期刊文献+
共找到786篇文章
< 1 2 40 >
每页显示 20 50 100
Long-Term Electrical Load Forecasting in Rwanda Based on Support Vector Machine Enhanced with Q-SVM Optimization Kernel Function
1
作者 Eustache Uwimana Yatong Zhou Minghui Zhang 《Journal of Power and Energy Engineering》 2023年第8期32-54,共23页
In recent years, Rwanda’s rapid economic development has created the “Rwanda Africa Wonder”, but it has also led to a substantial increase in energy consumption with the ambitious goal of reaching universal access ... In recent years, Rwanda’s rapid economic development has created the “Rwanda Africa Wonder”, but it has also led to a substantial increase in energy consumption with the ambitious goal of reaching universal access by 2024. Meanwhile, on the basis of the rapid and dynamic connection of new households, there is uncertainty about generating, importing, and exporting energy whichever imposes a significant barrier. Long-Term Load Forecasting (LTLF) will be a key to the country’s utility plan to examine the dynamic electrical load demand growth patterns and facilitate long-term planning for better and more accurate power system master plan expansion. However, a Support Vector Machine (SVM) for long-term electric load forecasting is presented in this paper for accurate load mix planning. Considering that an individual forecasting model usually cannot work properly for LTLF, a hybrid Q-SVM will be introduced to improve forecasting accuracy. Finally, effectively assess model performance and efficiency, error metrics, and model benchmark parameters there assessed. The case study demonstrates that the new strategy is quite useful to improve LTLF accuracy. The historical electric load data of Rwanda Energy Group (REG), a national utility company from 1998 to 2020 was used to test the forecast model. The simulation results demonstrate the proposed algorithm enhanced better forecasting accuracy. 展开更多
关键词 SVM Quadratic SVM long-term electrical load forecasting Residual load Demand Series Historical electric load
在线阅读 下载PDF
SP-RF-ARIMA:A sparse random forest and ARIMA hybrid model for electric load forecasting
2
作者 Kamran Hassanpouri Baesmat Farhad Shokoohi Zeinab Farrokhi 《Global Energy Interconnection》 2025年第3期486-496,共11页
Accurate Electric Load Forecasting(ELF)is crucial for optimizing production capacity,improving operational efficiency,and managing energy resources effectively.Moreover,precise ELF contributes to a smaller environment... Accurate Electric Load Forecasting(ELF)is crucial for optimizing production capacity,improving operational efficiency,and managing energy resources effectively.Moreover,precise ELF contributes to a smaller environmental footprint by reducing the risks of disruption,downtime,and waste.However,with increasingly complex energy consumption patterns driven by renewable energy integration and changing consumer behaviors,no single approach has emerged as universally effective.In response,this research presents a hybrid modeling framework that combines the strengths of Random Forest(RF)and Autoregressive Integrated Moving Average(ARIMA)models,enhanced with advanced feature selection—Minimum Redundancy Maximum Relevancy and Maximum Synergy(MRMRMS)method—to produce a sparse model.Additionally,the residual patterns are analyzed to enhance forecast accuracy.High-resolution weather data from Weather Underground and historical energy consumption data from PJM for Duke Energy Ohio and Kentucky(DEO&K)are used in this application.This methodology,termed SP-RF-ARIMA,is evaluated against existing approaches;it demonstrates more than 40%reduction in mean absolute error and root mean square error compared to the second-best method. 展开更多
关键词 optimizing production capacityimproving operational efficiencyand sparse random forest hybrid model electric load forecasting accurate electric load forecasting elf renewable energy integration ARIMA feature selection
在线阅读 下载PDF
A comprehensive review for wind,solar,and electrical load forecasting methods 被引量:15
3
作者 Han Wang Ning Zhang +3 位作者 Ershun Du Jie Yan Shuang Han Yongqian Liu 《Global Energy Interconnection》 EI CAS CSCD 2022年第1期9-30,共22页
