期刊文献+
共找到5,002篇文章
< 1 2 250 >
每页显示 20 50 100
Online multi-target intelligent tracking using a deep long-short term memory network 被引量:3
1
作者 Yongquan ZHANG Zhenyun SHI +1 位作者 Hongbing JI Zhenzhen SU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第9期313-329,共17页
Multi-target tracking is facing the difficulties of modeling uncertain motion and observation noise.Traditional tracking algorithms are limited by specific models and priors that may mismatch a real-world scenario.In ... Multi-target tracking is facing the difficulties of modeling uncertain motion and observation noise.Traditional tracking algorithms are limited by specific models and priors that may mismatch a real-world scenario.In this paper,considering the model-free purpose,we present an online Multi-Target Intelligent Tracking(MTIT)algorithm based on a Deep Long-Short Term Memory(DLSTM)network for complex tracking requirements,named the MTIT-DLSTM algorithm.Firstly,to distinguish trajectories and concatenate the tracking task in a time sequence,we define a target tuple set that is the labeled Random Finite Set(RFS).Then,prediction and update blocks based on the DLSTM network are constructed to predict and estimate the state of targets,respectively.Further,the prediction block can learn the movement trend from the historical state sequence,while the update block can capture the noise characteristic from the historical measurement sequence.Finally,a data association scheme based on Hungarian algorithm and the heuristic track management strategy are employed to assign measurements to targets and adapt births and deaths.Experimental results manifest that,compared with the existing tracking algorithms,our proposed MTIT-DLSTM algorithm can improve effectively the accuracy and robustness in estimating the state of targets appearing at random positions,and be applied to linear and nonlinear multi-target tracking scenarios. 展开更多
关键词 Data association Deep long-short term memory network Historical sequence Multi-target tracking Target tuple set Track management
原文传递
Estimation of unloading relaxation depth of Baihetan Arch Dam foundation using long-short term memory network 被引量:1
2
作者 Ming-jie He Hao Li +3 位作者 Jian-rong Xu Huan-ling Wang Wei-ya Xu Shi-zhuang Chen 《Water Science and Engineering》 EI CAS CSCD 2021年第2期149-158,共10页
The unloading relaxation caused by excavation for construction of high arch dams is an important factor influencing the foundation’s integrity and strength.To evaluate the degree of unloading relaxation,the long-shor... The unloading relaxation caused by excavation for construction of high arch dams is an important factor influencing the foundation’s integrity and strength.To evaluate the degree of unloading relaxation,the long-short term memory(LSTM)network was used to estimate the depth of unloading relaxation zones on the left bank foundation of the Baihetan Arch Dam.Principal component analysis indicates that rock charac-teristics,the structural plane,the protection layer,lithology,and time are the main factors.The LSTM network results demonstrate the unloading relaxation characteristics of the left bank,and the relationships with the factors were also analyzed.The structural plane has the most significant influence on the distribution of unloading relaxation zones.Compared with massive basalt,the columnar jointed basalt experiences a more significant unloading relaxation phenomenon with a clear time effect,with the average unloading relaxation period being 50 d.The protection layer can effectively reduce the unloading relaxation depth by approximately 20%. 展开更多
关键词 Columnar jointed basalt Unloading relaxation long-short term memory(LSTM)network Principal component analysis Stability assessment Baihetan Arch Dam
在线阅读 下载PDF
Conditional Random Field Tracking Model Based on a Visual Long Short Term Memory Network 被引量:3
3
作者 Pei-Xin Liu Zhao-Sheng Zhu +1 位作者 Xiao-Feng Ye Xiao-Feng Li 《Journal of Electronic Science and Technology》 CAS CSCD 2020年第4期308-319,共12页
In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is es... In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation. 展开更多
关键词 Conditional random field(CRF) long short term memory network(LSTM) motion estimation multiple object tracking(MOT)
在线阅读 下载PDF
Long Short-Term Memory Recurrent Neural Network-Based Acoustic Model Using Connectionist Temporal Classification on a Large-Scale Training Corpus 被引量:9
4
作者 Donghyun Lee Minkyu Lim +4 位作者 Hosung Park Yoseb Kang Jeong-Sik Park Gil-Jin Jang Ji-Hwan Kim 《China Communications》 SCIE CSCD 2017年第9期23-31,共9页
