Droughts have serious and widespread impacts on crop production with substantial economic losses. The frequency and severity of drought events may increase in the future due to climate change. We have developed three ...Droughts have serious and widespread impacts on crop production with substantial economic losses. The frequency and severity of drought events may increase in the future due to climate change. We have developed three meteorological drought scenarios for Austria in the period 2008-2040. The scenarios are defined based on a dry day index which is combined with bootstrapping from an observed daily weather dataset of the period 1975-2007. The severity of long-term drought scenarios is characterized by lower annual and seasonal precipitation amounts as well as more significant temperature increases compared to the observations. The long-term impacts of the drought scenarios on Austrian crop production have been analyzed with the biophysical process model EPIC (Environmental Policy Integrated Climate). Our simulation outputs show that—for areas with historical mean annual precipitation sums below 850 mm— already slight increases in dryness result in significantly lower crop yields i.e. depending on the drought severity, between 0.6% and 0.9% decreases in mean annual dry matter crop yields per 1.0% decrease in mean annual precipitation sums. The EPIC results of more severe droughts show that spring and summer precipitation may become a limiting factor in crop production even in regions with historical abundant precipitation.展开更多
Drought is the least understood natural disaster due to the complex relationship of multiple contributory factors. Itsbeginning and end are hard to gauge, and they can last for months or even for years. India has face...Drought is the least understood natural disaster due to the complex relationship of multiple contributory factors. Itsbeginning and end are hard to gauge, and they can last for months or even for years. India has faced many droughtsin the last few decades. Predicting future droughts is vital for framing drought management plans to sustainnatural resources. The data-driven modelling for forecasting the metrological time series prediction is becomingmore powerful and flexible with computational intelligence techniques. Machine learning (ML) techniques havedemonstrated success in the drought prediction process and are becoming popular to predict the weather, especiallythe minimum temperature using backpropagation algorithms. The favourite ML techniques for weather forecastinginclude support vector machines (SVM), support vector regression, random forest, decision tree, logistic regression,Naive Bayes, linear regression, gradient boosting tree, k-nearest neighbours (KNN), the adaptive neuro-fuzzyinference system, the feed-forward neural networks, Markovian chain, Bayesian network, hidden Markov models,and autoregressive moving averages, evolutionary algorithms, deep learning and many more. This paper presentsa recent review of the literature using ML in drought prediction, the drought indices, dataset, and performancemetrics.展开更多
This study aims to disclose the thermo-oxidative degradation behaviors and kinetics of a carbon fiber reinforced polyimide(CFRPI)composite for modeling of the Iong-term degradation process.The degradation behaviors we...This study aims to disclose the thermo-oxidative degradation behaviors and kinetics of a carbon fiber reinforced polyimide(CFRPI)composite for modeling of the Iong-term degradation process.The degradation behaviors were revealed through off-gas products analysis,and the overall kinetic interpretation was achieved from study of the mass-loss curves recorded under dynamic conditions.It was found that thermooxidative degradati on of the CFRPI composite was a multistep process,which in eluded four main reaction steps.Since most kinetic an alysis methods were derived from simple reactions described by a single kinetic triplet,they cannot be applied reliably to such a process.Therefore,we firstly separated the four overlapped reaction steps by peak fitting of derivative thermogravimetric curves using Fraser-Suzuki equation consider!ng the asymmetrical n ature of kin etic curves,and subsequently an a lyzed each in dividual reaction employing Friedma n method and experimental master-plots method.Four sets of kinetic triplets were determined to characterize the entire degradation process.The validity of four corresponding kinetic triplets was confirmed by perfect simulation of mass-loss curves recorded at both dynamic conditions used in kinetic analysis and entirely different isothermal conditions.Finally,modeling of Iong-term aging at 400°C of the CFRPI composite was successfully achieved based on these kinetic triplets.The predicted mass loss and flexural property correlated well with experimental results.This study can serve as a basis for rapid evaluation of the long-term durability of the CFRPI composite in various application environments.展开更多
Inspired by recent significant agricultural yield losses in the eastern China and a missing operational monitoring system,we developed a comprehensive drought monitoring model to better understand the impact of indivi...Inspired by recent significant agricultural yield losses in the eastern China and a missing operational monitoring system,we developed a comprehensive drought monitoring model to better understand the impact of individual key factors contributing to this issue.The resulting model,the‘Humidity calibrated Drought Condition Index’(HcDCI)was applied for the years 2001 to 2019 in form of a case study to Weihai County,Shandong Province in East China.Design and development are based on a linear combination of the Vegetation Condition Index(VCI),the Temperature Condition Index(TCI),and the Rainfall Condition Index(RCI)using multi-source satellite data to create a basic Drought Condition Index(DCI).VCI and TCI were derived from MODIS(Moderate Resolution Imaging Spectroradiometer)data,while precipitation is taken from CHIRPS(Climate Hazards Group InfraRed Precipitation with Station data)data.For reasons of accuracy,the decisive coefficients were determined by the relative humidity of soils at depth of 10-20 cm of particular areas collected by an agrometeorological ground station.The correlation between DCI and soil humidity was optimized with the factors of 0.53,0.33,and 0.14 for VCI,TCI,and RCI,respectively.The model revealed,light agricultural droughts from 2003 to 2013 and in 2018,while more severe droughts occurred in 2001 and 2002,2014-2017,and 2019.The droughts were most severe in January,March,and December,and our findings coincide with historical records.The average temperature during 2012-2019 is 1℃ higher than that during the period 2001-2011 and the average precipitation during 2014-2019 is 192.77 mm less than that during 2008-2013.The spatio-temporal accuracy of the HcDCI model was positively validated by correlation with agricultural crop yield quantities.The model thus,demonstrates its capability to reveal drought periods in detail,its transferability to other regions and its usefulness to take future measures.展开更多
Objective Long-term seroprotection via the hepatitis A vaccine is essential for the prevention of disease from the hepatitis A virus(HAV).Due to documented difficulties during decade-long follow-ups after receiving va...Objective Long-term seroprotection via the hepatitis A vaccine is essential for the prevention of disease from the hepatitis A virus(HAV).Due to documented difficulties during decade-long follow-ups after receiving vaccines,statistical-modeling approaches have been applied to predict the duration of immune protection.Methods Based on five-year follow-up data from a randomized positive-controlled trial among Chinese children(1–8 years old)following a 0,6 months vaccination schedule,a power-law model accounting for the kinetics of B-cell turnover,as well as a modified power-law model considering a memory-B-cell subpopulation,were fitted to predict the long-term immune responses induced by HAV vaccination(Healive or Havrix).Anti-HAV levels of each individual and seroconversion rates up to 30 years after vaccination were predicted.Results A total of 375 participants who completed the two-dose vaccination were included in the analysis.Both models predicted that,over a life-long period,participants vaccinated with Healive would have close but slightly higher antibody titers than those of participants vaccinated with Havrix.Additionally,consistent with previous studies,more than 90%of participants were predicted to maintain seroconversion for at least 30 years.Moreover,the modified power-law model predicted that the antibody titers would reach a plateau level after nearly 15 years post-vaccination.Conclusions Based on the results of our modeling,Healive may adequately induce long-term immune responses following a 0,6 months vaccination schedule in children via induction of memory B cells to provide stable and durable immune protection.展开更多