Wind power,solar power,and electrical load forecasting are essential works to ensure the safe and stable operation of the electric power system.With the increasing permeability of new energy and the rising demand resp... Wind power,solar power,and electrical load forecasting are essential works to ensure the safe and stable operation of the electric power system.With the increasing permeability of new energy and the rising demand response load,the uncertainty on the production and load sides are both increased,bringing new challenges to the forecasting work and putting forward higher requirements to the forecasting accuracy.Most review/survey papers focus on one specific forecasting object(wind,solar,or load),a few involve the above two or three objects,but the forecasting objects are surveyed separately.Some papers predict at least two kinds of objects simultaneously to cope with the increasing uncertainty at both production and load sides.However,there is no corresponding review at present.Hence,our study provides a comprehensive review of wind,solar,and electrical load forecasting methods.Furthermore,the survey of Numerical Weather Prediction wind speed/irradiance correction methods is also included in this manuscript.Challenges and future research directions are discussed at last. 展开更多
关键词 Wind power Solar power electrical load forecasting Numerical Weather Prediction CORRELATION
在线阅读 下载PDF
Long-Term Load Forecasting of Southern Governorates of Jordan Distribution Electric System 被引量:1
4
作者 Aouda A. Arfoa 《Energy and Power Engineering》 2015年第5期242-253,共12页
Load forecasting is vitally important for electric industry in the deregulated economy. This paper aims to face the power crisis and to achieve energy security in Jordan. Our participation is localized in the southern... Load forecasting is vitally important for electric industry in the deregulated economy. This paper aims to face the power crisis and to achieve energy security in Jordan. Our participation is localized in the southern parts of Jordan including, Ma’an, Karak and Aqaba. The available statistical data about the load of southern part of Jordan are supplied by electricity Distribution Company. Mathematical and statistical methods attempted to forecast future demand by determining trends of past results and use the trends to extrapolate the curve demand in the future. 展开更多
关键词 long-term load forecasting PEAK load Max DEMAND and Least SQUARES
暂未订购
Hybrid partial least squares and neural network approach for short-term electrical load forecasting
5
作者 Shukang YANG Ming LU Huifeng XUE 《控制理论与应用(英文版)》 EI 2008年第1期93-96,共4页
Intelligent systems and methods such as the neural network (NN) are usually used in electric power systems for short-term electrical load forecasting. However, a vast amount of electrical load data is often redundan... Intelligent systems and methods such as the neural network (NN) are usually used in electric power systems for short-term electrical load forecasting. However, a vast amount of electrical load data is often redundant, and linearly or nonlinearly correlated with each other. Highly correlated input data can result in erroneous prediction results given out by an NN model. Besides this, the determination of the topological structure of an NN model has always been a problem for designers. This paper presents a new artificial intelligence hybrid procedure for next day electric load forecasting based on partial least squares (PLS) and NN. PLS is used for the compression of data input space, and helps to determine the structure of the NN model. The hybrid PLS-NN model can be used to predict hourly electric load on weekdays and weekends. The advantage of this methodology is that the hybrid model can provide faster convergence and more precise prediction results in comparison with abductive networks algorithm. Extensive testing on the electrical load data of the Puget power utility in the USA confirms the validity of the proposed approach. 展开更多
关键词 electric loads forecasting Hybrid neural networks model
在线阅读 下载PDF
MACLSTM: A Weather Attributes Enabled Recurrent Approach to Appliance-Level Energy Consumption Forecasting
6
作者 Ruoxin Li Shaoxiong Wu +5 位作者 Fengping Deng Zhongli Tian Hua Cai Xiang Li Xu Xu Qi Liu 《Computers, Materials & Continua》 2025年第2期2969-2984,共16页
