期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Artificial intelligence large model for logging curve reconstruction
1
作者 CHEN Zhangxing ZHANG Yongan +5 位作者 LI Jian HUI Gang SUN Youzhuang LI Yizheng CHEN Yuntian ZHANG Dongxiao 《Petroleum Exploration and Development》 2025年第3期842-854,共13页
To improve the accuracy and generalization of well logging curve reconstruction,this paper proposes an artificial intelligence large language model“Gaia”and conducts model evaluation experiments.By fine-tuning the p... To improve the accuracy and generalization of well logging curve reconstruction,this paper proposes an artificial intelligence large language model“Gaia”and conducts model evaluation experiments.By fine-tuning the pre-trained large language model,the Gaia significantly improved its ability in extracting sequential patterns and spatial features from well-log curves.Leveraging the adapter method for fine-tuning,this model required training only about 1/70 of its original parameters,greatly improving training efficiency.Comparative experiments,ablation experiments,and generalization experiments were designed and conducted using well-log data from 250 wells.In the comparative experiment,the Gaia model was benchmarked against cutting-edge small deep learning models and conventional large language models,demonstrating that the Gaia model reduced the mean absolute error(MAE)by at least 20%.In the ablation experiments,the synergistic effect of the Gaia model's multiple components was validated,with its MAE being at least 30%lower than that of single-component models.In the generalization experiments,the superior performance of the Gaia model in blind-well predictions was further confirmed.Compared to traditional models,the Gaia model is significantly superior in accuracy and generalization for logging curve reconstruction,fully showcasing the potential of large language models in the field of well-logging.This provides a new approach for future intelligent logging data processing. 展开更多
关键词 logging curve reconstruction large language model ADAPTER pre-trained model fine-tuning method
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部