期刊文献+
共找到129篇文章
< 1 2 7 >
每页显示 20 50 100
Load-measurement method for floating offshore wind turbines based on a long short-term memory (LSTM) neural network
1
作者 Yonggang LIN Xiangheng FENG +1 位作者 Hongwei LIU Yong SUN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第5期456-470,共15页
Complicated loads encountered by floating offshore wind turbines(FOWTs)in real sea conditions are crucial for future optimization of design,but obtaining data on them directly poses a challenge.To address this issue,w... Complicated loads encountered by floating offshore wind turbines(FOWTs)in real sea conditions are crucial for future optimization of design,but obtaining data on them directly poses a challenge.To address this issue,we applied machine learning techniques to obtain hydrodynamic and aerodynamic loads of FOWTs by measuring platform motion responses and wave-elevation sequences.First,a computational fluid dynamics(CFD)simulation model of the floating platform was established based on the dynamic fluid body interaction technique and overset grid technology.Then,a long short-term memory(LSTM)neural network model was constructed and trained to learn the nonlinear relationship between the waves,platform-motion inputs,and hydrodynamic-load outputs.The optimal model was determined after analyzing the sensitivity of parameters such as sample characteristics,network layers,and neuron numbers.Subsequently,the effectiveness of the hydrodynamic load model was validated under different simulation conditions,and the aerodynamic load calculation was completed based on the D'Alembert principle.Finally,we built a hybrid-scale FOWT model,based on the software in the loop strategy,in which the wind turbine was replaced by an actuation system.Model tests were carried out in a wave basin and the results demonstrated that the root mean square errors of the hydrodynamic and aerodynamic load measurements were 4.20%and 10.68%,respectively. 展开更多
关键词 Floating offshore wind turbine(FOWT) long short-term memory(LSTM)neural network Machine learning technique Load measurement Hybrid-scale model test
原文传递
A forecasting model for wave heights based on a long short-term memory neural network 被引量:8
2
作者 Song Gao Juan Huang +3 位作者 Yaru Li Guiyan Liu Fan Bi Zhipeng Bai 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第1期62-69,共8页
To explore new operational forecasting methods of waves,a forecasting model for wave heights at three stations in the Bohai Sea has been developed.This model is based on long short-term memory(LSTM)neural network with... To explore new operational forecasting methods of waves,a forecasting model for wave heights at three stations in the Bohai Sea has been developed.This model is based on long short-term memory(LSTM)neural network with sea surface wind and wave heights as training samples.The prediction performance of the model is evaluated,and the error analysis shows that when using the same set of numerically predicted sea surface wind as input,the prediction error produced by the proposed LSTM model at Sta.N01 is 20%,18%and 23%lower than the conventional numerical wave models in terms of the total root mean square error(RMSE),scatter index(SI)and mean absolute error(MAE),respectively.Particularly,for significant wave height in the range of 3–5 m,the prediction accuracy of the LSTM model is improved the most remarkably,with RMSE,SI and MAE all decreasing by 24%.It is also evident that the numbers of hidden neurons,the numbers of buoys used and the time length of training samples all have impact on the prediction accuracy.However,the prediction does not necessary improve with the increase of number of hidden neurons or number of buoys used.The experiment trained by data with the longest time length is found to perform the best overall compared to other experiments with a shorter time length for training.Overall,long short-term memory neural network was proved to be a very promising method for future development and applications in wave forecasting. 展开更多
关键词 long short-term memory marine forecast neural network significant wave height
在线阅读 下载PDF
Prediction Method of Equipment Remaining Life Based on Self-Attention Long Short-Term Memory Neural Network 被引量:1
3
作者 曹现刚 雷卓 +2 位作者 李彦川 张梦园 段欣宇 《Journal of Shanghai Jiaotong university(Science)》 EI 2023年第5期652-664,共13页