Studies to enhance the management of electrical energy have gained considerable momentum in recent years. The question of how much energy will be needed in households is a pressing issue as it allows the management pl... Studies to enhance the management of electrical energy have gained considerable momentum in recent years. The question of how much energy will be needed in households is a pressing issue as it allows the management plan of the available resources at the power grids and consumer levels. A non-intrusive inference process can be adopted to predict the amount of energy required by appliances. In this study, an inference process of appliance consumption based on temporal and environmental factors used as a soft sensor is proposed. First, a study of the correlation between the electrical and environmental variables is presented. Then, a resampling process is applied to the initial data set to generate three other subsets of data. All the subsets were evaluated to deduce the adequate granularity for the prediction of the energy demand. Then, a cloud-assisted deep neural network model is designed to forecast short-term energy consumption in a residential area while preserving user privacy. The solution is applied to the consumption data of four appliances elected from a set of real household power data. The experiment results show that the proposed framework is effective for estimating consumption with convincing accuracy. 展开更多
关键词 electrical load forecasting cloud computing smart grid weather attributes energy consumption time-series analysis
在线阅读 下载PDF
Deep learning for time series forecasting:The electric load case 被引量:11
7
作者 Alberto Gasparin Slobodan Lukovic Cesare Alippi 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第1期1-25,共25页
Management and efficient operations in critical infrastructures such as smart grids take huge advantage of accurate power load forecasting,which,due to its non-linear nature,remains a challenging task.Recently,deep le... Management and efficient operations in critical infrastructures such as smart grids take huge advantage of accurate power load forecasting,which,due to its non-linear nature,remains a challenging task.Recently,deep learning has emerged in the machine learning field achieving impressive performance in a vast range of tasks,from image classification to machine translation.Applications of deep learning models to the electric load forecasting problem are gaining interest among researchers as well as the industry,but a comprehensive and sound comparison among different-also traditional-architectures is not yet available in the literature.This work aims at filling the gap by reviewing and experimentally evaluating four real world datasets on the most recent trends in electric load forecasting,by contrasting deep learning architectures on short-term forecast(oneday-ahead prediction).Specifically,the focus is on feedforward and recurrent neural networks,sequence-to-sequence models and temporal convolutional neural networks along with architectural variants,which are known in the signal processing community but are novel to the load forecasting one. 展开更多
关键词 deep learning electric load forecasting multi-step ahead forecasting smart grid time-series prediction
在线阅读 下载PDF
A Novel Ultra Short-Term Load Forecasting Method for Regional Electric Vehicle Charging Load Using Charging Pile Usage Degree 被引量:2
8
作者 Jinrui Tang Ganheng Ge +1 位作者 Jianchao Liu Honghui Yang 《Energy Engineering》 EI 2023年第5期1107-1132,共26页
Electric vehicle(EV)charging load is greatly affected by many traffic factors,such as road congestion.Accurate ultra short-term load forecasting(STLF)results for regional EV charging load are important to the scheduli... Electric vehicle(EV)charging load is greatly affected by many traffic factors,such as road congestion.Accurate ultra short-term load forecasting(STLF)results for regional EV charging load are important to the scheduling plan of regional charging load,which can be derived to realize the optimal vehicle to grid benefit.In this paper,a regional-level EV ultra STLF method is proposed and discussed.The usage degree of all charging piles is firstly defined by us based on the usage frequency of charging piles,and then constructed by our collected EV charging transactiondata in thefield.Secondly,these usagedegrees are combinedwithhistorical charging loadvalues toform the inputmatrix for the deep learning based load predictionmodel.Finally,long short-termmemory(LSTM)neural network is used to construct EV charging load forecastingmodel,which is trained by the formed inputmatrix.The comparison experiment proves that the proposed method in this paper has higher prediction accuracy compared with traditionalmethods.In addition,load characteristic index for the fluctuation of adjacent day load and adjacent week load are proposed by us,and these fluctuation factors are used to assess the prediction accuracy of the EV charging load,together with the mean absolute percentage error(MAPE). 展开更多
关键词 electric vehicle charging load density-based spatial clustering of application with noise long-short termmemory load forecasting
