To decompose an unbalanced multi-stage logistic system to multipleindependent single-stage logistic systems, a new notion of parameterized interface distribution ispresented. For encoding the logistic pattern on each ...To decompose an unbalanced multi-stage logistic system to multipleindependent single-stage logistic systems, a new notion of parameterized interface distribution ispresented. For encoding the logistic pattern on each stage, the Pruefer number is used. With theimproved decoding procedure, any Pruefer number produced stochastically can be decoded to a feasiblelogistic pattern, which can match with the capacities of the nodes of the logistic system. Withthese two innovations, a new modeling method based on parameterized interface distribution and thePriifer number coding is put forward. The corresponding genetic algorithm, named as PIP-GA, can findbetter solutions and require less computational time than st-GA. Although requiring a little moreconsumption of memory, PIP-GA is still an efficient and robust method in the modeling andoptimization of unbalanced multi-stage logistic systems.展开更多
A new image encryption scheme is proposed based on a delayed fractional-order chaotic logistic system.In the process of generating a key stream,the time-varying delay and fractional derivative are embedded in the prop...A new image encryption scheme is proposed based on a delayed fractional-order chaotic logistic system.In the process of generating a key stream,the time-varying delay and fractional derivative are embedded in the proposed scheme to improve the security.Such a scheme is described in detail with security analyses including correlation analysis,information entropy analysis,run statistic analysis,mean-variance gray value analysis,and key sensitivity analysis.Experimental results show that the newly proposed image encryption scheme possesses high security.展开更多
The paper studies the dynamical behaviors of a discrete Logistic system with feedback control. The system undergoes Flip bifurcation and Hopf bifurcation by using the center manifold theorem and the bifurcation theory...The paper studies the dynamical behaviors of a discrete Logistic system with feedback control. The system undergoes Flip bifurcation and Hopf bifurcation by using the center manifold theorem and the bifurcation theory. Numerical simulations not only illustrate our results, but also exhibit the complex dynamical behaviors of the system, such as the period-doubling bifurcation in periods 2, 4, 8 and 16, and quasi-periodic orbits and chaotic sets.展开更多
In the era of rapid information development,with the popularity of computers,the advancement of science and technology,and the ongoing expansion of IT technology and business,the enterprise resource planning(ERP)syste...In the era of rapid information development,with the popularity of computers,the advancement of science and technology,and the ongoing expansion of IT technology and business,the enterprise resource planning(ERP)system has evolved into a platform and a guarantee for the fulfilment of company management procedures after long-term operations.Because of developments in information technology,most manual accounting procedures are being replaced by computerized Accounting Information Systems(AIS),which are quicker and more accurate.The primary factors influencing the decisions of logistics firm trading parties are investigated in order to enhance the design of decision-supporting modules and to improve the performance of logistics enterprises through AIS.This paper proposed a novel approach to calculate the weights of each information element in order to establish their important degree.The main purpose of this research is to present a quantitative analytic approach for determining the important information of logistics business collaboration response.Furthermore,the idea of total orders and the significant degrees stated above are used to identify the optimal order of all information elements.Using the three ways of marginal revenue,marginal cost,and business matching degree,the information with cumulative weights is which is deployed to form the data from the intersection of the best order.It has the ability to drastically reduce the time and effort required to create a logistics business control/decision-making system.展开更多
The dynamical properties of a tumor cell growth system described by the logistic system with coupling between non- Gaussian and Gaussian noise terms are investigated. The effects of the nonextensive index q on the sta...The dynamical properties of a tumor cell growth system described by the logistic system with coupling between non- Gaussian and Gaussian noise terms are investigated. The effects of the nonextensive index q on the stationary properties and the transient properties are discussed, respectively. The results show that the nonextensive index q can induce the tumor cell numbers to decrease greatly in the case of q 〉 1. Moreover, the switch from the steady stable state to the extinct state is speeded up as the increases of q, and the tumor cell numbers can be more obviously restrained for a large value of q. The numerical results are found to be in basic agreement with the theoretical predictions.展开更多