To investigate the dynamic characteristics and long-term dynamic stability of the new subgrade structure of medium-low-speed(MLS)maglevs,cyclic vibration tests were performed under natural and rainfall conditions,and ...To investigate the dynamic characteristics and long-term dynamic stability of the new subgrade structure of medium-low-speed(MLS)maglevs,cyclic vibration tests were performed under natural and rainfall conditions,and the dynamic response of the subgrade structure was monitored.The dynamic response attenuation characteristics along the depth direction of the subgrade were compared,and the distribution characteristics of the dynamic stress on the surface of the subgrade along the longitudinal direction of the line were analyzed.The critical dynamic stress and cumulative deformation were used as indicators to evaluate the long-term dynamic stability of the subgrade.Results show that water has a certain effect on the dynamic characteristics of the subgrade,and the dynamic stress and acceleration increase with the water content.With the dowel steel structure set between the rail-bearing beams,stress concentration at the end of the loaded beam can be prevented,and the diffusion distance of the dynamic stress along the longitudinal direction increases.The dynamic stress measured in the subgrade bed range is less than 1/5 of the critical dynamic stress.The postconstruction settlement of the subgrade after similarity ratio conversion is 3.94 mm and 7.72 mm under natural and rainfall conditions,respectively,and both values are less than the 30 mm limit,indicating that the MLS maglev subgrade structure has good long-term dynamic stability.展开更多
A deep understanding of crop-water eco-physiological relations is the basis for quantifying plant physiological responses to soil water stress. Pot experiments were conducted to investigate the winter wheat crop-water...A deep understanding of crop-water eco-physiological relations is the basis for quantifying plant physiological responses to soil water stress. Pot experiments were conducted to investigate the winter wheat crop-water relations under both drought and waterlogging conditions in two sequential growing seasons from 2000 to 2002, and then the data were used to develop and validate models simulating the responses of winter wheat growth to drought and waterlogging stress. The experiment consisted of four treatments, waterlogging (keep 1 to 2 cm water layer depth above soil surface), control (70%-80% field capacity), light drought (40%-50% field capacity) and severe drought (30%-40% field capacity) with six replicates at five stages in the 2000-2001 growth season. Three soil water content treatments (waterlogging, control and drought) with two replicates were designed in the 2001-2002 growth season. Waterlogging and control treatments are the same as in the 2000-2001 growth season. For the drought treatment, no water was supplied and the soil moisture decreased from field capacity to wilting point. Leaf net photosynthetic rate, transpiration rate, predawn leaf water potential, soil water potential, soil water content and dry matter weight of individual organs were measured. Based on crop-water eco-physiological relations, drought and waterlogging stress factors for winter wheat growth simulation model were put forward. Drought stress factors integrated soil water availability, the sensitivity of different development stages and the difference between physiological processes (such as photosynthesis, transpiration and partitioning). The quantification of waterlogging stress factor considered different crop species, soil water status, waterlogging days and sensitivity at different growth stages. Data sets from the pot experiments revealed favorable performance reliability for the simulation sub-models with the drought and waterlogging stress factors.展开更多
Responses of late spring (21 April 20 May) rainfall to the upper tropospheric cooling over East Asia are investigated with a regional climate model based on Laboratoire de M6t6orologie Dynamique Zoom (LMDZ4-RCM). ...Responses of late spring (21 April 20 May) rainfall to the upper tropospheric cooling over East Asia are investigated with a regional climate model based on Laboratoire de M6t6orologie Dynamique Zoom (LMDZ4-RCM). A control experiment is performed with two runs driven by the mean ERA-40 data during 1958-1977 and 1981 2000, respectively. The model reproduces the major decadal-scale circulation changes in late spring over East Asia, including a cooling in the upper troposphere and an anomalous meridional cell. Accordingly, the precipitation decrease is also captured in the southeast of the upper-level cooling region. To quantify the role of the upper-level cooling in the drought mechanism, a sensitivity experiment is further conducted with the cooling imposed in the upper troposphere. It is demonstrated that the upper-level cooling can generate the anomalous meridional cell and consequently the drought to the southeast of the cooling center. Therefore, upper tropospheric cooling should have played a dominant role in the observed late spring drought over Southeast China in recent decades.展开更多
Increasing basic farmland soil productivity has significance in reducing fertilizer application and maintaining high yield of crops. In this study, we defined that the basic soil productivity (BSP) is the production...Increasing basic farmland soil productivity has significance in reducing fertilizer application and maintaining high yield of crops. In this study, we defined that the basic soil productivity (BSP) is the production capacity of a farmland soil with its own physical and chemical properties for a specific crop season under local environment and field management. Based on 22-yr (1990-2011) long-term experimental data on black soil (Typic hapludoll) in Gongzhuling, Jilin Province, Northeast China, the decision support system for an agro-technology transfer (DSSAT)-CERES-Maize model was applied to simulate the yield by BSP of spring maize (Zea mays L.) to examine the effects of long-term fertilization on changes of BSP and explore the mechanisms of BSP increasing. Five treatments were examined: (1) no-fertilization control (control); (2) chemical nitrogen, phosphorus, and potassium (NPK); (3) NPK plus farmyard manure (NPKM); (4) 1.5 time of NPKM (1.5NPKM) and (5) NPK plus straw (NPKS). Results showed that after 22-yr fertilization, the yield by BSP of spring maize significantly increased 78.0, 101.2, and 69.4% under the NPKM, 1.5NPKM and NPKS, respectively, compared to the initial value (in 1992), but not significant under NPK (26.9% increase) and the control (8.9% decrease). The contribution percentage of BSP showed a significant rising trend (P〈0.05) under 1.5NPKM. The average contribution percentage of BSP among fertilizations ranged from 74.4 to 84.7%, and ranked as 1.5NPKM〉NPKM〉NPK〉NPKS, indicating that organic manure combined with chemical fertilizers (I.5NPKM and NPKM) could more effectively increase BSP compared with the inorganic fertilizer application alone (NPK) in the black soil. This study showed that soil organic matter (SOM) was the key factor among various fertility factors that could affect BSP in the black soil, and total N, total P and/or available P also played important role in BSP increasing. Compared with the chemical fertilization, a balanced chemical plus manure or straw fertilization (NPKM or NPKS) not only increased the concentrations of soil nutrient, but also improved the soil physical properties, and structure and diversity of soil microbial population, resulting in an iincrease of BSP. We recommend that a balanced chemical plus manure or straw fertilization (NPKM or NPKS) should be the fertilization practices to enhance spring maize yield and improve BSP in the black soil of Northeast China.展开更多
Many constitutive models exist to characterise the cyclic behaviour of granular soils but can only simulate deformations for very limited cycles. Fractional derivatives have been regarded as one potential instrument f...Many constitutive models exist to characterise the cyclic behaviour of granular soils but can only simulate deformations for very limited cycles. Fractional derivatives have been regarded as one potential instrument for modelling memory-dependent phenomena. In this paper, the physical connection between the fractional derivative order and the fractal dimension of granular soils is investigated in detail. Then a modified elasto-plastic constitutive model is proposed for evaluating the long-term deformation of granular soils under cyclic loading by incorporating the concept of fac- tional calculus. To describe the flow direction of granular soils under cyclic loading, a cyclic flow potential consider- ing particle breakage is used. Test results of several types of granular soils are used to validate the model performance.展开更多