Aiming at the problem of insufficient consideration of the correlation between components in the prediction of the remaining life of mechanical equipment,the method of remaining life prediction that combines the self-... Aiming at the problem of insufficient consideration of the correlation between components in the prediction of the remaining life of mechanical equipment,the method of remaining life prediction that combines the self-attention mechanism with the long short-term memory neural network(LSTM-NN)is proposed,called Self-Attention-LSTM.First,the auto-encoder is used to obtain the component-level state information;second,the state information of each component is input into the self-attention mechanism to learn the correlation between components;then,the multi-component correlation matrix is added to the LSTM input gate,and the LSTM-NN is used for life prediction.Finally,combined with the commercial modular aero-propulsion system simulation data set(C-MAPSS),the experiment was carried out and compared with the existing methods.Research results show that the proposed method can achieve better prediction accuracy and verify the feasibility of the method. 展开更多
关键词 equipment remaining life prediction self-attention long short-term memory neural network(LSTMNN) correlation analysis
原文传递
Dynamic Hand Gesture Recognition Based on Short-Term Sampling Neural Networks 被引量:14
4
作者 Wenjin Zhang Jiacun Wang Fangping Lan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第1期110-120,共11页
Hand gestures are a natural way for human-robot interaction.Vision based dynamic hand gesture recognition has become a hot research topic due to its various applications.This paper presents a novel deep learning netwo... Hand gestures are a natural way for human-robot interaction.Vision based dynamic hand gesture recognition has become a hot research topic due to its various applications.This paper presents a novel deep learning network for hand gesture recognition.The network integrates several well-proved modules together to learn both short-term and long-term features from video inputs and meanwhile avoid intensive computation.To learn short-term features,each video input is segmented into a fixed number of frame groups.A frame is randomly selected from each group and represented as an RGB image as well as an optical flow snapshot.These two entities are fused and fed into a convolutional neural network(Conv Net)for feature extraction.The Conv Nets for all groups share parameters.To learn longterm features,outputs from all Conv Nets are fed into a long short-term memory(LSTM)network,by which a final classification result is predicted.The new model has been tested with two popular hand gesture datasets,namely the Jester dataset and Nvidia dataset.Comparing with other models,our model produced very competitive results.The robustness of the new model has also been proved with an augmented dataset with enhanced diversity of hand gestures. 展开更多
关键词 Convolutional neural network(ConvNet) hand gesture recognition long short-term memory(LSTM)network short-term sampling transfer learning
在线阅读 下载PDF
Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis 被引量:7
5
作者 Shanwei Xiong Li Zhou +1 位作者 Yiyang Dai Xu Ji 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期1-14,共14页
A correct and timely fault diagnosis is important for improving the safety and reliability of chemical processes. With the advancement of big data technology, data-driven fault diagnosis methods are being extensively ... A correct and timely fault diagnosis is important for improving the safety and reliability of chemical processes. With the advancement of big data technology, data-driven fault diagnosis methods are being extensively used and still have considerable potential. In recent years, methods based on deep neural networks have made significant breakthroughs, and fault diagnosis methods for industrial processes based on deep learning have attracted considerable research attention. Therefore, we propose a fusion deeplearning algorithm based on a fully convolutional neural network(FCN) to extract features and build models to correctly diagnose all types of faults. We use long short-term memory(LSTM) units to expand our proposed FCN so that our proposed deep learning model can better extract the time-domain features of chemical process data. We also introduce the attention mechanism into the model, aimed at highlighting the importance of features, which is significant for the fault diagnosis of chemical processes with many features. When applied to the benchmark Tennessee Eastman process, our proposed model exhibits impressive performance, demonstrating the effectiveness of the attention-based LSTM FCN in chemical process fault diagnosis. 展开更多
关键词 Safety Fault diagnosis Process systems long short-term memory Attention mechanism neural networks
在线阅读 下载PDF
Development and application of an intelligent thermal state monitoring system for sintering machine tails based on CNN-LSTM hybrid neural networks 被引量:1
6
作者 Da-lin Xiong Xin-yu Zhang +3 位作者 Zheng-wei Yu Xue-feng Zhang Hong-ming Long Liang-jun Chen 《Journal of Iron and Steel Research International》 2025年第1期52-63,共12页