在线阅读 下载PDF
Medium-Term Electric Load Forecasting Using Multivariable Linear and Non-Linear Regression 被引量:2
9
作者 Nazih Abu-Shikhah Fawwaz Elkarmi Osama M. Aloquili 《Smart Grid and Renewable Energy》 2011年第2期126-135,共10页
Medium-term forecasting is an important category of electric load forecasting that covers a time span of up to one year ahead. It suits outage and maintenance planning, as well as load switching operation. We propose ... Medium-term forecasting is an important category of electric load forecasting that covers a time span of up to one year ahead. It suits outage and maintenance planning, as well as load switching operation. We propose a new methodol-ogy that uses hourly daily loads to predict the next year hourly loads, and hence predict the peak loads expected to be reached in the next coming year. The technique is based on implementing multivariable regression on previous year's hourly loads. Three regression models are investigated in this research: the linear, the polynomial, and the exponential power. The proposed models are applied to real loads of the Jordanian power system. Results obtained using the pro-posed methods showed that their performance is close and they outperform results obtained using the widely used ex-ponential regression technique. Moreover, peak load prediction has about 90% accuracy using the proposed method-ology. The methods are generic and simple and can be implemented to hourly loads of any power system. No extra in-formation other than the hourly loads is required. 展开更多
关键词 Medium-Term load forecasting electrical PEAK load MULTIVARIABLE Regression And TIME SERIES
暂未订购
Comparison of Electric Load Forecasting between Using SOM and MLP Neural Network 被引量:1
10
作者 Sergio Valero Carolina Senabre +3 位作者 Miguel Lopez Juan Aparicio Antonio Gabaldon Mario Ortiz 《Journal of Energy and Power Engineering》 2012年第3期411-417,共7页
Electric load forecasting has been a major area of research in the last decade since the production of accurate short-term forecasts for electricity loads has proven to be a key to success for many of the decision mak... Electric load forecasting has been a major area of research in the last decade since the production of accurate short-term forecasts for electricity loads has proven to be a key to success for many of the decision makers in the energy sector, from power generation to operation of the system. The objective of this research is to analyze the capacity of the MLP (multilayer perceptron neural network) versus SOM (self-organizing map neural network) for short-term load forecasting. The MLP is one of the most commonly used networks. It can be used for classification problems, model construction, series forecasting and discrete control. On the other hand, the SOM is a type of artificial neural network that is trained using unsupervised data to produce a low-dimensional, discretized representation of an input space of training samples in a cell map. Historical data of real global load demand were used for the research. Both neural models provide good prediction results, but the results obtained with the SOM maps are markedly better Also the main advantage of SOM maps is that they reach good results as a network unsupervised. It is much easier to train and interpret the results. 展开更多
关键词 Short-term load forecasting SOM (self-organizing map) multilayer perceptron neural network electricity markets.
在线阅读 下载PDF
Machine Learning-based Electric Load Forecasting for Peak Demand Control in Smart Grid
11
作者 Manish Kumar Nitai Pal 《Computers, Materials & Continua》 SCIE EI 2023年第3期4785-4799,共15页
Increasing energy demands due to factors such as population,globalization,and industrialization has led to increased challenges for existing energy infrastructure.Efficient ways of energy generation and energy consump... Increasing energy demands due to factors such as population,globalization,and industrialization has led to increased challenges for existing energy infrastructure.Efficient ways of energy generation and energy consumption like smart grids and smart homes are implemented to face these challenges with reliable,cheap,and easily available sources of energy.Grid integration of renewable energy and other clean distributed generation is increasing continuously to reduce carbon and other air pollutants emissions.But the integration of distributed energy sources and increase in electric demand enhance instability in the grid.Short-term electrical load forecasting reduces