This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé...This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé analysis.On the basis of the bilinear form,the forms of two-soliton solutions,three-soliton solutions,and four-soliton solutions are studied specifically.The appropriate parameter values are chosen and the corresponding figures are presented.The breather waves solutions,lump solutions,periodic solutions and the interaction of breather waves solutions and soliton solutions,etc.are given.In addition,we also analyze the different effects of the parameters on the figures.The figures of the same set of parameters in different planes are presented to describe the dynamical behavior of solutions.These are important for describing water waves in nature.展开更多
Asymptotic eigenvalues and eigenfunctions for the Orr-Sommerfeld equation in two-dimensional and three-dimensional incompressible flows on an infinite domain and on a semi-infinite domain are obtained. Two configurati...Asymptotic eigenvalues and eigenfunctions for the Orr-Sommerfeld equation in two-dimensional and three-dimensional incompressible flows on an infinite domain and on a semi-infinite domain are obtained. Two configurations are considered, one in which a short-wave limit approximation is used, and another in which a long-wave limit approximation is used. In the short-wave limit, Wentzel-Kramers-Brillouin (WKB) methods are utilized to estimate the eigenvalues, and the eigenfunctions are approximated in terms of Green’s functions. The procedure consists of transforming the Orr-Sommerfeld equation into a system of two second order ordinary differential equations for which the eigenvalues and the eigenfunctions can be approximated. In the long-wave limit approximation, solutions are expressed in terms of generalized hypergeometric functions. Our procedure works regardless of the values of the Reynolds number.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.11505090)Research Award Foundation for Outstanding Young Scientists of Shandong Province(Grant No.BS2015SF009)+2 种基金the Doctoral Foundation of Liaocheng University(Grant No.318051413)Liaocheng University Level Science and Technology Research Fund(Grant No.318012018)Discipline with Strong Characteristics of Liaocheng University–Intelligent Science and Technology(Grant No.319462208).
文摘This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé analysis.On the basis of the bilinear form,the forms of two-soliton solutions,three-soliton solutions,and four-soliton solutions are studied specifically.The appropriate parameter values are chosen and the corresponding figures are presented.The breather waves solutions,lump solutions,periodic solutions and the interaction of breather waves solutions and soliton solutions,etc.are given.In addition,we also analyze the different effects of the parameters on the figures.The figures of the same set of parameters in different planes are presented to describe the dynamical behavior of solutions.These are important for describing water waves in nature.
文摘Asymptotic eigenvalues and eigenfunctions for the Orr-Sommerfeld equation in two-dimensional and three-dimensional incompressible flows on an infinite domain and on a semi-infinite domain are obtained. Two configurations are considered, one in which a short-wave limit approximation is used, and another in which a long-wave limit approximation is used. In the short-wave limit, Wentzel-Kramers-Brillouin (WKB) methods are utilized to estimate the eigenvalues, and the eigenfunctions are approximated in terms of Green’s functions. The procedure consists of transforming the Orr-Sommerfeld equation into a system of two second order ordinary differential equations for which the eigenvalues and the eigenfunctions can be approximated. In the long-wave limit approximation, solutions are expressed in terms of generalized hypergeometric functions. Our procedure works regardless of the values of the Reynolds number.