Real-time prediction and precise control of sinter quality are pivotal for energy saving,cost reduction,quality improvement and efficiency enhancement in the ironmaking process.To advance,the accuracy and comprehensiv... Real-time prediction and precise control of sinter quality are pivotal for energy saving,cost reduction,quality improvement and efficiency enhancement in the ironmaking process.To advance,the accuracy and comprehensiveness of sinter quality prediction,an intelligent flare monitoring system for sintering machine tails that combines hybrid neural networks integrating convolutional neural network with long short-term memory(CNN-LSTM)networks was proposed.The system utilized a high-temperature thermal imager for image acquisition at the sintering machine tail and employed a zone-triggered method to accurately capture dynamic feature images under challenging conditions of high-temperature,high dust,and occlusion.The feature images were then segmented through a triple-iteration multi-thresholding approach based on the maximum between-class variance method to minimize detail loss during the segmentation process.Leveraging the advantages of CNN and LSTM networks in capturing temporal and spatial information,a comprehensive model for sinter quality prediction was constructed,with inputs including the proportion of combustion layer,porosity rate,temperature distribution,and image features obtained from the convolutional neural network,and outputs comprising quality indicators such as underburning index,uniformity index,and FeO content of the sinter.The accuracy is notably increased,achieving a 95.8%hit rate within an error margin of±1.0.After the system is applied,the average qualified rate of FeO content increases from 87.24%to 89.99%,representing an improvement of 2.75%.The average monthly solid fuel consumption is reduced from 49.75 to 46.44 kg/t,leading to a 6.65%reduction and underscoring significant energy saving and cost reduction effects. 展开更多
关键词 Sinter quality Convolutional neural network long short-term memory Image segmentation FeO prediction
原文传递
Landslide displacement prediction based on optimized empirical mode decomposition and deep bidirectional long short-term memory network 被引量:4
7
作者 ZHANG Ming-yue HAN Yang +1 位作者 YANG Ping WANG Cong-ling 《Journal of Mountain Science》 SCIE CSCD 2023年第3期637-656,共20页
There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement an... There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement and time series of a landslide.The second one is the dynamic evolution of a landslide,which could not be feasibly simulated simply by traditional prediction models.In this paper,a dynamic model of displacement prediction is introduced for composite landslides based on a combination of empirical mode decomposition with soft screening stop criteria(SSSC-EMD)and deep bidirectional long short-term memory(DBi-LSTM)neural network.In the proposed model,the time series analysis and SSSC-EMD are used to decompose the observed accumulated displacements of a slope into three components,viz.trend displacement,periodic displacement,and random displacement.Then,by analyzing the evolution pattern of a landslide and its key factors triggering landslides,appropriate influencing factors are selected for each displacement component,and DBi-LSTM neural network to carry out multi-datadriven dynamic prediction for each displacement component.An accumulated displacement prediction has been obtained by a summation of each component.For accuracy verification and engineering practicability of the model,field observations from two known landslides in China,the Xintan landslide and the Bazimen landslide were collected for comparison and evaluation.The case study verified that the model proposed in this paper can better characterize the"stepwise"deformation characteristics of a slope.As compared with long short-term memory(LSTM)neural network,support vector machine(SVM),and autoregressive integrated moving average(ARIMA)model,DBi-LSTM neural network has higher accuracy in predicting the periodic displacement of slope deformation,with the mean absolute percentage error reduced by 3.063%,14.913%,and 13.960%respectively,and the root mean square error reduced by 1.951 mm,8.954 mm and 7.790 mm respectively.Conclusively,this model not only has high prediction accuracy but also is more stable,which can provide new insight for practical landslide prevention and control engineering. 展开更多
关键词 Landslide displacement Empirical mode decomposition Soft screening stop criteria Deep bidirectional long short-term memory neural network Xintan landslide Bazimen landslide
原文传递
Forecasting electricity prices in the spot market utilizing wavelet packet decomposition integrated with a hybrid deep neural network
