期刊文献+
共找到58篇文章
< 1 2 3 >
每页显示 20 50 100
ASYMPTOTIC PROPERTIES OF ESTIMATORS IN PARTIALLY LINEAR SINGLE-INDEX MODEL FOR LONGITUDINAL DATA 被引量:3
1
作者 田萍 杨林 薛留根 《Acta Mathematica Scientia》 SCIE CSCD 2010年第3期677-687,共11页
In this article, a partially linear single-index model /or longitudinal data is investigated. The generalized penalized spline least squares estimates of the unknown parameters are suggested. All parameters can be est... In this article, a partially linear single-index model /or longitudinal data is investigated. The generalized penalized spline least squares estimates of the unknown parameters are suggested. All parameters can be estimated simultaneously by the proposed method while the feature of longitudinal data is considered. The existence, strong consistency and asymptotic normality of the estimators are proved under suitable conditions. A simulation study is conducted to investigate the finite sample performance of the proposed method. Our approach can also be used to study the pure single-index model for longitudinal data. 展开更多
关键词 longitudinal data partially linear single-index model penalized spline strong consistency asymptotic normality
在线阅读 下载PDF
Empirical Likelihood Based Longitudinal Data Analysis 被引量:1
2
作者 Tharshanna Nadarajah Asokan Mulayath Variyath J Concepción Loredo-Osti 《Open Journal of Statistics》 2020年第4期611-639,共29页
In longitudinal data analysis, our primary interest is in the estimation of regression parameters for the marginal expectations of the longitudinal responses, and the longitudinal correlation parameters are of seconda... In longitudinal data analysis, our primary interest is in the estimation of regression parameters for the marginal expectations of the longitudinal responses, and the longitudinal correlation parameters are of secondary interest. The joint likelihood function for longitudinal data is challenging, particularly due to correlated responses. Marginal models, such as generalized estimating equations (GEEs), have received much attention based on the assumption of the first two moments of the data and a working correlation structure. The confidence regions and hypothesis tests are constructed based on the asymptotic normality. This approach is sensitive to the misspecification of the variance function and the working correlation structure which may yield inefficient and inconsistent estimates leading to wrong conclusions. To overcome this problem, we propose an empirical likelihood (EL) procedure based on a set of estimating equations for the parameter of interest and discuss its <span style="font-family:Verdana;">characteristics and asymptotic properties. We also provide an algorithm base</span><span style="font-family:Verdana;">d on EL principles for the estimation of the regression parameters and the construction of its confidence region. We have applied the proposed method in two case examples.</span> 展开更多
关键词 longitudinal data Generalized Estimating Equations Empirical Likelihood Adjusted Empirical Likelihood Extended Empirical Likelihood
在线阅读 下载PDF
Transition Logic Regression Method to Identify Interactions in Binary Longitudinal Data 被引量:1
3
作者 Parvin Sarbakhsh Yadollah Mehrabi +2 位作者 Jeanine J. Houwing-Duistermaat Farid Zayeri Maryam Sadat Daneshpour 《Open Journal of Statistics》 2016年第3期469-481,共13页
Logic regression is an adaptive regression method which searches for Boolean (logic) combinations of binary variables that best explain the variability in the outcome, and thus, it reveals interaction effects which ar... Logic regression is an adaptive regression method which searches for Boolean (logic) combinations of binary variables that best explain the variability in the outcome, and thus, it reveals interaction effects which are associated with the response. In this study, we extended logic regression to longitudinal data with binary response and proposed “Transition Logic Regression Method” to find interactions related to response. In this method, interaction effects over time were found by Annealing Algorithm with AIC (Akaike Information Criterion) as the score function of the model. Also, first and second orders Markov dependence were allowed to capture the correlation among successive observations of the same individual in longitudinal binary response. Performance of the method was evaluated with simulation study in various conditions. Proposed method was used to find interactions of SNPs and other risk factors related to low HDL over time in data of 329 participants of longitudinal TLGS study. 展开更多
关键词 Logic Regression longitudinal data Transition Model Interaction TLGS Study Low HDL SNP
在线阅读 下载PDF
ROBUST ESTIMATION IN PARTIAL LINEAR MIXED MODEL FOR LONGITUDINAL DATA
4
作者 秦国友 朱仲义 《Acta Mathematica Scientia》 SCIE CSCD 2008年第2期333-347,共15页
In this article, robust generalized estimating equation for the analysis of partial linear mixed model for longitudinal data is used. The authors approximate the nonparametric function by a regression spline. Under so... In this article, robust generalized estimating equation for the analysis of partial linear mixed model for longitudinal data is used. The authors approximate the nonparametric function by a regression spline. Under some regular conditions, the asymptotic properties of the estimators are obtained. To avoid the computation of high-dimensional integral, a robust Monte Carlo Newton-Raphson algorithm is used. Some simulations are carried out to study the performance of the proposed robust estimators. In addition, the authors also study the robustness and the efficiency of the proposed estimators by simulation. Finally, two real longitudinal data sets are analyzed. 展开更多
