Bigeye tuna is a protein-rich fish that is susceptible to spoilage during cold storage,however,there is limited information on untargeted metabolomic profiling of bigeye tuna concerning spoilage-associated enzymes and...Bigeye tuna is a protein-rich fish that is susceptible to spoilage during cold storage,however,there is limited information on untargeted metabolomic profiling of bigeye tuna concerning spoilage-associated enzymes and metabolites.This study aimed to investigate how cold storage affects enzyme activities,nutrient composition,tissue microstructures and spoilage metabolites of bigeye tuna.The activities of cathepsins B,H,L increased,while Na^(+)/K^(+)-ATPase and Mg^(2+)-ATPase decreased,α-glucosidase,lipase and lipoxygenase first increased and then decreased during cold storage,suggesting that proteins undergo degradation and ATP metabolism occurs at a faster rate during cold storage.Nutrient composition(moisture and lipid content),total amino acids decreased,suggesting that the nutritional value of bigeye tuna was reduced.Besides,a logistic regression equation has been established as a food analysis tool and assesses the dynamics and correlation of the enzyme of bigeye tuna during cold storage.Based on untargeted metabolomic profiling analysis,a total of 524 metabolites were identified in the bigeye tuna contained several spoilage metabolites involved in lipid metabolism(glycerophosphocholine and choline phosphate),amino acid metabolism(L-histidine,5-deoxy-5′-(methylthio)adenosine,5-methylthioadenosine),carbohydrate metabolism(D-gluconic acid,α-D-fructose 1,6-bisphosphate,D-glyceraldehyde 3-phosphate).The results of tissue microstructures of tuna showed a looser network and visible deterioration of tissue fiber during cold storage.Therefore,metabolomic analysis and tissue microstructures provide insight into the spoilage mechanism investigations on bigeye tuna during cold storage.展开更多
Damage to electrical equipment in an earthquake can lead to power outage of power systems.Seismic fragility analysis is a common method to assess the seismic reliability of electrical equipment.To further guarantee th...Damage to electrical equipment in an earthquake can lead to power outage of power systems.Seismic fragility analysis is a common method to assess the seismic reliability of electrical equipment.To further guarantee the efficiency of analysis,multi-source uncertainties including the structure itself and seismic excitation need to be considered.A method for seismic fragility analysis that reflects structural and seismic parameter uncertainty was developed in this study.The proposed method used a random sampling method based on Latin hypercube sampling(LHS)to account for the structure parameter uncertainty and the group structure characteristics of electrical equipment.Then,logistic Lasso regression(LLR)was used to find the seismic fragility surface based on double ground motion intensity measures(IM).The seismic fragility based on the finite element model of an±1000 kV main transformer(UHVMT)was analyzed using the proposed method.The results show that the seismic fragility function obtained by this method can be used to construct the relationship between the uncertainty parameters and the failure probability.The seismic fragility surface did not only provide the probabilities of seismic damage states under different IMs,but also had better stability than the fragility curve.Furthermore,the sensitivity analysis of the structural parameters revealed that the elastic module of the bushing and the height of the high-voltage bushing may have a greater influence.展开更多
目的基于Logistic回归和随机森林算法构建全身麻醉复苏延迟的预判模型并验证。方法选择2021—2023年浙江某三甲医院复苏室收治的1177例全麻患者作为研究对象,按7︰3的比例随机分为训练组和验证组两组,采用Logistic单因素+多因素回归分析...目的基于Logistic回归和随机森林算法构建全身麻醉复苏延迟的预判模型并验证。方法选择2021—2023年浙江某三甲医院复苏室收治的1177例全麻患者作为研究对象,按7︰3的比例随机分为训练组和验证组两组,采用Logistic单因素+多因素回归分析,构建全身麻醉复苏延迟的预判模型并用列线图展示。利用随机森林算法筛选全身麻醉患者复苏延迟的影响因素并按重要性排序。采用受试者操作特征曲线(Receiver operating characteristic curve,ROC)下面积(Area of the under curve,AUC)检验模型的预测效果,采用校准曲线以及决策曲线综合评价模型的预测性能。结果1177例患者复苏延迟发生99例,发生率为8.41%。Logistic回归显示性别、ASA分级、年龄、手术时间、手术种类、输液量是全麻患者复苏延迟的独立危险因素。随机森林算法结果显示复苏延迟各变量的重要性排序为手术种类、年龄、手术时间、输液量、ASA分级、性别。Logistic回归模型的训练组AUC为0.87(95%CI 0.83~0.91),验证组为0.86(95%CI 0.81~0.91)。随机森林模型训练组AUC为0.85(95%CI 0.49~1.00),验证组AUC为0.76(95%CI 0.26~1.00)。提示模型具有良好的区分能力,预测能力较高,具有一定的临床价值。结论手术种类、年龄、手术时间、输液量、ASA分级、性别是全麻患者复苏延迟的独立危险因素,根据此构建预判模型的区分度与校准度较高,有助于预测全麻患者苏醒延迟的发生,可以为临床护理干预措施的制定与实施提供参考。展开更多
基金supported by the Shanghai Sailing Program(22YF1416300)Youth Fund Project of National Natural Science Foundation of China(32202117)+1 种基金National Key Research and Development Program of China(2022YFD2100104)the China Agriculture Research System(CARS-47).