Drought is one of the severe meteorological disasters and causes of serious losses for agricultural productions, and early assessment of drought hazard degree is critical in management of maize farming. This study pro...Drought is one of the severe meteorological disasters and causes of serious losses for agricultural productions, and early assessment of drought hazard degree is critical in management of maize farming. This study proposes a novel method for assessment of maize drought hazard in different growth stages. First, the study divided the maize growth period into four critical growth stages, including seeding, elongation, tasseling, and filling. Second, maize drought causal factors were selected and the fuzzy membership function was established. Finally, the study built a fuzzy gamma model to assess maize drought hazards, and the gamma 0.93 was finally established using Monte Carlo Analysis. Performing fuzzy gamma operation with 0.93 for gamma and classifying the area yielded a map of maize drought hazards with four zones of light, moderate, severe, and extreme droughts. Using actual field collected data, seven selected samples for drought hazard degree were examined, the model output proved to be a valid tool in the assessment maize drought hazard. This model will be very useful in analyzing the spatial change of maize drought hazard and influence on yield, which is significant for drought management in major agricultural areas.展开更多
Because of the influence of human activities, the evolution of the Modaomen Estuary is no longer a purely natural process. We used a long-term morphodynamic model (PRD-LTMM-10) to study the evolution of the estuary ...Because of the influence of human activities, the evolution of the Modaomen Estuary is no longer a purely natural process. We used a long-term morphodynamic model (PRD-LTMM-10) to study the evolution of the estuary from 1977 to 1988. The model incorporated modules for riprap-siltation promotion and waterway dredging. The model can simulate the morphodynamic evolutionary processes occurring in the Modaomen Estuary during the period of interest. We were able to isolate the long-term influences of various human engineering activities and the roles of natural factors in estuarine evolution. The governance projects had the largest effect on the natural development of the estuary, resulting in larger siltation on the west side. Installation of riprap and reclamation of submerged land resulted in scouring of the main Hengzhou Channel causing deep trough out-shift. Severe siltation narrowed the upper end of the Longshiku Deep Trough.展开更多
Both the attribution of historical change and future projections of droughts rely heavily on climate modeling. However,reasonable drought simulations have remained a challenge, and the related performances of the curr...Both the attribution of historical change and future projections of droughts rely heavily on climate modeling. However,reasonable drought simulations have remained a challenge, and the related performances of the current state-of-the-art Coupled Model Intercomparison Project phase 6(CMIP6) models remain unknown. Here, both the strengths and weaknesses of CMIP6 models in simulating droughts and corresponding hydrothermal conditions in drylands are assessed.While the general patterns of simulated meteorological elements in drylands resemble the observations, the annual precipitation is overestimated by ~33%(with a model spread of 2.3%–77.2%), along with an underestimation of potential evapotranspiration(PET) by ~32%(17.5%–47.2%). The water deficit condition, measured by the difference between precipitation and PET, is 50%(29.1%–71.7%) weaker than observations. The CMIP6 models show weaknesses in capturing the climate mean drought characteristics in drylands, particularly with the occurrence and duration largely underestimated in the hyperarid Afro-Asian areas. Nonetheless, the drought-associated meteorological anomalies, including reduced precipitation, warmer temperatures, higher evaporative demand, and increased water deficit conditions, are reasonably reproduced. The simulated magnitude of precipitation(water deficit) associated with dryland droughts is overestimated by 28%(24%) compared to observations. The observed increasing trends in drought fractional area,occurrence, and corresponding meteorological anomalies during 1980–2014 are reasonably reproduced. Still, the increase in drought characteristics, associated precipitation and water deficit are obviously underestimated after the late 1990s,especially for mild and moderate droughts, indicative of a weaker response of dryland drought changes to global warming in CMIP6 models. Our results suggest that it is imperative to employ bias correction approaches in drought-related studies over drylands by using CMIP6 outputs.展开更多
The authors examined the performance of version 3.4.1 of the Weather Research and Forecasting Model(WRF) with various land surface schemes in simulating a severe drought event in Southwest China. Five numerical experi...The authors examined the performance of version 3.4.1 of the Weather Research and Forecasting Model(WRF) with various land surface schemes in simulating a severe drought event in Southwest China. Five numerical experiments were completed using the Noah land surface scheme, the Pleim-Xiu land surface scheme, the Noah-MP land surface schemes, the Noah- MP scheme with dynamic vegetation, and the Noah-MP scheme with dynamic vegetation and groundwater processes. In general, all the simulations reasonably reproduced the spatial and temporal variations in precipitation, but significant bias was also found, especially for the spatial pattern of simulated precipitation. The WRF simulations with the Noah-MP series land surface schemes performed slightly better than the WRF simulation with the Noah and Pleim-Xiu land surface schemes in reproducing the severe drought events in Southwest China. The leaf area index(LAI) simulated by the different land surface schemes showed significant deviations in Southwest China. The Pleim-Xiu scheme overestimated the value of LAI by a factor of two. The Noah-MP scheme with dynamical vegetation overestimated the magnitude of the annual cycle of the LAI, although the annual mean LAI was close to observations. The simulated LAI showed a long-term lower value from autumn 2009 to spring 2010 relative to normal years. This indicates that the LAI is a potential indictor to monitor drought events.展开更多
A long-term damage cumulative model for the duration of load effect of structural timber is proposed in this paper, which is economical in analysis as well as involving long-term hygrothermal effect. Based on the Mine...A long-term damage cumulative model for the duration of load effect of structural timber is proposed in this paper, which is economical in analysis as well as involving long-term hygrothermal effect. Based on the Miner linear damage cumulative theory, the cumulative damage model is applied to analyze the annual hygrothermal, daily cyclic thermal and daily cyclic relative humidity's effect on load-duration behavior and to calculate the sum of damage in one year. The results indicate that the annual and daily hygrothermal effect should be taken into consideration when calculating the damage accumulation, in which the influence levels from large to small are annual hygrothermal, daily relative humidity and daily thermal effect, Considering both annual and daily hygrothermal variations as external loads the long-term model is determined. Its application to service-life prediction of a historic timber structure verifies the feasibility and high-efficiency of the proposed approach.展开更多
This study assesses vulnerability of agriculture to drought, using WINISAREG model and seasonal SPI2-index for eight climate regions (1951-2004). Results relative to Plovdiv show that in soils of large TAW (total a...This study assesses vulnerability of agriculture to drought, using WINISAREG model and seasonal SPI2-index for eight climate regions (1951-2004). Results relative to Plovdiv show that in soils of large TAW (total available water) net irrigation requirements NIRs range from 0 to 380 mm. In soils of small TAW, NIRs reach 440 mm in the very dry year. NIRs in Sofia/Silistra are about 100 mm smaller than in Plovdiv while in Sandanski they are 30-110 mm larger. Rainfed maize is associated with great yield variability (29% 〈 Cv 〈 72%). Considering an economical RYD (relative yield decrease) threshold, 32% of years are risky when TA Wis large in Plovdiv that is double than in Sofia and half than in Sandanski. In North Bulgaria the risky years are 10% in Pleven/Silistra that is half than in Lom. In Plovdiv region reliable relationships (R2 〉 91%) were found relating the SPI2 "July-Aug." with simulated RYD of rainfed maize while remaining relationships were less accurate (73% 〈 R2 〈 86%). Economical losses are produced when High Peak Season SPI2 〈 + 0.20 in Sandanski, SPI2 〈 - 0.50 in Plovdiv and SPI2 〈 - 0.90 in Sofia. In North Bulgaria the SPI2 threshold ranges from - 0.75 to - 1.50. Derived reliable relationships and SPl-thresholds are used for drought vulnerability mapping.展开更多