关键词 Generalized estimating equation longitudinal data metropolis algorithm mixed effect partial linear model ROBUSTNESS
在线阅读 下载PDF
Analysis of Multivariate Longitudinal Data with Ordered and Continuous Variables
5
作者 WANG Qian 《外文科技期刊数据库(文摘版)自然科学》 2021年第7期051-054,共6页
In the research of scientific field, it is often necessary to continuously observe different indicators of individuals at different times and analyze the observed results. Among them, variables are mainly of two types... In the research of scientific field, it is often necessary to continuously observe different indicators of individuals at different times and analyze the observed results. Among them, variables are mainly of two types: ordered variables and continuous variables. When analyzing data for different types of variables, it is necessary to consider the correlation between multiple indicators of an individual, and often perform joint analysis on variable observation data of multiple indicators of an individual at different times, in order to achieve more accurate and true analysis results. Joint analysis often yields more information than separate analysis of various variables. In this paper, the ordered variable and the continuous variable are numerically modeled. Based on the potential variable model, the multivariate longitudinal data containing the ordered variable and the continuous variable are jointly analyzed, and the approximate value of the edge likelihood can be obtained by using the method of numerical integration. 展开更多
关键词 ordered variable continuous variable analysis of multivariate longitudinal data numerical integra
原文传递
Interquantile shrinkage and variable selection for longitudinal data in regression models
6
作者 Chuang Wan Wei Zhong +1 位作者 Chenjing Li Xinyuan Song 《Science China Mathematics》 2025年第7期1701-1726,共26页
We develop an interquantile shrinkage estimation method to examine the underlying commonality structure of regression coefficients across various quantile levels for longitudinal data in a data-driven manner.This meth... We develop an interquantile shrinkage estimation method to examine the underlying commonality structure of regression coefficients across various quantile levels for longitudinal data in a data-driven manner.This method provides a deeper insight into the relationship between the response and covariates,leading to enhanced estimation efficiency and model interpretability.We propose a fused penalized generalized estimation equation(GEE)estimator with a non-crossing constraint,which automatically promotes constancy in estimates across neighboring quantiles.By accounting for within-subject correlation in longitudinal data,the GEE estimator improves estimation efficiency.We employ a nested alternating direction method of multiplier(ADMM)algorithm to minimize the regularized objective function.The asymptotic properties of the penalized estimators are established.Furthermore,in the presence of irrelevant predictors,we develop a doubly penalized GEE estimator to simultaneously select active variables and identify commonality across quantiles.Numerical studies demonstrate the superior performance of our proposed methods in terms of estimation efficiency.We illustrate the application of our methodologies by analyzing a longitudinal wage dataset. 展开更多
关键词 fused penalty GEE interquantile shrinkage longitudinal data SPARSITY
原文传递
Inference for High-Dimensional Streamed Longitudinal Data
7
作者 Senyuan Zheng Ling Zhou 《Acta Mathematica Sinica,English Series》 2025年第2期757-779,共23页
With the advent of modern devices,such as smartphones and wearable devices,high-dimensional data are collected on many participants for a period of time or even in perpetuity.For this type of data,dependencies between... With the advent of modern devices,such as smartphones and wearable devices,high-dimensional data are collected on many participants for a period of time or even in perpetuity.For this type of data,dependencies between and within data batches exist because data are collected from the same individual over time.Under the framework of streamed data,individual historical data are not available due to the storage and computation burden.It is urgent to develop computationally efficient methods with statistical guarantees to analyze high-dimensional streamed data and make reliable inferences in practice.In addition,the homogeneity assumption on the model parameters may not be valid in practice over time.To address the above issues,in this paper,we develop a new renewable debiased-lasso inference method for high-dimensional streamed data allowing dependences between and within data batches to exist and model parameters to gradually change.We establish the large sample properties of the proposed estimators,including consistency and asymptotic normality.The numerical results,including simulations and real data analysis,show the superior performance of the proposed method. 展开更多
关键词 Debiased lasso high-dimensional inference streamed longitudinal data renewable inference
原文传递
Partial Linear Model Averaging Prediction for Longitudinal Data
8
作者 LI Na FEI Yu ZHANG Xinyu 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2024年第2期863-885,共23页