文摘Bigeye tuna is a protein-rich fish that is susceptible to spoilage during cold storage,however,there is limited information on untargeted metabolomic profiling of bigeye tuna concerning spoilage-associated enzymes and metabolites.This study aimed to investigate how cold storage affects enzyme activities,nutrient composition,tissue microstructures and spoilage metabolites of bigeye tuna.The activities of cathepsins B,H,L increased,while Na^(+)/K^(+)-ATPase and Mg^(2+)-ATPase decreased,α-glucosidase,lipase and lipoxygenase first increased and then decreased during cold storage,suggesting that proteins undergo degradation and ATP metabolism occurs at a faster rate during cold storage.Nutrient composition(moisture and lipid content),total amino acids decreased,suggesting that the nutritional value of bigeye tuna was reduced.Besides,a logistic regression equation has been established as a food analysis tool and assesses the dynamics and correlation of the enzyme of bigeye tuna during cold storage.Based on untargeted metabolomic profiling analysis,a total of 524 metabolites were identified in the bigeye tuna contained several spoilage metabolites involved in lipid metabolism(glycerophosphocholine and choline phosphate),amino acid metabolism(L-histidine,5-deoxy-5′-(methylthio)adenosine,5-methylthioadenosine),carbohydrate metabolism(D-gluconic acid,α-D-fructose 1,6-bisphosphate,D-glyceraldehyde 3-phosphate).The results of tissue microstructures of tuna showed a looser network and visible deterioration of tissue fiber during cold storage.Therefore,metabolomic analysis and tissue microstructures provide insight into the spoilage mechanism investigations on bigeye tuna during cold storage.
基金National Key R&D Program of China under Grant Nos.2018YFC1504504 and 2018YFC0809404。
文摘Damage to electrical equipment in an earthquake can lead to power outage of power systems.Seismic fragility analysis is a common method to assess the seismic reliability of electrical equipment.To further guarantee the efficiency of analysis,multi-source uncertainties including the structure itself and seismic excitation need to be considered.A method for seismic fragility analysis that reflects structural and seismic parameter uncertainty was developed in this study.The proposed method used a random sampling method based on Latin hypercube sampling(LHS)to account for the structure parameter uncertainty and the group structure characteristics of electrical equipment.Then,logistic Lasso regression(LLR)was used to find the seismic fragility surface based on double ground motion intensity measures(IM).The seismic fragility based on the finite element model of an±1000 kV main transformer(UHVMT)was analyzed using the proposed method.The results show that the seismic fragility function obtained by this method can be used to construct the relationship between the uncertainty parameters and the failure probability.The seismic fragility surface did not only provide the probabilities of seismic damage states under different IMs,but also had better stability than the fragility curve.Furthermore,the sensitivity analysis of the structural parameters revealed that the elastic module of the bushing and the height of the high-voltage bushing may have a greater influence.
文摘目的基于Logistic回归和随机森林算法构建全身麻醉复苏延迟的预判模型并验证。方法选择2021—2023年浙江某三甲医院复苏室收治的1177例全麻患者作为研究对象,按7︰3的比例随机分为训练组和验证组两组,采用Logistic单因素+多因素回归分析,构建全身麻醉复苏延迟的预判模型并用列线图展示。利用随机森林算法筛选全身麻醉患者复苏延迟的影响因素并按重要性排序。采用受试者操作特征曲线(Receiver operating characteristic curve,ROC)下面积(Area of the under curve,AUC)检验模型的预测效果,采用校准曲线以及决策曲线综合评价模型的预测性能。结果1177例患者复苏延迟发生99例,发生率为8.41%。Logistic回归显示性别、ASA分级、年龄、手术时间、手术种类、输液量是全麻患者复苏延迟的独立危险因素。随机森林算法结果显示复苏延迟各变量的重要性排序为手术种类、年龄、手术时间、输液量、ASA分级、性别。Logistic回归模型的训练组AUC为0.87(95%CI 0.83~0.91),验证组为0.86(95%CI 0.81~0.91)。随机森林模型训练组AUC为0.85(95%CI 0.49~1.00),验证组AUC为0.76(95%CI 0.26~1.00)。提示模型具有良好的区分能力,预测能力较高,具有一定的临床价值。结论手术种类、年龄、手术时间、输液量、ASA分级、性别是全麻患者复苏延迟的独立危险因素,根据此构建预判模型的区分度与校准度较高,有助于预测全麻患者苏醒延迟的发生,可以为临床护理干预措施的制定与实施提供参考。