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force... A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method. 展开更多
关键词 acoustic model connectionisttemporal classification LARGE-SCALE trainingcorpus LONG SHORT-term memory recurrentneural network
在线阅读 下载PDF
ART-2 neural network based on eternal term memory vector:Architecture and algorithm
5
作者 赵学智 叶邦彦 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第6期843-848,共6页
Aimed at the problem that the traditional ART-2 neural network can not recognize a gradually changing course, an eternal term memory (ETM) vector is introduced into ART-2 to simulate the function of human brain, i.e. ... Aimed at the problem that the traditional ART-2 neural network can not recognize a gradually changing course, an eternal term memory (ETM) vector is introduced into ART-2 to simulate the function of human brain, i.e. the deep remembrance for the initial impression.. The eternal term memory vector is determined only by the initial vector that establishes category neuron node and is used to keep the remembrance for this vector for ever. Two times of vigilance algorithm are put forward, and the posterior input vector must first pass the first vigilance of this eternal term memory vector, only succeeded has it the qualification to begin the second vigilance of long term memory vector. The long term memory vector can be revised only when both of the vigilances are passed. Results of recognition examples show that the improved ART-2 overcomes the defect of traditional ART-2 and can recognize a gradually changing course effectively. 展开更多
关键词 ART-2 neural network eternal term memory vector two times of vigilance gradually changing course pattern recognition
在线阅读 下载PDF
Wind Speed Short-Term Prediction Based on Empirical Wavelet Transform, Recurrent Neural Network and Error Correction 被引量:1
6
作者 朱昶胜 朱丽娜 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第2期297-308,共12页
Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting ... Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting wind speed accurately is difficult.A new hybrid deep learning model based on empirical wavelet transform,recurrent neural network and error correction for short-term wind speed prediction is proposed in this paper.The empirical wavelet transformation is applied to decompose the original wind speed series.The long short term memory network and the Elman neural network are adopted to predict low-frequency and high-frequency wind speed sub-layers respectively to balance the calculation efficiency and prediction accuracy.The error correction strategy based on deep long short term memory network is developed to modify the prediction errors.Four actual wind speed series are utilized to verify the effectiveness of the proposed model.The empirical results indicate that the method proposed in this paper has satisfactory performance in wind speed prediction. 展开更多
关键词 wind speed prediction empirical wavelet transform deep long short term memory network Elman neural network error correction strategy
原文传递
Memory Analysis for Memristors and Memristive Recurrent Neural Networks 被引量:2
7
作者 Gang Bao Yide Zhang Zhigang Zeng 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第1期96-105,共10页
Traditional recurrent neural networks are composed of capacitors, inductors, resistors, and operational amplifiers.Memristive neural networks are constructed by replacing resistors with memristors. This paper focuses ... Traditional recurrent neural networks are composed of capacitors, inductors, resistors, and operational amplifiers.Memristive neural networks are constructed by replacing resistors with memristors. This paper focuses on the memory analysis,i.e. the initial value computation, of memristors. Firstly, we present the memory analysis for a single memristor based on memristors’ mathematical models with linear and nonlinear drift.Secondly, we present the memory analysis for two memristors in series and parallel. Thirdly, we point out the difference between traditional neural networks and those that are memristive. Based on the current and voltage relationship of memristors, we use mathematical analysis and SPICE simulations to demonstrate the validity of our methods. 展开更多
关键词 Dopant drift memory memristive neural networks MEMRISTOR
在线阅读 下载PDF
Deep Learning Network for Energy Storage Scheduling in Power Market Environment Short-Term Load Forecasting Model
8
作者 Yunlei Zhang RuifengCao +3 位作者 Danhuang Dong Sha Peng RuoyunDu Xiaomin Xu 《Energy Engineering》 EI 2022年第5期1829-1841,共13页
In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits... In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting. 展开更多