Background: The availability of essential medicines and medical supplies is crucial for effectively delivering healthcare services. In Zambia, the Logistics Management Information System (LMIS) is a key tool for manag...Background: The availability of essential medicines and medical supplies is crucial for effectively delivering healthcare services. In Zambia, the Logistics Management Information System (LMIS) is a key tool for managing the supply chain of these commodities. This study aimed to evaluate the effectiveness of LMIS in ensuring the availability of essential medicines and medical supplies in public hospitals in the Copperbelt Province of Zambia. Materials and Methods: From February to April 2022, a cross-sectional study was conducted in 12 public hospitals across the Copperbelt Province. Data were collected using structured questionnaires, checklists, and stock control cards. The study assessed LMIS availability, training, and knowledge among pharmacy personnel, as well as data accuracy, product availability, and order fill rates. Descriptive statistics were used to analyse the data. Results: All surveyed hospitals had LMIS implemented and were using eLMIS as the primary LMIS. Only 47% and 48% of pharmacy personnel received training in eLMIS and Essential Medicines Logistics Improvement Program (EMLIP), respectively. Most personnel demonstrated good knowledge of LMIS, with 77.7% able to log in to eLMIS Facility Edition, 76.6% able to locate stock control cards in the system, and 78.7% able to perform transactions. However, data accuracy from physical and electronic records varied from 0% to 60%, and product availability ranged from 50% to 80%. Order fill rates from Zambia Medicines and Medical Supplies Agency (ZAMMSA) were consistently below 30%. Discrepancies were observed between physical stock counts and eLMIS records. Conclusion: This study found that most hospitals in the Copperbelt Province of Zambia have implemented LMIS use. While LMIS implementation is high in the Copperbelt Province of Zambia, challenges such as low training levels, data inaccuracies, low product availability, and order fill rates persist. Addressing these issues requires a comprehensive approach, including capacity building, data quality improvement, supply chain coordination, and investment in infrastructure and human resources. Strengthening LMIS effectiveness is crucial for improving healthcare delivery and patient outcomes in Zambia.展开更多
文摘To decompose an unbalanced multi-stage logistic system to multipleindependent single-stage logistic systems, a new notion of parameterized interface distribution ispresented. For encoding the logistic pattern on each stage, the Pruefer number is used. With theimproved decoding procedure, any Pruefer number produced stochastically can be decoded to a feasiblelogistic pattern, which can match with the capacities of the nodes of the logistic system. Withthese two innovations, a new modeling method based on parameterized interface distribution and thePriifer number coding is put forward. The corresponding genetic algorithm, named as PIP-GA, can findbetter solutions and require less computational time than st-GA. Although requiring a little moreconsumption of memory, PIP-GA is still an efficient and robust method in the modeling andoptimization of unbalanced multi-stage logistic systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61004078 and 60971022)the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2009GQ009 and ZR2009GM005)+1 种基金the China Postdoctoral Science Foundationthe Special Funds for Postdoctoral Innovative Projects of Shandong Province,China
文摘A new image encryption scheme is proposed based on a delayed fractional-order chaotic logistic system.In the process of generating a key stream,the time-varying delay and fractional derivative are embedded in the proposed scheme to improve the security.Such a scheme is described in detail with security analyses including correlation analysis,information entropy analysis,run statistic analysis,mean-variance gray value analysis,and key sensitivity analysis.Experimental results show that the newly proposed image encryption scheme possesses high security.
基金Supported by the Scientific Research Programmes of Colleges in Anhui(KJ2013Z186)
文摘The paper studies the dynamical behaviors of a discrete Logistic system with feedback control. The system undergoes Flip bifurcation and Hopf bifurcation by using the center manifold theorem and the bifurcation theory. Numerical simulations not only illustrate our results, but also exhibit the complex dynamical behaviors of the system, such as the period-doubling bifurcation in periods 2, 4, 8 and 16, and quasi-periodic orbits and chaotic sets.
