157,共16页
The NE-striking Longmen Shan thrust belt(LSTB)in the eastern margin of the Tibetan Plateau is located at the junction of the Songpan-Ganze Terrane and the Yangtze block.This belt experienced the Late Triassic Qinling-... The NE-striking Longmen Shan thrust belt(LSTB)in the eastern margin of the Tibetan Plateau is located at the junction of the Songpan-Ganze Terrane and the Yangtze block.This belt experienced the Late Triassic Qinling-Dabie and Songpan-Ganze orogenesis and the Cenozoic eastern propagation of the Tibetan Plateau.A series of klippes were produced along the foreland thrust belt of the LSTB.Traditional research proposed that the klippes are the front zone of the modern NE-trending Longmen Shan foreland thrust belt,while recent studies suggested that the klippes might be the result of Mesozoic thrusting of the LSTB.Nonetheless,there still remains a lack of crucial constraints regarding the emplacement time and formation mechanism of the klippes.In this study,we conducted systematic structural measurements on the Tangbazi klippe and Woniuping klippe,and performed petrographic analysis for the brecciated limestone.The results confirm a typical structural breccia with top-to-the-SSE kinematics of thrusting at the bottom of the klippes.Structural kinematics reveals the ultimate emplacement of the klippes was under NNE to SSW gliding,and the tail-like brecciated limestone in the southeast edge of the Tangbazi klippe was produced by the Pliocene gravitational collapse.Systematical samples were collected from both the hanging wall and footwall of the klippes and apatite and zircon were separated for(U-Th)/He dating.The(U-Th)/He ages of apatite from the Woniuping klippe are dated at 66.8–72.3 Ma,corresponding to the rapid uplift of the LSTB during the Late Cretaceous;the(UTh)/He ages of apatite from the footwall of the klippe are dated at 33.2–25.2 Ma,corresponding to the rapid uplift and denudation of the LSTB during the Oligocene.Integrated structural analysis and geochronological constraints,the northern segment of the LSTB,including the Tangwangzhai and Longwangmiao thrust complexes,might be produced by in-sequence thrusting during the Late Triassic to Early Jurassic.The northern segment of the LSTB and the northern Sichuan region experienced rapid uplift during the Late Cretaceous.During the Late Eocene to Early Miocene,gravity-driving klippes gliding from the Tangwangzhai and Longwangmiao thrust complexes toward the Sichuan basin occurred along the Silurian mudstone or phyllite and formed gravitational collapse. 展开更多
关键词 longmen Shan thrust belt KLIPPE Brecciated limestone (U-Th)/He GLIDING
原文传递
The Power of History
19
作者 《China Today》 2025年第7期16-19,共4页
President Xi Jinping calls for preserving and promoting cultural relics and museums to carry forward Chinese civilization.ON May 19,one day after the International Museum Day,Chinese President Xi Jinping visited the L... President Xi Jinping calls for preserving and promoting cultural relics and museums to carry forward Chinese civilization.ON May 19,one day after the International Museum Day,Chinese President Xi Jinping visited the Longmen Grottoes in Luoyang,central China’s Henan Province.With 2,345 caves and alcoves,nearly 110,000 Buddhist statues,over 2,800 inscriptions,and nearly 80 pagodas,the Longmen Grottoes was recognized by UNESCO as the pinnacle of Chinese stone carving art. 展开更多
关键词 stone carving longmen grottoes longmen Grottoes MUSEUMS caves alcovesnearly HISTORY preserving promoting cultural relics Chinese civilization
在线阅读 下载PDF
河龙区间典型流域径流年内分配对水土保持生态建设的响应 被引量:2
20
作者 陈玮 孙彭成 +2 位作者 肖培青 李琼芳 焦鹏 《水土保持研究》 北大核心 2025年第1期141-147,159,共8页
[目的]揭示河龙区间不同地貌区下典型流域的多年径流变化特征,明晰水土保持生态建设对其径流年内分配均匀程度的影响。[方法]选取河龙区间风沙区、土石山区和黄土丘陵沟壑区的秃尾河、三川河及延河流域,在收集各流域1960-2019年径流观... [目的]揭示河龙区间不同地貌区下典型流域的多年径流变化特征,明晰水土保持生态建设对其径流年内分配均匀程度的影响。[方法]选取河龙区间风沙区、土石山区和黄土丘陵沟壑区的秃尾河、三川河及延河流域,在收集各流域1960-2019年径流观测和水土保持措施数据的基础上,构建基尼系数指标,量化径流年内分配均匀度,分析了流域径流年内分配的演变趋势与空间差异,探究了河龙区间流域径流年内分配对不同类型水土保持措施的响应特征。[结果](1)1960-2019年,3个典型流域径流量极显著减少,秃尾河、三川河和延河的年径流量减少幅度分别为-0.05亿m^(3)/a,-0.03亿m^(3)/a,-0.02亿m^(3)/a;(2)3个典型流域径流年内分配特征显著差异,风沙区的秃尾河流域径流年内分配最为均匀,土石山区次之,黄土丘陵沟壑区的延河流域年内分配最不均匀,各流域的径流基尼系数分别为0.2,0.35,0.6;(3)不同地貌区径流基尼系数均呈下降趋势,径流年内分配趋向均匀;(4)水土保持林草植被、梯田和淤地坝建设与径流基尼系数具有显著负相关关系。[结论]水土保持生态建设具有调节径流年内分配,促进河川径流年内分配更加均匀的作用。 展开更多
关键词 水土保持与荒漠化治理 径流年内分配 基尼系数 河龙区间
在线阅读 下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部