Long-term memory(LTM)in the climate system has been well recognized and applied in different research fields,but the origins of this property are still not clear.In this work,the authors contribute to this issue by st...Long-term memory(LTM)in the climate system has been well recognized and applied in different research fields,but the origins of this property are still not clear.In this work,the authors contribute to this issue by studying model simulations under different scenarios.The global mean temperatures from pre-industrial control runs(pi Control),historical(all forcings)simulations,natural forcing only simulations(Historical Nat),greenhouse gas forcing only simulations(Historical GHG),etc.,are analyzed using the detrended fluctuation analysis.The authors find that the LTM already exists in the pi Control simulations,indicating the important roles of internal natural variability in producing the LTM.By comparing the results among different scenarios,the LTM from the piControl runs is further found to be strengthened by adding natural forcings such as the volcanic forcing and the solar forcing.Accordingly,the observed LTM in the climate system is suggested to be mainly controlled by both the‘internal’natural variability and the‘external’natural forcings.The anthropogenic forcings,however,may weaken the LTM.In the projections from RCP2.6 to RCP8.5,a weakening trend of the LTM strength is found.In view of the close relations between the climate memory and the climate predictability,a reduced predictability may be expected in a warming climate.展开更多
Droughts and soil erosion are among the most prominent climatic driven hazards in drylands,leading to detrimental environmental impacts,such as degraded lands,deteriorated ecosystem services and biodiversity,and incre...Droughts and soil erosion are among the most prominent climatic driven hazards in drylands,leading to detrimental environmental impacts,such as degraded lands,deteriorated ecosystem services and biodiversity,and increased greenhouse gas emissions.In response to the current lack of studies combining drought conditions and soil erosion processes,in this study,we developed a comprehensive Geographic Information System(GIS)-based approach to assess soil erosion and droughts,thereby revealing the relationship between soil erosion and droughts under an arid climate.The vegetation condition index(VCI)and temperature condition index(TCI)derived respectively from the enhanced vegetation index(EVI)MOD13A2 and land surface temperature(LST)MOD11A2 products were combined to generate the vegetation health index(VHI).The VHI has been conceived as an efficient tool to monitor droughts in the Negueb watershed,southeastern Tunisia.The revised universal soil loss equation(RUSLE)model was applied to quantitatively estimate soil erosion.The relationship between soil erosion and droughts was investigated through Pearson correlation.Results exhibited that the Negueb watershed experienced recurrent mild to extreme drought during 2000–2016.The average soil erosion rate was determined to be 1.8 t/(hm2•a).The mountainous western part of the watershed was the most vulnerable not only to soil erosion but also to droughts.The slope length and steepness factor was shown to be the most significant controlling parameter driving soil erosion.The relationship between droughts and soil erosion had a positive correlation(r=0.3);however,the correlation was highly varied spatially across the watershed.Drought was linked to soil erosion in the Negueb watershed.The current study provides insight for natural disaster risk assessment,land managers,and stake-holders to apply appropriate management measures to promote sustainable development goals in fragile environments.展开更多
The East Asian monsoon has a tremendous impact on agricultural production in China. An assessment of the risk of drought disaster in maize-producing regions is therefore important in ensuring a reduction in such disas...The East Asian monsoon has a tremendous impact on agricultural production in China. An assessment of the risk of drought disaster in maize-producing regions is therefore important in ensuring a reduction in such disasters and an increase in food security. A risk assessment model, EPIC(Environmental Policy Integrated Climate) model, for maize drought disasters based on the Erosion Productivity Impact Calculator crop model is proposed for areas with the topographic characteristics of the mountainous karst region in southwest China. This region has one of the highest levels of environmental degradation in China. The results showed that the hazard risk level for the maize zone of southwest China is generally high. Most hazard index values were between 0.4 and 0.5,accounting for 47.32% of total study area. However,the risk level for drought loss was low. Most of the loss rate was <0.1, accounting for 96.24% of the total study area. The three high-risk areas were mainlydistributed in the parallel ridge–valley areas in the east of Sichuan Province, the West Mountain area of Guizhou Province, and the south of Yunnan Province.These results provide a scientific basis and support for the reduction of agricultural drought disasters and an increase in food security in the southwest China maize zone.展开更多
This paper is aimed at examining the applicability of methods for resilience, reliability and risk analyses of rain-fed agricultural systems from modeled continuous soil moisture availability in rain-fed crop lands. T...This paper is aimed at examining the applicability of methods for resilience, reliability and risk analyses of rain-fed agricultural systems from modeled continuous soil moisture availability in rain-fed crop lands. The methodology involves integration of soil and climatic data in a simple soil moisture accounting model to assess soil moisture availability, and a risk used as indicator of sustainability of rain-fed agricultural systems. It is also attempted to demonstrate the role of soil moisture modeling in risk analysis and agricultural water management in a semi-arid region in Limpopo Basin where rain-fed agriculture is practiced. For this purpose, a daily-time step soil moisture accounting model is employed to simulate daily soil moisture, evaporation, surface runoff, and deep percolation using 40 years (1961-2000) of agroclimatic data, and cropping cycle data of maize, sorghum and sunflower. Using a sustainability criterion on crop water requirement and soil moisture availability, we determined resilience, risk and reliability as a quantitative measure of sustainability of rain-fed agriculture of these three crops. These soil moisture simulations and the sustainability criteria revealed further confirmation of the relative sensitivity to drought of these crops. Generally it is found that the risk of failure is relatively low for sorghum and relatively high for maize and sunflower in the two sites with some differences of severity of failure owing to the slightly different agroclimatic settings.展开更多
文摘Droughts have serious and widespread impacts on crop production with substantial economic losses. The frequency and severity of drought events may increase in the future due to climate change. We have developed three meteorological drought scenarios for Austria in the period 2008-2040. The scenarios are defined based on a dry day index which is combined with bootstrapping from an observed daily weather dataset of the period 1975-2007. The severity of long-term drought scenarios is characterized by lower annual and seasonal precipitation amounts as well as more significant temperature increases compared to the observations. The long-term impacts of the drought scenarios on Austrian crop production have been analyzed with the biophysical process model EPIC (Environmental Policy Integrated Climate). Our simulation outputs show that—for areas with historical mean annual precipitation sums below 850 mm— already slight increases in dryness result in significantly lower crop yields i.e. depending on the drought severity, between 0.6% and 0.9% decreases in mean annual dry matter crop yields per 1.0% decrease in mean annual precipitation sums. The EPIC results of more severe droughts show that spring and summer precipitation may become a limiting factor in crop production even in regions with historical abundant precipitation.