关键词 Energy storage scheduling short-term load forecasting deep learning network convolutional neural network CNN long and short term memory network LTSM
在线阅读 下载PDF
Short-Term Relay Quality Prediction Algorithm Based on Long and Short-Term Memory 被引量:3
9
作者 XUE Wendong CHAI Yuan +2 位作者 LI Qigan HONG Yongqiang ZHENG Gaofeng 《Instrumentation》 2018年第4期46-54,共9页
The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process par... The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process parameters of relay production lines are studied based on the long-and-short-term memory network. Then, the Keras deep learning framework is utilized to build up a short-term relay quality prediction algorithm for the semi-finished product. A simulation model is used to study prediction algorithm. The simulation results show that the average prediction absolute error of the fraction is less than 5%. This work displays great application potential in the relay production lines. 展开更多
关键词 RELAY Production LINE LONG and SHORT-term memory network Keras DEEP Learning Framework Quality Prediction
原文传递
Short-TermWind Power Prediction Based on Combinatorial Neural Networks
10
作者 Tusongjiang Kari Sun Guoliang +2 位作者 Lei Kesong Ma Xiaojing Wu Xian 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1437-1452,共16页
Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on w... Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections.For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model,the short-term prediction of wind power based on a combined neural network is proposed.First,the Bi-directional Long Short Term Memory(BiLSTM)network prediction model is constructed,and the bi-directional nature of the BiLSTM network is used to deeply mine the wind power data information and find the correlation information within the data.Secondly,to avoid the limitation of a single prediction model when the wind power changes abruptly,the Wavelet Transform-Improved Adaptive Genetic Algorithm-Back Propagation(WT-IAGA-BP)neural network based on the combination of the WT-IAGA-BP neural network and BiLSTM network is constructed for the short-term prediction of wind power.Finally,comparing with LSTM,BiLSTM,WT-LSTM,WT-BiLSTM,WT-IAGA-BP,and WT-IAGA-BP&LSTM prediction models,it is verified that the wind power short-term prediction model based on the combination of WT-IAGA-BP neural network and BiLSTM network has higher prediction accuracy. 展开更多
关键词 Wind power prediction wavelet transform back propagation neural network bi-directional long short term memory
在线阅读 下载PDF
State of Health Estimation of Lithium-Ion Batteries Using Support Vector Regression and Long Short-Term Memory
11
作者 Inioluwa Obisakin Chikodinaka Vanessa Ekeanyanwu 《Open Journal of Applied Sciences》 CAS 2022年第8期1366-1382,共17页
Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate e... Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate estimation and prediction of the state of health of these batteries have attracted wide attention due to the adverse negative effect on vehicle safety. In this paper, both machine and deep learning models were used to estimate the state of health of lithium-ion batteries. The paper introduces the definition of battery health status and its importance in the electric vehicle industry. Based on the data preprocessing and visualization analysis, three features related to actual battery capacity degradation are extracted from the data. Two learning models, SVR and LSTM were employed for the state of health estimation and their respective results are compared in this paper. The mean square error and coefficient of determination were the two metrics for the performance evaluation of the models. The experimental results indicate that both models have high estimation results. However, the metrics indicated that the SVR was the overall best model. 展开更多
关键词 Support Vector Regression (SVR) Long Short-term memory (LSTM) network State of Health (SOH) Estimation
在线阅读 下载PDF
ST-Trader:A Spatial-Temporal Deep Neural Network for Modeling Stock Market Movement 被引量:6
12
作者 Xiurui Hou Kai Wang +1 位作者 Cheng Zhong Zhi Wei 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第5期1015-1024,共10页