8
作者 Heping Jia Yuchen Guo +5 位作者 Xiaobin Zhang Qianxin Ma Zhenglin Yang Yaxian Zheng Dan Zeng Dunnan Liu 《Global Energy Interconnection》 2025年第5期874-890,共17页
Accurate forecasting of electricity spot prices is crucial for market participants in formulating bidding strategies.However,the extreme volatility of electricity spot prices,influenced by various factors,poses signif... Accurate forecasting of electricity spot prices is crucial for market participants in formulating bidding strategies.However,the extreme volatility of electricity spot prices,influenced by various factors,poses significant challenges for forecasting.To address the data uncertainty of electricity prices and effectively mitigate gradient issues,overfitting,and computational challenges associated with using a single model during forecasting,this paper proposes a framework for forecasting spot market electricity prices by integrating wavelet packet decomposition(WPD)with a hybrid deep neural network.By ensuring accurate data decomposition,the WPD algorithm aids in detecting fluctuating patterns and isolating random noise.The hybrid model integrates temporal convolutional networks(TCN)and long short-term memory(LSTM)networks to enhance feature extraction and improve forecasting performance.Compared to other techniques,it significantly reduces average errors,decreasing mean absolute error(MAE)by 27.3%,root mean square error(RMSE)by 66.9%,and mean absolute percentage error(MAPE)by 22.8%.This framework effectively captures the intricate fluctuations present in the time series,resulting in more accurate and reliable predictions. 展开更多
关键词 Electricity price forecasting long and short-term memory Hybrid deep neural network Wavelet packet decomposition Temporal neural network
在线阅读 下载PDF
An intelligent solar flare prediction model based on X-ray flux curves using Long Short-Term Memory
9
作者 Yan Gao Li Zhang Long Xu 《Astronomical Techniques and Instruments》 2025年第2期65-72,共8页
Solar flares are violent solar outbursts which have a great influence on the space environment surrounding Earth,potentially causing disruption of the ionosphere and interference with the geomagnetic field,thus causin... Solar flares are violent solar outbursts which have a great influence on the space environment surrounding Earth,potentially causing disruption of the ionosphere and interference with the geomagnetic field,thus causing magnetic storms.Consequently,it is very important to accurately predict the time period of solar flares.This paper proposes a flare prediction model,based on physical images of active solar regions.We employ X-ray flux curves recorded directly by the Geostationary Operational Environmental Satellite,used as input data for the model,allowing us to largely avoid the influence of accidental errors,effectively improving the model prediction efficiency.A model based on the X-ray flux curve can predict whether there will be a flare event within 24 hours.The reverse can also be verified by the peak of the X-ray flux curve to see if a flare has occurred within the past 24 hours.The True Positive Rate and False Positive Rate of the prediction model,based on physical images of active regions are 0.6070 and 0.2410 respectively,and the accuracy and True Skill Statistics are 0.7590 and 0.5556.Our model can effectively improve prediction efficiency compared with models based on the physical parameters of active regions or magnetic field records,providing a simple method for solar flare prediction. 展开更多
关键词 neural network long short-term Memory Solar flare prediction X-ray flux curve
在线阅读 下载PDF
Seismic-inversion method for nonlinear mapping multilevel well–seismic matching based on bidirectional long short-term memory networks
10
作者 Yue You-Xi Wu Jia-Wei Chen Yi-Du 《Applied Geophysics》 SCIE CSCD 2022年第2期244-257,308,共15页
In this paper,the recurrent neural network structure of a bidirectional long shortterm memory network(Bi-LSTM)with special memory cells that store information is used to characterize the deep features of the variation... In this paper,the recurrent neural network structure of a bidirectional long shortterm memory network(Bi-LSTM)with special memory cells that store information is used to characterize the deep features of the variation pattern between logging and seismic data.A mapping relationship model between high-frequency logging data and low-frequency seismic data is established via nonlinear mapping.The seismic waveform is infinitely approximated using the logging curve in the low-frequency band to obtain a nonlinear mapping model of this scale,which then stepwise approach the logging curve in the high-frequency band.Finally,a seismic-inversion method of nonlinear mapping