文摘Drought is the least understood natural disaster due to the complex relationship of multiple contributory factors. Itsbeginning and end are hard to gauge, and they can last for months or even for years. India has faced many droughtsin the last few decades. Predicting future droughts is vital for framing drought management plans to sustainnatural resources. The data-driven modelling for forecasting the metrological time series prediction is becomingmore powerful and flexible with computational intelligence techniques. Machine learning (ML) techniques havedemonstrated success in the drought prediction process and are becoming popular to predict the weather, especiallythe minimum temperature using backpropagation algorithms. The favourite ML techniques for weather forecastinginclude support vector machines (SVM), support vector regression, random forest, decision tree, logistic regression,Naive Bayes, linear regression, gradient boosting tree, k-nearest neighbours (KNN), the adaptive neuro-fuzzyinference system, the feed-forward neural networks, Markovian chain, Bayesian network, hidden Markov models,and autoregressive moving averages, evolutionary algorithms, deep learning and many more. This paper presentsa recent review of the literature using ML in drought prediction, the drought indices, dataset, and performancemetrics.
文摘This study aims to disclose the thermo-oxidative degradation behaviors and kinetics of a carbon fiber reinforced polyimide(CFRPI)composite for modeling of the Iong-term degradation process.The degradation behaviors were revealed through off-gas products analysis,and the overall kinetic interpretation was achieved from study of the mass-loss curves recorded under dynamic conditions.It was found that thermooxidative degradati on of the CFRPI composite was a multistep process,which in eluded four main reaction steps.Since most kinetic an alysis methods were derived from simple reactions described by a single kinetic triplet,they cannot be applied reliably to such a process.Therefore,we firstly separated the four overlapped reaction steps by peak fitting of derivative thermogravimetric curves using Fraser-Suzuki equation consider!ng the asymmetrical n ature of kin etic curves,and subsequently an a lyzed each in dividual reaction employing Friedma n method and experimental master-plots method.Four sets of kinetic triplets were determined to characterize the entire degradation process.The validity of four corresponding kinetic triplets was confirmed by perfect simulation of mass-loss curves recorded at both dynamic conditions used in kinetic analysis and entirely different isothermal conditions.Finally,modeling of Iong-term aging at 400°C of the CFRPI composite was successfully achieved based on these kinetic triplets.The predicted mass loss and flexural property correlated well with experimental results.This study can serve as a basis for rapid evaluation of the long-term durability of the CFRPI composite in various application environments.
基金Under the auspices of Shenzhen Science and Technology Program(No.KQTD20180410161218820)Guangdong Basic and Applied Basic Research Foundation(No.2021A1515012600)。
文摘Inspired by recent significant agricultural yield losses in the eastern China and a missing operational monitoring system,we developed a comprehensive drought monitoring model to better understand the impact of individual key factors contributing to this issue.The resulting model,the‘Humidity calibrated Drought Condition Index’(HcDCI)was applied for the years 2001 to 2019 in form of a case study to Weihai County,Shandong Province in East China.Design and development are based on a linear combination of the Vegetation Condition Index(VCI),the Temperature Condition Index(TCI),and the Rainfall Condition Index(RCI)using multi-source satellite data to create a basic Drought Condition Index(DCI).VCI and TCI were derived from MODIS(Moderate Resolution Imaging Spectroradiometer)data,while precipitation is taken from CHIRPS(Climate Hazards Group InfraRed Precipitation with Station data)data.For reasons of accuracy,the decisive coefficients were determined by the relative humidity of soils at depth of 10-20 cm of particular areas collected by an agrometeorological ground station.The correlation between DCI and soil humidity was optimized with the factors of 0.53,0.33,and 0.14 for VCI,TCI,and RCI,respectively.The model revealed,light agricultural droughts from 2003 to 2013 and in 2018,while more severe droughts occurred in 2001 and 2002,2014-2017,and 2019.The droughts were most severe in January,March,and December,and our findings coincide with historical records.The average temperature during 2012-2019 is 1℃ higher than that during the period 2001-2011 and the average precipitation during 2014-2019 is 192.77 mm less than that during 2008-2013.The spatio-temporal accuracy of the HcDCI model was positively validated by correlation with agricultural crop yield quantities.The model thus,demonstrates its capability to reveal drought periods in detail,its transferability to other regions and its usefulness to take future measures.
基金sub-project of National Major Scientific and Technological Special Project of China for‘Significant New Drugs Development’[2015ZX09501008-004]。
文摘Objective Long-term seroprotection via the hepatitis A vaccine is essential for the prevention of disease from the hepatitis A virus(HAV).Due to documented difficulties during decade-long follow-ups after receiving vaccines,statistical-modeling approaches have been applied to predict the duration of immune protection.Methods Based on five-year follow-up data from a randomized positive-controlled trial among Chinese children(1–8 years old)following a 0,6 months vaccination schedule,a power-law model accounting for the kinetics of B-cell turnover,as well as a modified power-law model considering a memory-B-cell subpopulation,were fitted to predict the long-term immune responses induced by HAV vaccination(Healive or Havrix).Anti-HAV levels of each individual and seroconversion rates up to 30 years after vaccination were predicted.Results A total of 375 participants who completed the two-dose vaccination were included in the analysis.Both models predicted that,over a life-long period,participants vaccinated with Healive would have close but slightly higher antibody titers than those of participants vaccinated with Havrix.Additionally,consistent with previous studies,more than 90%of participants were predicted to maintain seroconversion for at least 30 years.Moreover,the modified power-law model predicted that the antibody titers would reach a plateau level after nearly 15 years post-vaccination.Conclusions Based on the results of our modeling,Healive may adequately induce long-term immune responses following a 0,6 months vaccination schedule in children via induction of memory B cells to provide stable and durable immune protection.