Prediction plays an important role in data analysis.Model averaging method generally provides better prediction than using any of its components.Even though model averaging has been extensively investigated under inde... Prediction plays an important role in data analysis.Model averaging method generally provides better prediction than using any of its components.Even though model averaging has been extensively investigated under independent errors,few authors have considered model averaging for semiparametric models with correlated errors.In this paper,the authors offer an optimal model averaging method to improve the prediction in partially linear model for longitudinal data.The model averaging weights are obtained by minimizing criterion,which is an unbiased estimator of the expected in-sample squared error loss plus a constant.Asymptotic properties,including asymptotic optimality and consistency of averaging weights,are established under two scenarios:(i)All candidate models are misspecified;(ii)Correct models are available in the candidate set.Simulation studies and an empirical example show that the promise of the proposed procedure over other competitive methods. 展开更多
关键词 Asymptotic optimality longitudinal data model averaging estimator partially linear model PREDICTION
原文传递
Sib-pair genetic longitudinal studies with missing not at random data
9
作者 Siyu Jiang Hong Zhang 《中国科学技术大学学报》 CSCD 北大核心 2024年第12期16-21,I0003,I0008,共8页
In the interdisciplinary realm of statistics,genetics,and epidemiology,longitudinal sibling pair data offers a unique perspective for investigating complex diseases and traits,allowing the exploration of the dynamic p... In the interdisciplinary realm of statistics,genetics,and epidemiology,longitudinal sibling pair data offers a unique perspective for investigating complex diseases and traits,allowing the exploration of the dynamic processes of gene expression over time by controlling numerous confounding factors.Missing-not-at-random(MNAR)data are commonly used in such types of studies,but no statistical methods specifically tailored have been developed to handle MNAR data in complex longitudinal data in the literature.Here,we propose a new statistical method by jointly modeling longitudinal data from sib-pairs and MNAR data.Extensive simulations demonstrate the excellent finite sample properties of the proposed method. 展开更多
关键词 complex diseases gene-time interaction longitudinal data missing-not-at-random data
在线阅读 下载PDF
Triadic concept analysis for insights extraction from longitudinal studies in health
10
作者 Joao Pedro Santos Atilio Ferreira Silva +2 位作者 Henrique Fernandes Viana Mendes Mark Alan Junho Song Luis Enrique Zarate 《Data Science and Management》 2025年第2期160-173,共14页
In the health field,longitudinal studies involve the recording of clinical observations of the same sample of pa-tients over successive periods,referred to as waves.This type of database serves as a valuable source of... In the health field,longitudinal studies involve the recording of clinical observations of the same sample of pa-tients over successive periods,referred to as waves.This type of database serves as a valuable source of infor-mation and insights,particularly when examining the temporal aspect,allowing the extraction of relevant and non-obvious knowledge.The triadic concept analysis theory has been proposed to describe the ternary re-lationships between objects,attributes,and conditions.In this study,we present a methodology for exploring longitudinal health databases using both the triadic theory and triadic rules,which are similar to association rules but incorporate temporal relations.Through four case studies,we demonstrate the potential of applying triadic analysis to longitudinal databases to identify risk patterns,enhance decision-making processes,and deepen our understanding of temporal dynamics.These findings suggest a promising approach for describing longitudinal databases and obtaining insights to improve clinical decision-support systems for disease treatment. 展开更多
关键词 data mining longitudinal data mining Triadic rules Medical informatics Clinical data processing Triadic concept analysis
暂未订购
Empirical likelihood-based inference in a partially linear model for longitudinal data 被引量:12
11
作者 XUE LiuGen~(1+) & ZHU LiXing~2 1 College of Applied Sciences, Beijing University of Technology, Beijing 100022, China 2 Department of Mathematics, Hong Kong Baptist University, Hong Kong, China 《Science China Mathematics》 SCIE 2008年第1期115-130,共16页
A partially linear model with longitudinal data is considered, empirical likelihood to infer- ence for the regression coefficients and the baseline function is investigated, the empirical log-likelihood ratios is prov... A partially linear model with longitudinal data is considered, empirical likelihood to infer- ence for the regression coefficients and the baseline function is investigated, the empirical log-likelihood ratios is proven to be asymptotically chi-squared, and the corresponding confidence regions for the pa- rameters of interest are then constructed. Also by the empirical likelihood ratio functions, we can obtain the maximum empirical likelihood estimates of the regression coefficients and the baseline function, and prove the asymptotic normality. The numerical results are conducted to compare the performance of the empirical likelihood and the normal approximation-based method, and a real example is analysed. 展开更多
关键词 partially linear model empirical likelihood confidence region longitudinal data 62G05 62G15 62G20
原文传递
Generalized Empirical Likelihood Inference in Semiparametric Regression Model for Longitudinal Data 被引量:12
12