multilevel well–seismic matching based on the Bi-LSTM network is developed.The characteristic of this method is that by applying the multilevel well–seismic matching process,the seismic data are stepwise matched to the scale range that is consistent with the logging curve.Further,the matching operator at each level can be stably obtained to effectively overcome the problems that occur in the well–seismic matching process,such as the inconsistency in the scale of two types of data,accuracy in extracting the seismic wavelet of the well-side seismic traces,and multiplicity of solutions.Model test and practical application demonstrate that this method improves the vertical resolution of inversion results,and at the same time,the boundary and the lateral characteristics of the sand body are well maintained to improve the accuracy of thin-layer sand body prediction and achieve an improved practical application effect. 展开更多
关键词 bidirectional recurrent neural networks long short-term memory nonlinear mapping well–seismic matching seismic inversion
在线阅读 下载PDF
Machine learning for pore-water pressure time-series prediction:Application of recurrent neural networks 被引量:24
11
作者 Xin Wei Lulu Zhang +2 位作者 Hao-Qing Yang Limin Zhang Yang-Ping Yao 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第1期453-467,共15页
Knowledge of pore-water pressure(PWP)variation is fundamental for slope stability.A precise prediction of PWP is difficult due to complex physical mechanisms and in situ natural variability.To explore the applicabilit... Knowledge of pore-water pressure(PWP)variation is fundamental for slope stability.A precise prediction of PWP is difficult due to complex physical mechanisms and in situ natural variability.To explore the applicability and advantages of recurrent neural networks(RNNs)on PWP prediction,three variants of RNNs,i.e.,standard RNN,long short-term memory(LSTM)and gated recurrent unit(GRU)are adopted and compared with a traditional static artificial neural network(ANN),i.e.,multi-layer perceptron(MLP).Measurements of rainfall and PWP of representative piezometers from a fully instrumented natural slope in Hong Kong are used to establish the prediction models.The coefficient of determination(R^2)and root mean square error(RMSE)are used for model evaluations.The influence of input time series length on the model performance is investigated.The results reveal that MLP can provide acceptable performance but is not robust.The uncertainty bounds of RMSE of the MLP model range from 0.24 kPa to 1.12 k Pa for the selected two piezometers.The standard RNN can perform better but the robustness is slightly affected when there are significant time lags between PWP changes and rainfall.The GRU and LSTM models can provide more precise and robust predictions than the standard RNN.The effects of the hidden layer structure and the dropout technique are investigated.The single-layer GRU is accurate enough for PWP prediction,whereas a double-layer GRU brings extra time cost with little accuracy improvement.The dropout technique is essential to overfitting prevention and improvement of accuracy. 展开更多
关键词 Pore-water pressure SLOPE Multi-layer perceptron Recurrent neural networks long short-term memory Gated recurrent unit
在线阅读 下载PDF
Minimal Gated Unit for Recurrent Neural Networks 被引量:39
12
作者 Guo-Bing Zhou Jianxin Wu +1 位作者 Chen-Lin Zhang Zhi-Hua Zhou 《International Journal of Automation and computing》 EI CSCD 2016年第3期226-234,共9页
Recurrent neural networks (RNN) have been very successful in handling sequence data. However, understanding RNN and finding the best practices for RNN learning is a difficult task, partly because there are many comp... Recurrent neural networks (RNN) have been very successful in handling sequence data. However, understanding RNN and finding the best practices for RNN learning is a difficult task, partly because there are many competing and complex hidden units, such as the long short-term memory (LSTM) and the gated recurrent unit (GRU). We propose a gated unit for RNN, named as minimal gated unit (MCU), since it only contains one gate, which is a minimal design among all gated hidden units. The design of MCU benefits from evaluation results on LSTM and GRU in the literature. Experiments on various sequence data show that MCU has comparable accuracy with GRU, but has a simpler structure, fewer parameters, and faster training. Hence, MGU is suitable in RNN's applications. Its simple architecture also means that it is easier to evaluate and tune, and in principle it is easier to study MGU's properties theoretically and empirically. 展开更多
关键词 Recurrent neural network minimal gated unit (MGU) gated unit gate recurrent unit (GRU) long short-term memory(LSTM) deep learning.