基金supported by the 2018 Major Science and Technology Project of China Railway Construction Corporation Limited(No.2018-A01)the National Natural Science Foundation of China(No.51978588).
文摘To investigate the dynamic characteristics and long-term dynamic stability of the new subgrade structure of medium-low-speed(MLS)maglevs,cyclic vibration tests were performed under natural and rainfall conditions,and the dynamic response of the subgrade structure was monitored.The dynamic response attenuation characteristics along the depth direction of the subgrade were compared,and the distribution characteristics of the dynamic stress on the surface of the subgrade along the longitudinal direction of the line were analyzed.The critical dynamic stress and cumulative deformation were used as indicators to evaluate the long-term dynamic stability of the subgrade.Results show that water has a certain effect on the dynamic characteristics of the subgrade,and the dynamic stress and acceleration increase with the water content.With the dowel steel structure set between the rail-bearing beams,stress concentration at the end of the loaded beam can be prevented,and the diffusion distance of the dynamic stress along the longitudinal direction increases.The dynamic stress measured in the subgrade bed range is less than 1/5 of the critical dynamic stress.The postconstruction settlement of the subgrade after similarity ratio conversion is 3.94 mm and 7.72 mm under natural and rainfall conditions,respectively,and both values are less than the 30 mm limit,indicating that the MLS maglev subgrade structure has good long-term dynamic stability.
基金Project supported by the National High Technology Research and Development Program of China (863 Program) (No. 2003AA209030) High Technology Research and Development Program of Jiangsu Province (No. BG2004320) the National Natural Science Foundation
文摘A deep understanding of crop-water eco-physiological relations is the basis for quantifying plant physiological responses to soil water stress. Pot experiments were conducted to investigate the winter wheat crop-water relations under both drought and waterlogging conditions in two sequential growing seasons from 2000 to 2002, and then the data were used to develop and validate models simulating the responses of winter wheat growth to drought and waterlogging stress. The experiment consisted of four treatments, waterlogging (keep 1 to 2 cm water layer depth above soil surface), control (70%-80% field capacity), light drought (40%-50% field capacity) and severe drought (30%-40% field capacity) with six replicates at five stages in the 2000-2001 growth season. Three soil water content treatments (waterlogging, control and drought) with two replicates were designed in the 2001-2002 growth season. Waterlogging and control treatments are the same as in the 2000-2001 growth season. For the drought treatment, no water was supplied and the soil moisture decreased from field capacity to wilting point. Leaf net photosynthetic rate, transpiration rate, predawn leaf water potential, soil water potential, soil water content and dry matter weight of individual organs were measured. Based on crop-water eco-physiological relations, drought and waterlogging stress factors for winter wheat growth simulation model were put forward. Drought stress factors integrated soil water availability, the sensitivity of different development stages and the difference between physiological processes (such as photosynthesis, transpiration and partitioning). The quantification of waterlogging stress factor considered different crop species, soil water status, waterlogging days and sensitivity at different growth stages. Data sets from the pot experiments revealed favorable performance reliability for the simulation sub-models with the drought and waterlogging stress factors.
文摘Responses of late spring (21 April 20 May) rainfall to the upper tropospheric cooling over East Asia are investigated with a regional climate model based on Laboratoire de M6t6orologie Dynamique Zoom (LMDZ4-RCM). A control experiment is performed with two runs driven by the mean ERA-40 data during 1958-1977 and 1981 2000, respectively. The model reproduces the major decadal-scale circulation changes in late spring over East Asia, including a cooling in the upper troposphere and an anomalous meridional cell. Accordingly, the precipitation decrease is also captured in the southeast of the upper-level cooling region. To quantify the role of the upper-level cooling in the drought mechanism, a sensitivity experiment is further conducted with the cooling imposed in the upper troposphere. It is demonstrated that the upper-level cooling can generate the anomalous meridional cell and consequently the drought to the southeast of the cooling center. Therefore, upper tropospheric cooling should have played a dominant role in the observed late spring drought over Southeast China in recent decades.
基金supported by the National 973 Program of China (2011CB100501)the National 863 Program of China(2013AA102901)+1 种基金the Special Fund for Agro-Scientific Research in the Public Interest, China (201203077)the Science and Technology Project for Grain Production, China (2011BAD16B15)
文摘Increasing basic farmland soil productivity has significance in reducing fertilizer application and maintaining high yield of crops. In this study, we defined that the basic soil productivity (BSP) is the production capacity of a farmland soil with its own physical and chemical properties for a specific crop season under local environment and field management. Based on 22-yr (1990-2011) long-term experimental data on black soil (Typic hapludoll) in Gongzhuling, Jilin Province, Northeast China, the decision support system for an agro-technology transfer (DSSAT)-CERES-Maize model was applied to simulate the yield by BSP of spring maize (Zea mays L.) to examine the effects of long-term fertilization on changes of BSP and explore the mechanisms of BSP increasing. Five treatments were examined: (1) no-fertilization control (control); (2) chemical nitrogen, phosphorus, and potassium (NPK); (3) NPK plus farmyard manure (NPKM); (4) 1.5 time of NPKM (1.5NPKM) and (5) NPK plus straw (NPKS). Results showed that after 22-yr fertilization, the yield by BSP of spring maize significantly increased 78.0, 101.2, and 69.4% under the NPKM, 1.5NPKM and NPKS, respectively, compared to the initial value (in 1992), but not significant under NPK (26.9% increase) and the control (8.9% decrease). The contribution percentage of BSP showed a significant rising trend (P〈0.05) under 1.5NPKM. The average contribution percentage of BSP among fertilizations ranged from 74.4 to 84.7%, and ranked as 1.5NPKM〉NPKM〉NPK〉NPKS, indicating that organic manure combined with chemical fertilizers (I.5NPKM and NPKM) could more effectively increase BSP compared with the inorganic fertilizer application alone (NPK) in the black soil. This study showed that soil organic matter (SOM) was the key factor among various fertility factors that could affect BSP in the black soil, and total N, total P and/or available P also played important role in BSP increasing. Compared with the chemical fertilization, a balanced chemical plus manure or straw fertilization (NPKM or NPKS) not only increased the concentrations of soil nutrient, but also improved the soil physical properties, and structure and diversity of soil microbial population, resulting in an iincrease of BSP. We recommend that a balanced chemical plus manure or straw fertilization (NPKM or NPKS) should be the fertilization practices to enhance spring maize yield and improve BSP in the black soil of Northeast China.