作者 Gao Rong LI Ping TIAN Liu Gen XUE 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第12期2029-2040,共12页
In this paper, we consider the semiparametric regression model for longitudinal data. Due to the correlation within groups, a generalized empirical log-likelihood ratio statistic for the unknown parameters in the mode... In this paper, we consider the semiparametric regression model for longitudinal data. Due to the correlation within groups, a generalized empirical log-likelihood ratio statistic for the unknown parameters in the model is suggested by introducing the working covariance matrix. It is proved that the proposed statistic is asymptotically standard chi-squared under some suitable conditions, and hence it can be used to construct the confidence regions of the parameters. A simulation study is conducted to compare the proposed method with the generalized least squares method in terms of coverage accuracy and average lengths of the confidence intervals. 展开更多
关键词 longitudinal data semiparametric regression model empirical likelihood confidence region
原文传递
Average Estimation of Semiparametric Models for High-Dimensional Longitudinal Data 被引量:5
13
作者 ZHAO Zhihao ZOU Guohua 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2020年第6期2013-2047,共35页
Model average receives much attention in recent years.This paper considers the semiparametric model averaging for high-dimensional longitudinal data.To minimize the prediction error,the authors estimate the model weig... Model average receives much attention in recent years.This paper considers the semiparametric model averaging for high-dimensional longitudinal data.To minimize the prediction error,the authors estimate the model weights using a leave-subject-out cross-validation procedure.Asymptotic optimality of the proposed method is proved in the sense that leave-subject-out cross-validation achieves the lowest possible prediction loss asymptotically.Simulation studies show that the performance of the proposed model average method is much better than that of some commonly used model selection and averaging methods. 展开更多
关键词 Asymptotic optimality high-dimensional longitudinal data leave-subject-out cross-validation model averaging semiparametric models
原文传递
Reducing component estimation for varying coefficient models with longitudinal data 被引量:4
14
作者 TANG QingGuo~(1,2+) WANG JinDe~2 1 Institute of Sciences,People’s Liberation Army University of Science and Technology,Nanjing 210007,China 2 Department of Mathematics,Nanjing University,Nanjing 210093,China 《Science China Mathematics》 SCIE 2008年第2期250-272,共23页
Varying-coefficient models with longitudinal observations are very useful in epidemiology and some other practical fields.In this paper,a reducing component procedure is proposed for es- timating the unknown functions... Varying-coefficient models with longitudinal observations are very useful in epidemiology and some other practical fields.In this paper,a reducing component procedure is proposed for es- timating the unknown functions and their derivatives in very general models,in which the unknown coefficient functions admit different or the same degrees of smoothness and the covariates can be time- dependent.The asymptotic properties of the estimators,such as consistency,rate of convergence and asymptotic distribution,are derived.The asymptotic results show that the asymptotic variance of the reducing component estimators is smaller than that of the existing estimators when the coefficient functions admit different degrees of smoothness.Finite sample properties of our procedures are studied through Monte Carlo simulations. 展开更多
关键词 varying coefficient model longitudinal data nonparametric estimation reducing component estimators asymptotic normality 62G07
原文传递
A moving average Cholesky factor model in joint mean-covariance modeling for longitudinal data 被引量:4
15
作者 LIU XiaoYu ZHANG WeiPing 《Science China Mathematics》 SCIE 2013年第11期2367-2380,共14页
Modeling the mean and covariance simultaneously is a common strategy to efficiently estimate the mean parameters when applying generalized estimating equation techniques to longitudinal data. In this article, using ge... Modeling the mean and covariance simultaneously is a common strategy to efficiently estimate the mean parameters when applying generalized estimating equation techniques to longitudinal data. In this article, using generalized estimation equation techniques, we propose a new kind of regression models for parameterizing covariance structures. Using a novel Cholesky factor, the entries in this decomposition have moving average and log innovation interpretation and are modeled as the regression coefficients in both the mean and the linear functions of covariates. The resulting estimators for eovarianee are shown to be consistent and asymptotically normally distributed. Simulation studies and a real data analysis show that the proposed approach yields highly efficient estimators for the parameters in the mean, and provides parsimonious estimation for the covariance structure. 展开更多
关键词 moving average factor generalized estimating equation longitudinal data modeling of mean andcovariance structures
原文传递
Local asymptotic behavior of regression splines for marginal semiparametric models with longitudinal data 被引量:2
16
作者 QIN GuoYou ZHU ZhongYi 《Science China Mathematics》 SCIE 2009年第9期1982-1994,共13页