原文传递
A hybrid deep neural network based on multi-time window convolutional bidirectional LSTM for civil aircraft APU hazard identification 被引量:8
13
作者 Di ZHOU Xiao ZHUANG Hongfu ZUO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第4期344-361,共18页
Safety is one of the important topics in the field of civil aviation. Auxiliary Power Unit(APU) is one of important components in aircraft, which provides electrical power and compressed air for aircraft. The hazards ... Safety is one of the important topics in the field of civil aviation. Auxiliary Power Unit(APU) is one of important components in aircraft, which provides electrical power and compressed air for aircraft. The hazards in APU are prone to cause economic losses and even casualties. So,actively identifying the hazards in APU before an accident occurs is necessary. In this paper, a Hybrid Deep Neural Network(HDNN) based on multi-time window convolutional neural network-Bidirectional Long Short-Term Memory(CNN-Bi LSTM) neural network is proposed for active hazard identification of APU in civil aircraft. In order to identify the risks caused by different types of failures, the proposed HDNN simultaneously integrates three CNN-Bi LSTM basic models with different time window sizes in parallel by using a fully connected neural network. The CNN-Bi LSTM basic model can automatically extract features representing the system state from the input data and learn the time information of irregular trends in the time series data. Nine benchmark models are compared with the proposed HDNN. The comparison results show that the proposed HDNN has the highest identification accuracy. The HDNN has the most stable identification performance for data with imbalanced samples. 展开更多
关键词 Civil aviation Convolutional neural networks Deep neural networks Hazard identification long short-term memory
原文传递
Practical Options for Adopting Recurrent Neural Network and Its Variants on Remaining Useful Life Prediction 被引量:3
14
作者 Youdao Wang Yifan Zhao Sri Addepalli 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期32-51,共20页
The remaining useful life(RUL)of a system is generally predicted by utilising the data collected from the sensors that continuously monitor different indicators.Recently,different deep learning(DL)techniques have been... The remaining useful life(RUL)of a system is generally predicted by utilising the data collected from the sensors that continuously monitor different indicators.Recently,different deep learning(DL)techniques have been used for RUL prediction and achieved great success.Because the data is often time-sequential,recurrent neural network(RNN)has attracted significant interests due to its efficiency in dealing with such data.This paper systematically reviews RNN and its variants for RUL prediction,with a specific focus on understanding how different components(e.g.,types of optimisers and activation functions)or parameters(e.g.,sequence length,neuron quantities)affect their performance.After that,a case study using the well-studied NASA’s C-MAPSS dataset is presented to quantitatively evaluate the influence of various state-of-the-art RNN structures on the RUL prediction performance.The result suggests that the variant methods usually perform better than the original RNN,and among which,Bi-directional Long Short-Term Memory generally has the best performance in terms of stability,precision and accuracy.Certain model structures may fail to produce valid RUL prediction result due to the gradient vanishing or gradient exploring problem if the parameters are not chosen appropriately.It is concluded that parameter tuning is a crucial step to achieve optimal prediction performance. 展开更多
关键词 Remaining useful life prediction Deep learning Recurrent neural network long short-term memory Bi-directional long short-term memory Gated recurrent unit
在线阅读 下载PDF
Synthetic well logs generation via Recurrent Neural Networks 被引量:13
15
作者 ZHANG Dongxiao CHEN Yuntian MENG Jin 《Petroleum Exploration and Development》 2018年第4期629-639,共11页