Stocks that are fundamentally connected with each other tend to move together.Considering such common trends is believed to benefit stock movement forecasting tasks.However,such signals are not trivial to model becaus... Stocks that are fundamentally connected with each other tend to move together.Considering such common trends is believed to benefit stock movement forecasting tasks.However,such signals are not trivial to model because the connections among stocks are not physically presented and need to be estimated from volatile data.Motivated by this observation,we propose a framework that incorporates the inter-connection of firms to forecast stock prices.To effectively utilize a large set of fundamental features,we further design a novel pipeline.First,we use variational autoencoder(VAE)to reduce the dimension of stock fundamental information and then cluster stocks into a graph structure(fundamentally clustering).Second,a hybrid model of graph convolutional network and long-short term memory network(GCN-LSTM)with an adjacency graph matrix(learnt from VAE)is proposed for graph-structured stock market forecasting.Experiments on minute-level U.S.stock market data demonstrate that our model effectively captures both spatial and temporal signals and achieves superior improvement over baseline methods.The proposed model is promising for other applications in which there is a possible but hidden spatial dependency to improve time-series prediction. 展开更多
关键词 Graph convolution network long-short term memory network stock market forecasting variational autoencoder(VAE)
在线阅读 下载PDF
基于分解优化LSTM的RCS序列预测方法研究
13
作者 傅莉 张宝锟 +2 位作者 张磊 于洋 席剑辉 《电光与控制》 北大核心 2026年第1期71-77,共7页
为提高长短期记忆(LSTM)神经网络对雷达散射截面积(RCS)序列的预测精度,提出了一种改进MVMD-FTTA-LSTM的耦合预测模型。首先,对目标RCS序列进行多元变分模态分解(MVMD),将RCS序列分解成多个平稳的模态分量,从而降低RCS序列数据特征的获... 为提高长短期记忆(LSTM)神经网络对雷达散射截面积(RCS)序列的预测精度,提出了一种改进MVMD-FTTA-LSTM的耦合预测模型。首先,对目标RCS序列进行多元变分模态分解(MVMD),将RCS序列分解成多个平稳的模态分量,从而降低RCS序列数据特征的获取难度;然后,在足球队训练优化算法(FTTA)中引入佳点集、Levy飞行策略和自适应t分布变异策略,提高FTTA对最优解的寻优能力;最后,采用改进的FTTA-LSTM模型对分解后的模态分量进行预测,重构各分量的预测值,重构结果为最终预测值。仿真结果表明,改进MVMD-FTTA-LSTM模型的预测精度相对LSTM和VMD-LSTM都有大幅度提升,证明这种改进方法使得LSTM模型显著提高了对目标RCS序列的预测精度,为开展目标RCS序列预测工作提供了一条新思路。 展开更多
关键词 雷达散射截面积 多元变分模态分解 足球队训练优化算法 长短期记忆 神经网络 序列预测
在线阅读 下载PDF
基于LSTM-EM的电动汽车充电桩故障率预测
14
作者 周宇 韦宣 黄泓叶 《电力电子技术》 2026年第1期139-148,共10页
充电桩作为电动汽车(EV)的重要充电设备,其能否正常运行直接关系到用户对EV的体验和EV产业的推广。准确预测充电桩的故障率能够有效保障EV充电过程的安全。本文提出了一种长短期记忆网络(LSTM)与嵌入方法(LSTM-EM)相结合的充电桩故障率... 充电桩作为电动汽车(EV)的重要充电设备,其能否正常运行直接关系到用户对EV的体验和EV产业的推广。准确预测充电桩的故障率能够有效保障EV充电过程的安全。本文提出了一种长短期记忆网络(LSTM)与嵌入方法(LSTM-EM)相结合的充电桩故障率预测模型,以捕获充电桩故障特征的长时间序列与多维性的特点,使得模型能够更好地学习不同特征以精准预测故障率。首先基于LSTM学习故障率的时序序列来捕捉序列数据中的时间依赖关系,然后基于嵌入方法将离散的特征映射到连续的向量空间中,最后使用全连接层融合两部分的特征,经过线性激活函数返回最终的预测结果。实验结果表明,提出的方法对问题预测的效果很好,与Transformer、LSTM、循环神经网络(RNN)、卷积神经网络(CNN)-LSTM模型相比,预测结果的对称平均绝对百分比误差(SMAPE)分别降低了48.18%、43.33%、41.69%、37.46%。 展开更多
关键词 充电桩 故障率预测 长短期记忆网络 嵌入方法
在线阅读 下载PDF
CNN A-BLSTM network的双人交互行为识别 被引量:7
15
作者 赵挺 曹江涛 姬晓飞 《电子测量与仪器学报》 CSCD 北大核心 2021年第11期100-107,共8页
关节点数据结合卷积神经网络用于双人交互行为识别存在图像化过程中对交互信息表达不充分且不能有效建模时序关系问题,而结合循环神经网络中存在侧重于对时间信息的表示却忽略了双人交互空间结构信息构建的问题。为此提出一种新的卷积... 关节点数据结合卷积神经网络用于双人交互行为识别存在图像化过程中对交互信息表达不充分且不能有效建模时序关系问题,而结合循环神经网络中存在侧重于对时间信息的表示却忽略了双人交互空间结构信息构建的问题。为此提出一种新的卷积神经网络结合加入注意机制的双向长短时期记忆网络(CNN A-BLSTM)模型。首先对每个人的关节点采用基于遍历树结构进行排列,然后对视频中的每一帧数据构建交互矩阵,矩阵的中的数值为排列后双人之间所有的关节点坐标间的欧氏距离,将矩阵进行灰度图像编码后所得图像依次送入CNN中提取深层次特征得到特征序列,然后将所得序列送入A-BLSTM网络中进行时序建模,最后送入Softmax分类器得到识别结果。将新模型用于NTU RGB D数据集中的11类双人交互行为的识别,其准确率为90%,高于目前的双人交互行为识别算法,验证了该模型的有效性和良好的泛化性能。 展开更多
关键词 双人交互行为识别 深度学习 卷积神经网络 双向长短时期记忆网络 注意机制
原文传递
Application of Neural Network in Fault Location of Optical Transport Network 被引量:6
16
作者 Tianyang Liu Haoyuan Mei +1 位作者 Qiang Sun Huachun Zhou 《China Communications》 SCIE CSCD 2019年第10期214-225,共12页
Due to the increasing variety of information and services carried by optical networks, the survivability of network becomes an important problem in current research. The fault location of OTN is of great significance ... Due to the increasing variety of information and services carried by optical networks, the survivability of network becomes an important problem in current research. The fault location of OTN is of great significance for studying the survivability of optical networks. Firstly, a three-channel network model is established and analyzing common alarm data, the fault monitoring points and common fault points are carried out. The artificial neural network is introduced into the fault location field of OTN and it is used to judge whether the possible fault point exists or not. But one of the obvious limitations of general neural networks is that they receive a fixedsize vector as input and produce a fixed-size vector as the output. Not only that, these models is even fixed for mapping operations (for example, the number of layers in the model). The difference between the recurrent neural network and general neural networks is that it can operate on the sequence. In spite of the fact that the gradient disappears and the gradient explodes still exist in the neural network, the method of gradient shearing or