In this paper, we study the local asymptotic behavior of the regression spline estimator in the framework of marginal semiparametric model. Similarly to Zhu, Fung and He (2008), we give explicit expression for the asy... In this paper, we study the local asymptotic behavior of the regression spline estimator in the framework of marginal semiparametric model. Similarly to Zhu, Fung and He (2008), we give explicit expression for the asymptotic bias of regression spline estimator for nonparametric function f. Our results also show that the asymptotic bias of the regression spline estimator does not depend on the working covariance matrix, which distinguishes the regression splines from the smoothing splines and the seemingly unrelated kernel. To understand the local bias result of the regression spline estimator, we show that the regression spline estimator can be obtained iteratively by applying the standard weighted least squares regression spline estimator to pseudo-observations. At each iteration, the bias of the estimator is unchanged and only the variance is updated. 展开更多
关键词 asymptotic bias B-SPLINE generalized estimating equation longitudinal data semiparametric models 62F35 62G08
原文传递
Empirical Likelihood Analysis of Longitudinal Data Involving Within-subject Correlation 被引量:2
17
作者 Shuang HU Lu LIN 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2012年第4期731-744,共14页
In this paper we use profile empirical likelihood to construct confidence regions for regression coefficients in partially linear model with longitudinal data. The main contribution is that the within-subject correlat... In this paper we use profile empirical likelihood to construct confidence regions for regression coefficients in partially linear model with longitudinal data. The main contribution is that the within-subject correlation is considered to improve estimation efficiency. We suppose a semi-parametric structure for the covariances of observation errors in each subject and employ both the first order and the second order moment conditions of the observation errors to construct the estimating equations. Although there are nonparametric variable in distribution after estimators, the empirical log-likelihood ratio statistic still tends to a standard Xp2 the nuisance parameters are profiled away. A data simulation is also conducted. 展开更多
关键词 partially linear model longitudinal data within-subject correlation empirical-likelihood
原文传递
Model Detection and Variable Selection for Varying Coefficient Models with Longitudinal Data 被引量:1
18
作者 San Ying FENG Yu Ping HU Liu Gen XUE 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2016年第3期331-350,共20页
In this puper, we consider the problem of variabie selection and model detection in varying coefficient models with longitudinM data. We propose a combined penalization procedure to select the significant variables, d... In this puper, we consider the problem of variabie selection and model detection in varying coefficient models with longitudinM data. We propose a combined penalization procedure to select the significant variables, detect the true structure of the model and estimate the unknown regression coefficients simultaneously. With appropriate selection of the tuning parameters, we show that the proposed procedure is consistent in both variable selection and the separation of varying and constant coefficients, and the penalized estimators have the oracle property. Finite sample performances of the proposed method are illustrated by some simulation studies and the real data analysis. 展开更多
关键词 Combined penalization longitudinal data model detection variable selection oracle property varying coefficient model
原文传递
Empirical Likelihood for Partially Linear Errors-in-variables Models with Longitudinal Data 被引量:1
19
作者 Li YAN Xiao-yan TAN Xia CHEN 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2022年第3期664-683,共20页
Empirical likelihood inference for partially linear errors-in-variables models with longitudinal data is investigated.Under regularity conditions,it is shown that the empirical log-likelihood ratio at the true paramet... Empirical likelihood inference for partially linear errors-in-variables models with longitudinal data is investigated.Under regularity conditions,it is shown that the empirical log-likelihood ratio at the true parameters converges to the standard Chi-squared distribution.Furthermore,we consider some estimates of the unknown parameter and the resulting estimators are shown to be asymptotically normal.Some simulations and a real data analysis are given to illustrate the performance of the proposed method. 展开更多
关键词 empirical likelihood measurement error confidence regions coverage probability longitudinal data
原文传递
Composite Quantile Regression Estimation for Left Censored Response Longitudinal Data 被引量:1
20
作者 Li-qun XIAO Zhan-feng WANG Yao-hua WU 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2018年第4期730-741,共12页
For left censored response longitudinal data, we propose a composite quantile regression estimator(CQR) of regression parameter. Statistical properties such as consistency and asymptotic normality of CQR are studied... For left censored response longitudinal data, we propose a composite quantile regression estimator(CQR) of regression parameter. Statistical properties such as consistency and asymptotic normality of CQR are studied under relaxable assumptions of correlation structure of error terms. The performance of CQR is investigated via simulation studies and a real dataset analysis. 展开更多
关键词 longitudinal data left censored quantile regression randomly weighting
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部