To supplement missing logging information without increasing economic cost, a machine learning method to generate synthetic well logs from the existing log data was presented, and the experimental verification and app... To supplement missing logging information without increasing economic cost, a machine learning method to generate synthetic well logs from the existing log data was presented, and the experimental verification and application effect analysis were carried out. Since the traditional Fully Connected Neural Network(FCNN) is incapable of preserving spatial dependency, the Long Short-Term Memory(LSTM) network, which is a kind of Recurrent Neural Network(RNN), was utilized to establish a method for log reconstruction. By this method, synthetic logs can be generated from series of input log data with consideration of variation trend and context information with depth. Besides, a cascaded LSTM was proposed by combining the standard LSTM with a cascade system. Testing through real well log data shows that: the results from the LSTM are of higher accuracy than the traditional FCNN; the cascaded LSTM is more suitable for the problem with multiple series data; the machine learning method proposed provides an accurate and cost effective way for synthetic well log generation. 展开更多
关键词 well LOG GENERATING method machine learning Fully Connected neural network RECURRENT neural network long short-term Memory artificial intelligence
在线阅读 下载PDF
Prediction of Leakage from an Axial Piston Pump Slipper with Circular Dimples Using Deep Neural Networks 被引量:2
16
作者 Ozkan Ozmen Cem Sinanoglu +1 位作者 Abdullah Caliskan Hasan Badem 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第2期111-121,共11页
Oil leakage between the slipper and swash plate of an axial piston pump has a significant effect on the efficiency of the pump.Therefore,it is extremely important that any leakage can be predicted.This study investiga... Oil leakage between the slipper and swash plate of an axial piston pump has a significant effect on the efficiency of the pump.Therefore,it is extremely important that any leakage can be predicted.This study investigates the leakage,oil film thickness,and pocket pressure values of a slipper with circular dimples under different working conditions.The results reveal that flat slippers suffer less leakage than those with textured surfaces.Also,a deep learning-based framework is proposed for modeling the slipper behavior.This framework is a long short-term memory-based deep neural network,which has been extremely successful in predicting time series.The model is compared with four conventional machine learning methods.In addition,statistical analyses and comparisons confirm the superiority of the proposed model. 展开更多
关键词 Slipper LEAKAGE Circular dimpled long short-term memory Deep neural network
在线阅读 下载PDF
Recurrent Convolutional Neural Network MSER-Based Approach for Payable Document Processing 被引量:1
17
作者 Suliman Aladhadh Hidayat Ur Rehman +1 位作者 Ali Mustafa Qamar Rehan Ullah Khan 《Computers, Materials & Continua》 SCIE EI 2021年第12期3399-3411,共13页
A tremendous amount of vendor invoices is generated in the corporate sector.To automate the manual data entry in payable documents,highly accurate Optical Character Recognition(OCR)is required.This paper proposes an e... A tremendous amount of vendor invoices is generated in the corporate sector.To automate the manual data entry in payable documents,highly accurate Optical Character Recognition(OCR)is required.This paper proposes an end-to-end OCR system that does both localization and recognition and serves as a single unit to automate payable document processing such as cheques and cash disbursement.For text localization,the maximally stable extremal region is used,which extracts a word or digit chunk from an invoice.This chunk is later passed to the deep learning model,which performs text recognition.The deep learning model utilizes both convolution neural networks and long short-term memory(LSTM).The convolution layer is used for extracting features,which are fed to the LSTM.The model integrates feature extraction,modeling sequence,and transcription into a unified network.It handles the sequences of unconstrained lengths,independent of the character segmentation or horizontal scale normalization.Furthermore,it applies to both the lexicon-free and lexicon-based text recognition,and finally,it produces a comparatively smaller model,which can be implemented in practical applications.The overall superior performance in the experimental evaluation demonstrates the usefulness of the proposed model.The model is thus generic and can be used for other similar recognition scenarios. 展开更多