基金This work was supported by the Researchers Supporting Project(No.RSP-2021/395),King Saud University,Riyadh,Saudi Arabia.
文摘In the era of rapid information development,with the popularity of computers,the advancement of science and technology,and the ongoing expansion of IT technology and business,the enterprise resource planning(ERP)system has evolved into a platform and a guarantee for the fulfilment of company management procedures after long-term operations.Because of developments in information technology,most manual accounting procedures are being replaced by computerized Accounting Information Systems(AIS),which are quicker and more accurate.The primary factors influencing the decisions of logistics firm trading parties are investigated in order to enhance the design of decision-supporting modules and to improve the performance of logistics enterprises through AIS.This paper proposed a novel approach to calculate the weights of each information element in order to establish their important degree.The main purpose of this research is to present a quantitative analytic approach for determining the important information of logistics business collaboration response.Furthermore,the idea of total orders and the significant degrees stated above are used to identify the optimal order of all information elements.Using the three ways of marginal revenue,marginal cost,and business matching degree,the information with cumulative weights is which is deployed to form the data from the intersection of the best order.It has the ability to drastically reduce the time and effort required to create a logistics business control/decision-making system.
基金supported by the National Natural Science Foundation of China (Grant No. 11205006)the Science Foundation of the Education Bureau of Shaanxi Province, China (Grant No. 12JK0962)the Science Foundation of Baoji University of Arts and Sciences of China (Grant No. ZK11053)
文摘The dynamical properties of a tumor cell growth system described by the logistic system with coupling between non- Gaussian and Gaussian noise terms are investigated. The effects of the nonextensive index q on the stationary properties and the transient properties are discussed, respectively. The results show that the nonextensive index q can induce the tumor cell numbers to decrease greatly in the case of q 〉 1. Moreover, the switch from the steady stable state to the extinct state is speeded up as the increases of q, and the tumor cell numbers can be more obviously restrained for a large value of q. The numerical results are found to be in basic agreement with the theoretical predictions.
文摘Background: The availability of essential medicines and medical supplies is crucial for effectively delivering healthcare services. In Zambia, the Logistics Management Information System (LMIS) is a key tool for managing the supply chain of these commodities. This study aimed to evaluate the effectiveness of LMIS in ensuring the availability of essential medicines and medical supplies in public hospitals in the Copperbelt Province of Zambia. Materials and Methods: From February to April 2022, a cross-sectional study was conducted in 12 public hospitals across the Copperbelt Province. Data were collected using structured questionnaires, checklists, and stock control cards. The study assessed LMIS availability, training, and knowledge among pharmacy personnel, as well as data accuracy, product availability, and order fill rates. Descriptive statistics were used to analyse the data. Results: All surveyed hospitals had LMIS implemented and were using eLMIS as the primary LMIS. Only 47% and 48% of pharmacy personnel received training in eLMIS and Essential Medicines Logistics Improvement Program (EMLIP), respectively. Most personnel demonstrated good knowledge of LMIS, with 77.7% able to log in to eLMIS Facility Edition, 76.6% able to locate stock control cards in the system, and 78.7% able to perform transactions. However, data accuracy from physical and electronic records varied from 0% to 60%, and product availability ranged from 50% to 80%. Order fill rates from Zambia Medicines and Medical Supplies Agency (ZAMMSA) were consistently below 30%. Discrepancies were observed between physical stock counts and eLMIS records. Conclusion: This study found that most hospitals in the Copperbelt Province of Zambia have implemented LMIS use. While LMIS implementation is high in the Copperbelt Province of Zambia, challenges such as low training levels, data inaccuracies, low product availability, and order fill rates persist. Addressing these issues requires a comprehensive approach, including capacity building, data quality improvement, supply chain coordination, and investment in infrastructure and human resources. Strengthening LMIS effectiveness is crucial for improving healthcare delivery and patient outcomes in Zambia.