基金financial supports provided by the Fundamental Research Funds (Grant 106112015CDJXY200008)
文摘Many constitutive models exist to characterise the cyclic behaviour of granular soils but can only simulate deformations for very limited cycles. Fractional derivatives have been regarded as one potential instrument for modelling memory-dependent phenomena. In this paper, the physical connection between the fractional derivative order and the fractal dimension of granular soils is investigated in detail. Then a modified elasto-plastic constitutive model is proposed for evaluating the long-term deformation of granular soils under cyclic loading by incorporating the concept of fac- tional calculus. To describe the flow direction of granular soils under cyclic loading, a cyclic flow potential consider- ing particle breakage is used. Test results of several types of granular soils are used to validate the model performance.
基金supported by the National High-Tech R&D Program of China (2011BAD32B00-04)the National Basic Research Program of China (2010CB951102)+1 种基金the National Natural Science Foundation of China (41071326)the National Scientific Research Special Project of Public Sectors (Agriculture) of China (200903041)
文摘Drought is one of the severe meteorological disasters and causes of serious losses for agricultural productions, and early assessment of drought hazard degree is critical in management of maize farming. This study proposes a novel method for assessment of maize drought hazard in different growth stages. First, the study divided the maize growth period into four critical growth stages, including seeding, elongation, tasseling, and filling. Second, maize drought causal factors were selected and the fuzzy membership function was established. Finally, the study built a fuzzy gamma model to assess maize drought hazards, and the gamma 0.93 was finally established using Monte Carlo Analysis. Performing fuzzy gamma operation with 0.93 for gamma and classifying the area yielded a map of maize drought hazards with four zones of light, moderate, severe, and extreme droughts. Using actual field collected data, seven selected samples for drought hazard degree were examined, the model output proved to be a valid tool in the assessment maize drought hazard. This model will be very useful in analyzing the spatial change of maize drought hazard and influence on yield, which is significant for drought management in major agricultural areas.
文摘Because of the influence of human activities, the evolution of the Modaomen Estuary is no longer a purely natural process. We used a long-term morphodynamic model (PRD-LTMM-10) to study the evolution of the estuary from 1977 to 1988. The model incorporated modules for riprap-siltation promotion and waterway dredging. The model can simulate the morphodynamic evolutionary processes occurring in the Modaomen Estuary during the period of interest. We were able to isolate the long-term influences of various human engineering activities and the roles of natural factors in estuarine evolution. The governance projects had the largest effect on the natural development of the estuary, resulting in larger siltation on the west side. Installation of riprap and reclamation of submerged land resulted in scouring of the main Hengzhou Channel causing deep trough out-shift. Severe siltation narrowed the upper end of the Longshiku Deep Trough.
基金supported by Ministry of Science and Technology of China (Grant No. 2018YFA0606501)National Natural Science Foundation of China (Grant No. 42075037)+1 种基金Key Laboratory Open Research Program of Xinjiang Science and Technology Department (Grant No. 2022D04009)the National Key Scientific and Technological Infrastructure project “Earth System Numerical Simulation Facility” (EarthLab)。
文摘Both the attribution of historical change and future projections of droughts rely heavily on climate modeling. However,reasonable drought simulations have remained a challenge, and the related performances of the current state-of-the-art Coupled Model Intercomparison Project phase 6(CMIP6) models remain unknown. Here, both the strengths and weaknesses of CMIP6 models in simulating droughts and corresponding hydrothermal conditions in drylands are assessed.While the general patterns of simulated meteorological elements in drylands resemble the observations, the annual precipitation is overestimated by ~33%(with a model spread of 2.3%–77.2%), along with an underestimation of potential evapotranspiration(PET) by ~32%(17.5%–47.2%). The water deficit condition, measured by the difference between precipitation and PET, is 50%(29.1%–71.7%) weaker than observations. The CMIP6 models show weaknesses in capturing the climate mean drought characteristics in drylands, particularly with the occurrence and duration largely underestimated in the hyperarid Afro-Asian areas. Nonetheless, the drought-associated meteorological anomalies, including reduced precipitation, warmer temperatures, higher evaporative demand, and increased water deficit conditions, are reasonably reproduced. The simulated magnitude of precipitation(water deficit) associated with dryland droughts is overestimated by 28%(24%) compared to observations. The observed increasing trends in drought fractional area,occurrence, and corresponding meteorological anomalies during 1980–2014 are reasonably reproduced. Still, the increase in drought characteristics, associated precipitation and water deficit are obviously underestimated after the late 1990s,especially for mild and moderate droughts, indicative of a weaker response of dryland drought changes to global warming in CMIP6 models. Our results suggest that it is imperative to employ bias correction approaches in drought-related studies over drylands by using CMIP6 outputs.
基金support was provided by the National Basic Research Program of China (Project 2012CB956203)the Special Fund for Meteorological Research in the Public Interest (Grant No. GYHY201006023)+1 种基金the National Key Technologies R&D Program of China (Grant No. 2012BAC22B04)the National Natural Science Foundation of China (General Program, Grant No. 41105039)
文摘The authors examined the performance of version 3.4.1 of the Weather Research and Forecasting Model(WRF) with various land surface schemes in simulating a severe drought event in Southwest China. Five numerical experiments were completed using the Noah land surface scheme, the Pleim-Xiu land surface scheme, the Noah-MP land surface schemes, the Noah- MP scheme with dynamic vegetation, and the Noah-MP scheme with dynamic vegetation and groundwater processes. In general, all the simulations reasonably reproduced the spatial and temporal variations in precipitation, but significant bias was also found, especially for the spatial pattern of simulated precipitation. The WRF simulations with the Noah-MP series land surface schemes performed slightly better than the WRF simulation with the Noah and Pleim-Xiu land surface schemes in reproducing the severe drought events in Southwest China. The leaf area index(LAI) simulated by the different land surface schemes showed significant deviations in Southwest China. The Pleim-Xiu scheme overestimated the value of LAI by a factor of two. The Noah-MP scheme with dynamical vegetation overestimated the magnitude of the annual cycle of the LAI, although the annual mean LAI was close to observations. The simulated LAI showed a long-term lower value from autumn 2009 to spring 2010 relative to normal years. This indicates that the LAI is a potential indictor to monitor drought events.
基金Supported by the National Natural Science Foundation of China (50708083)
文摘A long-term damage cumulative model for the duration of load effect of structural timber is proposed in this paper, which is economical in analysis as well as involving long-term hygrothermal effect. Based on the Miner linear damage cumulative theory, the cumulative damage model is applied to analyze the annual hygrothermal, daily cyclic thermal and daily cyclic relative humidity's effect on load-duration behavior and to calculate the sum of damage in one year. The results indicate that the annual and daily hygrothermal effect should be taken into consideration when calculating the damage accumulation, in which the influence levels from large to small are annual hygrothermal, daily relative humidity and daily thermal effect, Considering both annual and daily hygrothermal variations as external loads the long-term model is determined. Its application to service-life prediction of a historic timber structure verifies the feasibility and high-efficiency of the proposed approach.