关键词 Character recognition text spotting long short-term memory recurrent convolutional neural networks
在线阅读 下载PDF
Text Sentiment Analysis Based on Convolutional Neural Network and Bidirectional LSTM Model 被引量:1
18
作者 Mengjiao Song Xingyu Zhao +1 位作者 Yong Liu Zhihong Zhao 《国际计算机前沿大会会议论文集》 2018年第2期6-6,共1页
关键词 SENTIMENT analysis long short-term memoryconvolutional neural network BIDIRECTIONAL LSTM
在线阅读 下载PDF
Classification of Arrhythmia Based on Convolutional Neural Networks and Encoder-Decoder Model
19
作者 Jian Liu Xiaodong Xia +2 位作者 Chunyang Han Jiao Hui Jim Feng 《Computers, Materials & Continua》 SCIE EI 2022年第10期265-278,共14页
As a common and high-risk type of disease,heart disease seriously threatens people’s health.At the same time,in the era of the Internet of Thing(IoT),smart medical device has strong practical significance for medical... As a common and high-risk type of disease,heart disease seriously threatens people’s health.At the same time,in the era of the Internet of Thing(IoT),smart medical device has strong practical significance for medical workers and patients because of its ability to assist in the diagnosis of diseases.Therefore,the research of real-time diagnosis and classification algorithms for arrhythmia can help to improve the diagnostic efficiency of diseases.In this paper,we design an automatic arrhythmia classification algorithm model based on Convolutional Neural Network(CNN)and Encoder-Decoder model.The model uses Long Short-Term Memory(LSTM)to consider the influence of time series features on classification results.Simultaneously,it is trained and tested by the MIT-BIH arrhythmia database.Besides,Generative Adversarial Networks(GAN)is adopted as a method of data equalization for solving data imbalance problem.The simulation results show that for the inter-patient arrhythmia classification,the hybrid model combining CNN and Encoder-Decoder model has the best classification accuracy,of which the accuracy can reach 94.05%.Especially,it has a better advantage for the classification effect of supraventricular ectopic beats(class S)and fusion beats(class F). 展开更多
关键词 ELECTROENCEPHALOGRAPHY convolutional neural network long short-term memory encoder-decoder model generative adversarial network
在线阅读 下载PDF
Audiovisual speech recognition based on a deep convolutional neural network 被引量:1
20
作者 Shashidhar Rudregowda Sudarshan Patilkulkarni +2 位作者 Vinayakumar Ravi Gururaj H.L. Moez Krichen 《Data Science and Management》 2024年第1期25-34,共10页
Audiovisual speech recognition is an emerging research topic.Lipreading is the recognition of what someone is saying using visual information,primarily lip movements.In this study,we created a custom dataset for India... Audiovisual speech recognition is an emerging research topic.Lipreading is the recognition of what someone is saying using visual information,primarily lip movements.In this study,we created a custom dataset for Indian English linguistics and categorized it into three main categories:(1)audio recognition,(2)visual feature extraction,and(3)combined audio and visual recognition.Audio features were extracted using the mel-frequency cepstral coefficient,and classification was performed using a one-dimension convolutional neural network.Visual feature extraction uses Dlib and then classifies visual speech using a long short-term memory type of recurrent neural networks.Finally,integration was performed using a deep convolutional network.The audio speech of Indian English was successfully recognized with accuracies of 93.67%and 91.53%,respectively,using testing data from 200 epochs.The training accuracy for visual speech recognition using the Indian English dataset was 77.48%and the test accuracy was 76.19%using 60 epochs.After integration,the accuracies of audiovisual speech recognition using the Indian English dataset for training and testing were 94.67%and 91.75%,respectively. 展开更多
关键词 Audiovisual speech recognition Custom dataset 1D Convolution neural network(CNN) Deep CNN(DCNN) long short-term memory(LSTM) LIPREADING Dlib Mel-frequency cepstral coefficient(MFCC)
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部