weight regularization is adopted to solve this problem, and choose the LSTM (long-short term memory networks) to locate the fault. The output uses the concept of membership degree of fuzzy theory to express the possible fault point with the probability from 0 to 1. Priority is given to the treatment of fault points with high probability. The concept of F-Measure is also introduced, and the positioning effect is measured by using location time, MSE and F-Measure. The experiment shows that both LSTM and BP neural network can locate the fault of optical transport network well, but the overall effect of LSTM is better. The localization time of LSTM is shorter than that of BP neural network, and the F1-score of LSTM can reach 0.961566888396156 after 45 iterations, which meets the accuracy and real-time requirements of fault location. Therefore, it has good application prospect and practical value to introduce neural network into the fault location field of optical transport network. 展开更多
关键词 optical transport networks failure localization artificial NEURAL network longshort term memory network BP NEURAL network F1-Measure
在线阅读 下载PDF
Chiller faults detection and diagnosis with sensor network and adaptive 1D CNN 被引量:3
17
作者 Ke Yan Xiaokang Zhou 《Digital Communications and Networks》 SCIE CSCD 2022年第4期531-539,共9页
Computer-empowered detection of possible faults for Heating,Ventilation and Air-Conditioning(HVAC)subsystems,e.g.,chillers,is one of the most important applications in Artificial Intelligence(AI)integrated Internet of... Computer-empowered detection of possible faults for Heating,Ventilation and Air-Conditioning(HVAC)subsystems,e.g.,chillers,is one of the most important applications in Artificial Intelligence(AI)integrated Internet of Things(IoT).The cyber-physical system greatly enhances the safety and security of the working facilities,reducing time,saving energy and protecting humans’health.Under the current trends of smart building design and energy management optimization,Automated Fault Detection and Diagnosis(AFDD)of chillers integrated with IoT is highly demanded.Recent studies show that standard machine learning techniques,such as Principal Component Analysis(PCA),Support Vector Machine(SVM)and tree-structure-based algorithms,are useful in capturing various chiller faults with high accuracy rates.With the fast development of deep learning technology,Convolutional Neural Networks(CNNs)have been widely and successfully applied to various fields.However,for chiller AFDD,few existing works are adopting CNN and its extensions in the feature extraction and classification processes.In this study,we propose to perform chiller FDD using a CNN-based approach.The proposed approach has two distinct advantages over existing machine learning-based chiller AFDD methods.First,the CNN-based approach does not require the feature selection/extraction process.Since CNN is reputable with its feature extraction capability,the feature extraction and classification processes are merged,leading to a more neat AFDD framework compared to traditional approaches.Second,the classification accuracy is significantly improved compared to traditional methods using the CNN-based approach. 展开更多
关键词 CHILLER Fault detection and diagnosis Deep learning neural network Long short term memory Recurrent neural network Gated recurrent unit
在线阅读 下载PDF
Ensembling Neural Networks for User’s Indoor Localization Using Magnetic Field Data from Smartphones 被引量:2
18
作者 Imran Ashraf Soojung Hur +1 位作者 Yousaf Bin Zikria Yongwan Park 《Computers, Materials & Continua》 SCIE EI 2021年第8期2597-2620,共24页
Predominantly the localization accuracy of the magnetic field-based localization approaches is severed by two limiting factors:Smartphone heterogeneity and smaller data lengths.The use of multifarioussmartphones cripp... Predominantly the localization accuracy of the magnetic field-based localization approaches is severed by two limiting factors:Smartphone heterogeneity and smaller data lengths.The use of multifarioussmartphones cripples the performance of such approaches owing to the variability of the magnetic field data.In the same vein,smaller lengths of magnetic field data decrease the localization accuracy substantially.The current study proposes the use of multiple neural networks like deep neural network(DNN),long short term memory network(LSTM),and gated recurrent unit network(GRN)to perform indoor localization based on the embedded magnetic sensor of the smartphone.A voting scheme is introduced that takes predictions from neural networks into consideration to estimate the current location