the grid fluctuation and enhances the robustness and power quality of the grid.Electrical load forecasting in advance on the basic historical data modelling plays a crucial role in peak electrical demand control,reinforcement of the grid demand,and generation balancing with cost reduction.But accurate forecasting of electrical data is a very challenging task due to the nonstationary and nonlinearly nature of the data.Machine learning and artificial intelligence have recognized more accurate and reliable load forecastingmethods based on historical load data.The purpose of this study is to model the electrical load of Jajpur,Orissa Grid for forecasting of load using regression type machine learning algorithms Gaussian process regression(GPR).The historical electrical data and whether data of Jajpur is taken for modelling and simulation and the data is decided in such a way that the model will be considered to learn the connection among past,current,and future dependent variables,factors,and the relationship among data.Based on this modelling of data the network will be able to forecast the peak load of the electric grid one day ahead.The study is very helpful in grid stability and peak load control management. 展开更多
关键词 Artificial intelligence electric load forecasting machine learning peak-load control renewable energy smart grids
在线阅读 下载PDF
Long-Term Electricity Demand Forecasting for Malaysia Using Artificial Neural Networks in the Presence of Input and Model Uncertainties
12
作者 Vin Cent Tai Yong Chai Tan +4 位作者 Nor Faiza Abd Rahman Hui Xin Che Chee Ming Chia Lip Huat Saw Mohd Fozi Ali 《Energy Engineering》 EI 2021年第3期715-725,共11页
Electricity demand is also known as load in electric power system.This article presents a Long-Term Load Forecasting(LTLF)approach for Malaysia.An Artificial Neural Network(ANN)of 5-layer Multi-Layered Perceptron(MLP)... Electricity demand is also known as load in electric power system.This article presents a Long-Term Load Forecasting(LTLF)approach for Malaysia.An Artificial Neural Network(ANN)of 5-layer Multi-Layered Perceptron(MLP)structure has been designed and tested for this purpose.Uncertainties of input variables and ANN model were introduced to obtain the prediction for years 2022 to 2030.Pearson correlation was used to examine the input variables for model construction.The analysis indicates that Primary Energy Supply(PES),population,Gross Domestic Product(GDP)and temperature are strongly correlated.The forecast results by the proposed method(henceforth referred to as UQ-SNN)were compared with the results obtained by a conventional Seasonal Auto-Regressive Integrated Moving Average(SARIMA)model.The R^(2)scores for UQ-SNN and SARIMA are 0.9994 and 0.9787,respectively,indicating that UQ-SNN is more accurate in capturing the non-linearity and the underlying relationships between the input and output variables.The proposed method can be easily extended to include other input variables to increase the model complexity and is suitable for LTLF.With the available input data,UQ-SNN predicts Malaysia will consume 207.22 TWh of electricity,with standard deviation(SD)of 6.10 TWh by 2030. 展开更多
关键词 long-term load forecasting SARIMA artificial neural networks uncertainty analysis MALAYSIA
在线阅读 下载PDF
Data-Driven Load Forecasting Using Machine Learning and Meteorological Data 被引量:1
13
作者 Aishah Alrashidi Ali Mustafa Qamar 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期1973-1988,共16页
Electrical load forecasting is very crucial for electrical power systems’planning and operation.Both electrical buildings’load demand and meteorological datasets may contain hidden patterns that are required to be i... Electrical load forecasting is very crucial for electrical power systems’planning and operation.Both electrical buildings’load demand and meteorological datasets may contain hidden patterns that are required to be investigated and studied to show their potential impact on load forecasting.The meteorological data are analyzed in this study through different data mining techniques aiming to predict the electrical load demand of a factory located in Riyadh,Saudi Arabia.The factory load and meteorological data used in this study are recorded hourly between 2016 and 2017.These data are provided by King Abdullah City for Atomic and Renewable Energy and Saudi Electricity Company at a site located in Riyadh.After applying the data pre-processing techniques to prepare the data,different machine learning algorithms,namely Artificial Neural Network and Support Vector Regression(SVR),are applied and compared to predict the factory load.In addition,for the sake of selecting the optimal set of features,13 different combinations of features are investigated in this study.The outcomes of this study emphasize selecting the optimal set of features as more features may add complexity to the learning process.Finally,the SVR algorithm with six features provides the most accurate prediction values to predict the factory load. 展开更多