文摘This study assesses vulnerability of agriculture to drought, using WINISAREG model and seasonal SPI2-index for eight climate regions (1951-2004). Results relative to Plovdiv show that in soils of large TAW (total available water) net irrigation requirements NIRs range from 0 to 380 mm. In soils of small TAW, NIRs reach 440 mm in the very dry year. NIRs in Sofia/Silistra are about 100 mm smaller than in Plovdiv while in Sandanski they are 30-110 mm larger. Rainfed maize is associated with great yield variability (29% 〈 Cv 〈 72%). Considering an economical RYD (relative yield decrease) threshold, 32% of years are risky when TA Wis large in Plovdiv that is double than in Sofia and half than in Sandanski. In North Bulgaria the risky years are 10% in Pleven/Silistra that is half than in Lom. In Plovdiv region reliable relationships (R2 〉 91%) were found relating the SPI2 "July-Aug." with simulated RYD of rainfed maize while remaining relationships were less accurate (73% 〈 R2 〈 86%). Economical losses are produced when High Peak Season SPI2 〈 + 0.20 in Sandanski, SPI2 〈 - 0.50 in Plovdiv and SPI2 〈 - 0.90 in Sofia. In North Bulgaria the SPI2 threshold ranges from - 0.75 to - 1.50. Derived reliable relationships and SPl-thresholds are used for drought vulnerability mapping.
基金supported by the National Natural Science Foundation of China grant number 41675088the CAS Pioneer Hundred Talents Program。
文摘Long-term memory(LTM)in the climate system has been well recognized and applied in different research fields,but the origins of this property are still not clear.In this work,the authors contribute to this issue by studying model simulations under different scenarios.The global mean temperatures from pre-industrial control runs(pi Control),historical(all forcings)simulations,natural forcing only simulations(Historical Nat),greenhouse gas forcing only simulations(Historical GHG),etc.,are analyzed using the detrended fluctuation analysis.The authors find that the LTM already exists in the pi Control simulations,indicating the important roles of internal natural variability in producing the LTM.By comparing the results among different scenarios,the LTM from the piControl runs is further found to be strengthened by adding natural forcings such as the volcanic forcing and the solar forcing.Accordingly,the observed LTM in the climate system is suggested to be mainly controlled by both the‘internal’natural variability and the‘external’natural forcings.The anthropogenic forcings,however,may weaken the LTM.In the projections from RCP2.6 to RCP8.5,a weakening trend of the LTM strength is found.In view of the close relations between the climate memory and the climate predictability,a reduced predictability may be expected in a warming climate.
基金Chinese Academy of Sciences (CAS)The World Academy of Science (TWAS) for providing financial support
文摘Droughts and soil erosion are among the most prominent climatic driven hazards in drylands,leading to detrimental environmental impacts,such as degraded lands,deteriorated ecosystem services and biodiversity,and increased greenhouse gas emissions.In response to the current lack of studies combining drought conditions and soil erosion processes,in this study,we developed a comprehensive Geographic Information System(GIS)-based approach to assess soil erosion and droughts,thereby revealing the relationship between soil erosion and droughts under an arid climate.The vegetation condition index(VCI)and temperature condition index(TCI)derived respectively from the enhanced vegetation index(EVI)MOD13A2 and land surface temperature(LST)MOD11A2 products were combined to generate the vegetation health index(VHI).The VHI has been conceived as an efficient tool to monitor droughts in the Negueb watershed,southeastern Tunisia.The revised universal soil loss equation(RUSLE)model was applied to quantitatively estimate soil erosion.The relationship between soil erosion and droughts was investigated through Pearson correlation.Results exhibited that the Negueb watershed experienced recurrent mild to extreme drought during 2000–2016.The average soil erosion rate was determined to be 1.8 t/(hm2•a).The mountainous western part of the watershed was the most vulnerable not only to soil erosion but also to droughts.The slope length and steepness factor was shown to be the most significant controlling parameter driving soil erosion.The relationship between droughts and soil erosion had a positive correlation(r=0.3);however,the correlation was highly varied spatially across the watershed.Drought was linked to soil erosion in the Negueb watershed.The current study provides insight for natural disaster risk assessment,land managers,and stake-holders to apply appropriate management measures to promote sustainable development goals in fragile environments.
基金supported by National Natural Science Foundation of China (Grant Nos. 41301593 and 41471428)the Arid Meteorology Science Foundation, CMA (IAM201407)the State Key Development Program for BasicResearch of China (Grant No. 2012CB955402)
文摘The East Asian monsoon has a tremendous impact on agricultural production in China. An assessment of the risk of drought disaster in maize-producing regions is therefore important in ensuring a reduction in such disasters and an increase in food security. A risk assessment model, EPIC(Environmental Policy Integrated Climate) model, for maize drought disasters based on the Erosion Productivity Impact Calculator crop model is proposed for areas with the topographic characteristics of the mountainous karst region in southwest China. This region has one of the highest levels of environmental degradation in China. The results showed that the hazard risk level for the maize zone of southwest China is generally high. Most hazard index values were between 0.4 and 0.5,accounting for 47.32% of total study area. However,the risk level for drought loss was low. Most of the loss rate was <0.1, accounting for 96.24% of the total study area. The three high-risk areas were mainlydistributed in the parallel ridge–valley areas in the east of Sichuan Province, the West Mountain area of Guizhou Province, and the south of Yunnan Province.These results provide a scientific basis and support for the reduction of agricultural drought disasters and an increase in food security in the southwest China maize zone.
文摘This paper is aimed at examining the applicability of methods for resilience, reliability and risk analyses of rain-fed agricultural systems from modeled continuous soil moisture availability in rain-fed crop lands. The methodology involves integration of soil and climatic data in a simple soil moisture accounting model to assess soil moisture availability, and a risk used as indicator of sustainability of rain-fed agricultural systems. It is also attempted to demonstrate the role of soil moisture modeling in risk analysis and agricultural water management in a semi-arid region in Limpopo Basin where rain-fed agriculture is practiced. For this purpose, a daily-time step soil moisture accounting model is employed to simulate daily soil moisture, evaporation, surface runoff, and deep percolation using 40 years (1961-2000) of agroclimatic data, and cropping cycle data of maize, sorghum and sunflower. Using a sustainability criterion on crop water requirement and soil moisture availability, we determined resilience, risk and reliability as a quantitative measure of sustainability of rain-fed agriculture of these three crops. These soil moisture simulations and the sustainability criteria revealed further confirmation of the relative sensitivity to drought of these crops. Generally it is found that the risk of failure is relatively low for sorghum and relatively high for maize and sunflower in the two sites with some differences of severity of failure owing to the slightly different agroclimatic settings.