of the user.Contrary to conventional magnetic field-based localization approaches that rely on the magnetic field data intensity,this study utilizes the normalized magnetic field data for this purpose.Training of neural networks is carried out using Galaxy S8 data while the testing is performed with three devices,i.e.,LG G7,Galaxy S8,and LG Q6.Experiments are performed during different times of the day to analyze the impact of time variability.Results indicate that the proposed approach minimizes the impact of smartphone variability and elevates the localization accuracy.Performance comparison with three approaches reveals that the proposed approach outperforms them in mean,50%,and 75%error even using a lesser amount of magnetic field data than those of other approaches. 展开更多
关键词 Indoor localization magnetic field data long short term memory network data normalization gated recurrent unit network deep learning
在线阅读 下载PDF
Minimal Gated Unit for Recurrent Neural Networks 被引量:39
19
作者 Guo-Bing Zhou Jianxin Wu +1 位作者 Chen-Lin Zhang Zhi-Hua Zhou 《International Journal of Automation and computing》 EI CSCD 2016年第3期226-234,共9页
Recurrent neural networks (RNN) have been very successful in handling sequence data. However, understanding RNN and finding the best practices for RNN learning is a difficult task, partly because there are many comp... Recurrent neural networks (RNN) have been very successful in handling sequence data. However, understanding RNN and finding the best practices for RNN learning is a difficult task, partly because there are many competing and complex hidden units, such as the long short-term memory (LSTM) and the gated recurrent unit (GRU). We propose a gated unit for RNN, named as minimal gated unit (MCU), since it only contains one gate, which is a minimal design among all gated hidden units. The design of MCU benefits from evaluation results on LSTM and GRU in the literature. Experiments on various sequence data show that MCU has comparable accuracy with GRU, but has a simpler structure, fewer parameters, and faster training. Hence, MGU is suitable in RNN's applications. Its simple architecture also means that it is easier to evaluate and tune, and in principle it is easier to study MGU's properties theoretically and empirically. 展开更多
关键词 Recurrent neural network minimal gated unit (MGU) gated unit gate recurrent unit (GRU) long short-term memory(LSTM) deep learning.
原文传递
A Novel MegaBAT Optimized Intelligent Intrusion Detection System in Wireless Sensor Networks 被引量:1
20
作者 G.Nagalalli GRavi 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期475-490,共16页
Wireless Sensor Network(WSN),whichfinds as one of the major components of modern electronic and wireless systems.A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like d... Wireless Sensor Network(WSN),whichfinds as one of the major components of modern electronic and wireless systems.A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like data sensing,data processing,and communication.In thefield of medical health care,these network plays a very vital role in transmitting highly sensitive data from different geographic regions and collecting this information by the respective network.But the fear of different attacks on health care data typically increases day by day.In a very short period,these attacks may cause adversarial effects to the WSN nodes.Furthermore,the existing Intrusion Detection System(IDS)suffers from the drawbacks of limited resources,low detection rate,and high computational overhead and also increases the false alarm rates in detecting the different attacks.Given the above-mentioned problems,this paper proposes the novel MegaBAT optimized Long Short Term Memory(MBOLT)-IDS for WSNs for the effective detection of different attacks.In the proposed framework,hyperpara-meters of deep Long Short-Term Memory(LSTM)were optimized by the meta-heuristic megabat algorithm to obtain a low computational overhead and high performance.The experimentations have been carried out using(Wireless Sensor NetworkDetection System)WSN-DS datasets and performance metrics such as accuracy,recall,precision,specificity,and F1-score are calculated and compared with the other existing intelligent IDS.The proposed framework provides outstanding results in detecting the black hole,gray hole,scheduling,flooding attacks and significantly reduces the time complexity,which makes this system suitable for resource-constraint WSNs. 展开更多
关键词 Wireless sensor network intrusion detection systems long short term memory megabat optimization
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部