关键词 electricity load forecasting meteorological data machine learning feature selection modeling real-world problems predictive analytics
在线阅读 下载PDF
Short-Term Electricity Price Forecasting Using a Combination of Neural Networks and Fuzzy Inference
14
作者 Evans Nyasha Chogumaira Takashi Hiyama 《Energy and Power Engineering》 2011年第1期9-16,共8页
This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-tu... This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-ture of electricity prices on the time domain by clustering the input data into time ranges where the variation trends are maintained. Due to the imprecise nature of cluster boundaries a fuzzy inference technique is em-ployed to handle data that lies at the intersections. As a necessary step in forecasting prices the anticipated electricity demand at the target time is estimated first using a separate ANN. The Australian New-South Wales electricity market data was used to test the system. The developed system shows considerable im-provement in performance compared with approaches that regard price data as a single continuous time se-ries, achieving MAPE of less than 2% for hours with steady prices and 8% for the clusters covering time pe-riods with price spikes. 展开更多
关键词 electrICITY PRICE forecasting SHORT-TERM load forecasting electrICITY MARKETS Artificial NEURAL Networks Fuzzy LOGIC
暂未订购
Electric Vehicle Charging Situation Awareness for Ultra-Short-Term Load Forecast of Charging Stations
15
作者 史一炜 刘泽宇 +3 位作者 冯冬涵 周云 张开宇 李恒杰 《Journal of Shanghai Jiaotong university(Science)》 EI 2023年第1期28-38,共11页
Electric vehicles(EVs)are expected to be key nodes connecting transportation-electricity-communication networks.Advanced automotive electronics technologies enhance EVs’perception,computing,and communication capacity... Electric vehicles(EVs)are expected to be key nodes connecting transportation-electricity-communication networks.Advanced automotive electronics technologies enhance EVs’perception,computing,and communication capacity,which in turn can boost the operational efficiency of intelligent transportation systems(ITSs).EVs couple the ITS to the power system,providing a promising solution to charging congestion and transformer overload via navigation and forecasting approaches.This study proposes a privacy-preserving EV charging situation awareness framework and method to forecast the ultra-short-term load of charging stations.The proposed method only relies on public information from commercial service providers.In the case study,data are powered by the Baidu LBS cloud and EV-SGCC platform,and the experiment is conducted within an area of Pudong New District in Shanghai.Based on the results,the charging load of charging stations can be adequately forecasted more than 1 min ahead with low communication and computing power requirements.This research provides the basis for further studies on operation optimization and electricity market transaction of charging stations. 展开更多
关键词 electric vehicle(EV) intelligent transportation system(ITS) situation awareness charging load forecast
原文传递
Using the Analytic Hierarchy Process in Long-Term Load Growth Forecast
16
作者 Blagoja Stevanoski Natasa Mojsoska 《Journal of Electrical Engineering》 2017年第3期151-156,共6页
The load growth is the most important uncertainties in power system planning process. The applications of the classical long-term load forecasting methods particularly applied to utilities in transition economy are in... The load growth is the most important uncertainties in power system planning process. The applications of the classical long-term load forecasting methods particularly applied to utilities in transition economy are insufficient and may produce incorrect decisions in power system planning process. This paper discusses using the method of analytic hierarchy process to calculate the probability distribution of load growth obtained previously by standard load forecasting methods. 展开更多
关键词 long-term load forecasting analytic hierarchy process PROBABILITY uncertainties.
在线阅读 下载PDF
ResiDualNet: A novel electric vehicle charging data imputation technique to enhance load forecasting accuracy
17
作者 Belal Mahmud Fahim Mohammad Kaosain Akbar Manar Amayri 《Building Simulation》 2025年第4期897-922,共26页
Electric vehicles(EVs)are a sustainable mode of transportation,significantly reducing greenhouse gas emissions.The development of EV charging stations is crucial for supporting the growing number of EVs and integratin... Electric vehicles(EVs)are a sustainable mode of transportation,significantly reducing greenhouse gas emissions.The development of EV charging stations is crucial for supporting the growing number of EVs and integrating them into smart grid infrastructure.Efficient use of these stations requires optimized energy management and accurate forecasting of EV charging behaviors.However,forecasting accuracy is often hindered by missing data due to connectivity issues and equipment failures.To address these challenges,this study introduces a novel data imputation method ResiDualNet(Residual Dual BiLSTM-CNN Path Network),which is a residual sequence-to-sequence technique for imputing missing EV charging data.This model effectively captures underlying temporal and long-term dependencies,demonstrating strong performance across various scenarios.We compare our proposed model with two commonly used imputation methods KNN and Mean Imputation and one generative model,Generative Adversarial Network(GAN),across four different EV charging datasets.Experimental results demonstrate that our model significantly outperforms the others,showing an average improvement of 82%in terms of root mean squared error(RMSE)across all datasets.To further assess the effectiveness of our imputation model,we utilize three cutting-edge and newly introduced forecasting models:Bidirectional Long Short-Term Memory(BiLSTM),Mogrifier LSTM,and Sample Convolution and Interaction Network(SCINet)to predict EV charging load.The results indicate that SCINet outperforms the other forecasting techniques.Moreover,for SCINet,the dataset imputed by our proposed model performs second best after the real dataset,confirming the effectiveness of our imputation approach in improving forecasting accuracy for EV charging data.The complete source code is provided in the following repository:https://github.com/fffahim/ResiDualNet.git. 展开更多
关键词 electric vehicle load forecasting missing data imputation residual Seq2Seq SCINet
原文传递
Chaotic Load Series Forecasting Based on MPMR
18
作者 Liu Zunxiong Cheng Quanhu Zhang Deyun 《Electricity》 2006年第1期25-28,共4页
Minimax probability machine regression (MPMR) was proposed for chaotic load time series global prediction. In MPMR, regression function maximizes the minimum probability that future predication will be within an ε ... Minimax probability machine regression (MPMR) was proposed for chaotic load time series global prediction. In MPMR, regression function maximizes the minimum probability that future predication will be within an ε to the true regression function. After exploring the principle of MPMR, and verifying the chaotic property of the load series from a certain power system, one-day-ahead predictions for 24 time points next day wcre done with MPMR. Thc results demonstrate that MPMP has satisfactory prediction efficiency. Kernel function shape parameter and regression tube value may influence the MPMR-based system performance. In the experiments, cross validation was used to choose the two parameters. 展开更多
关键词 electrical load short-term forecasting minimax probability regression chaos theory
在线阅读 下载PDF
Method and Evaluation Method of Ultra-Short-Load Forecasting in Power System
19
作者 Jiaxiang Ou Songling Li +1 位作者 Junwei Zhang Chao Ding 《国际计算机前沿大会会议论文集》 2018年第2期23-23,共1页
关键词 electric load forecasting Ultra-short-termLinear EXTRAPOLATION KALMAN filter methodTime series METHOD Artificial neural networksSupport vector machine algorithm
在线阅读 下载PDF
Electric Vehicle Charging Capacity of Distribution Network Considering Conventional Load Composition 被引量:1
20
作者 Pengwei Yang Yuqi Cao +4 位作者 Jie Tan Junfa Chen Chao Zhang Yan Wang Haifeng Liang 《Energy Engineering》 EI 2023年第3期743-762,共20页
At present,the large-scale access to electric vehicles(EVs)is exerting considerable pressure on the distribution network.Hence,it is particularly important to analyze the capacity of the distribution network to accomm... At present,the large-scale access to electric vehicles(EVs)is exerting considerable pressure on the distribution network.Hence,it is particularly important to analyze the capacity of the distribution network to accommodate EVs.To this end,we propose a method for analyzing the EV capacity of the distribution network by considering the composition of the conventional load.First,the analysis and pretreatment methods for the distribution network architecture and conventional load are proposed.Second,the charging behavior of an EVis simulated by combining the Monte Carlo method and the trip chain theory.After obtaining the temporal and spatial distribution of the EV charging load,themethod of distribution according to the proportion of the same type of conventional load among the nodes is adopted to integrate the EV charging load with the conventional load of the distribution network.By adjusting the EV ownership,the EV capacity in the distribution network is analyzed and solved on the basis of the following indices:node voltage,branch current,and transformer capacity.Finally,by considering the 10-kV distribution network in some areas of an actual city as an example,we show that the proposed analysis method can obtain a more reasonable number of EVs to be accommodated in the distribution network. 展开更多
关键词 Capacity charging load distribution charging load forecasting conventional load composition electric vehicle trip behavior
在线阅读 下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部