期刊文献+
共找到240,881篇文章
< 1 2 250 >
每页显示 20 50 100
Generation of axial chain rockbursts in deep tunnels with drilling and blasting methodology in locked-in stress zone
1
作者 LI Hong-pu HE Ben-guo +2 位作者 FENG Xia-ting NIU Wen-jing MA Tao 《Journal of Central South University》 2025年第10期3985-3996,共12页
Axial chain rockbursts(ACRs)repeatedly occur in deep tunnels during drilling and blasting methodology(D&B)within locked-in stress zones,severely hindering construction progress.In extremely cases,ACRs can persist ... Axial chain rockbursts(ACRs)repeatedly occur in deep tunnels during drilling and blasting methodology(D&B)within locked-in stress zones,severely hindering construction progress.In extremely cases,ACRs can persist for 7−10 d and affect areas exceeding 20 m along tunnel axis.Through integrated geological investigations and microseismic(MS)monitoring,the geological characteristics,MS activity patterns,and formation mechanisms of ACRs were analyzed.In tectonically active regions,locked-in stress zones arise from interactions between multiple structural planes.Blasting dynamic disturbances during tunnel excavation in these zones trigger early slippage along structural planes and fractures in the surrounding rock,with MS events developing ahead of the working face.High-energy MS events dominate during the development and occurrence stages of ACRs,extending 20−30 m(3−4 tunnel diameters)ahead of the working face.Following the ACRs,low-energy MS events primarily occur behind the working face.Tensile fracturing is the predominant failure mode during ACRs.Shear and mixed fractures primarily occur within the ACRs zone during the intra-ACR phase.Monitoring MS event locations ahead of the working face provides a reliable approach for prewarning potential ACR-prone zones. 展开更多
关键词 axial chain rockbursts locked-in stress microseismic monitoring failure mode blasting disturbance
在线阅读 下载PDF
Theoretical Analysis of Simulating the Locked-In Stress in Rock Pore by Thermal Expansion of Hard Rubber
2
作者 Lu Dong Hansheng Geng +1 位作者 Hongfa Xu Yinhao Yang 《Open Journal of Civil Engineering》 2020年第2期83-92,共10页
Rocks are composed of mineral particles and micropores between mineral which has a great influence on the mechanical properties of rocks. In this paper, based on the theory of locked-in stress developed by academician... Rocks are composed of mineral particles and micropores between mineral which has a great influence on the mechanical properties of rocks. In this paper, based on the theory of locked-in stress developed by academician Chen Zongji, the locked-in stress problem in underground rock is simulated by the thermal expansion of hard rubber particles. The pore inclusion in rock is assumed to be uniformly distributed spherical cavities. Using the thermal stress theory, the stress of rock with a spherical pore inclusion is equivalent to the thermal stress generated by the spherical hard rubber inclusion. The elastic theory formula of the temperature increment and the equivalent pore pressure of the spherical hard rubber inclusion is derived. The numerical simulation of the rock mass model with a spherical hard rubber inclusion is carried out and compared to the theoretical calculation results<span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:zh-cn;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"="">;</span><span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:en-us;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"=""> the results show that they are consistent. The method proposed by this paper for simulating stress distribution in rock by thermal stress is reasonable and feasible</span><span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:zh-cn;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"="">;</span><span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:en-us;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"=""> it has a positive meaning for further study of mechanic phenomenon of rock with micropore inclusion.</span> 展开更多
关键词 Rock Pore locked-in stress Similar Simulation Rubber Particles Ther-mal Expansion
在线阅读 下载PDF
Stress signaling caused by mitochondrial import malfunction can be terminated by SIFI:Importance of stress response silencing
3
作者 Grace Hohman Michael Shahid Mohamed A.Eldeeb 《Neural Regeneration Research》 2026年第2期673-674,共2页
Protein aggregates,mitochondrial import stress and neurodegenerative disorders:A salient hallmark of several neurodegenerative diseases,including Parkinson’s disease,is the abundance of protein aggregates(Goiran et a... Protein aggregates,mitochondrial import stress and neurodegenerative disorders:A salient hallmark of several neurodegenerative diseases,including Parkinson’s disease,is the abundance of protein aggregates(Goiran et al.,2022).This molecular event is believed to lead to activation of stress pathways ultimately resulting in cellular dysfunction(Eldeeb et al.,2022).Accordingly,many lines of research investigations focused on dampening the formation of protein aggregates or augmenting the clearance of protein aggregates as a potential therapeutic strategy to counteract the progression of neurodegenerative diseases,albeit with little success(Costa-Mattioli and Walter,2020).Cell stress cues such as the accumulation of protein aggregates lead to the activation of stress response pathways that aid cells in responding to the damage.Despite the notion that the transient activation of these pathways helps cells cope with stressors,persistent activation can induce unwanted apoptosis of cells and reduce overall tissue strength as well as lead to an accumulation of aggregation-prone proteins(Hetz and Papa,2018).Mutations in proteins involved in stress signaling termination can cause conditions like ataxia and early-onset dementia(Conroy et al.,2014).Therefore,it is crucial for stress response signaling to be turned off once conditions have improved.Nevertheless,the mechanisms by which cells silence these signals are still elusive. 展开更多
关键词 activation stress pathways neurodegenerative disorders protein aggregatesmitochondrial import stress stress signaling protein aggregates goiran protein aggregates protein aggr neurodegenerative diseasesincluding
暂未订购
csn-miR171b-3p_2 targets CsSCL6-4 to participate in the defense against drought stress in tea plant
4
作者 Caiyun Tian Chengzhe Zhou +9 位作者 Shengjing Wen Niannian Yang Jiayao Tan Cheng Zhang Lele Jiang Anru Zheng Xiaowen Hu Zhongxiong Lai Chen Zhu Yuqiong Guo 《Horticultural Plant Journal》 2026年第1期172-188,共17页
Drought stress is a serious natural challenge for tea plants that significantly affects tea yield and quality.miR171s play critical roles in plant stress responses,however,their role in drought stress tolerance in tea... Drought stress is a serious natural challenge for tea plants that significantly affects tea yield and quality.miR171s play critical roles in plant stress responses,however,their role in drought stress tolerance in tea plants(Camellia sinensis)is poorly understood.This study experimentally verified the expression patterns of csn-miR171b-3p_2 and its target,scarecrow-like(SCL).We found that csn-miR171b-3p_2 could target and regulate CsSCL6-4 to play an important role in the defense against drought stress in tea plants.CsSCL6-4 is located in the nucleus and is selfactivated in vivo.In addition,we obtained 819 putative binding regions of CsSCL6-4 using DNA affinity purification sequencing analysis,which were assigned to 786 different genes,four of which were drought-resistant genes(CsPrx,CsSDR,CsFAD7,and CsCER1).Yeast one-hybrid and dual-luciferase reporter assays revealed that CsSCL6-4 directly promoted the expression of these four drought resistance genes by binding motifs 1/2/3 in their promoter regions.Both overexpression and suppression of CsSCL6-4 proved that CsSCL6-4 participated in the defense against drought stress in tea plants by regulating the expression of CsPrx,CsSDR,CsFAD7,and CsCER1.In addition,suppression of csn-miR171b-3p_2 expression significantly increased the expression of CsSCL6-4 and activated CsSCL6-4-bound gene transcription under drought stress.Therefore,the csn-miR171b-3p_2-CsSCL6-4 module participates in tea plant resistance to drought stress by promoting the expression of drought resistance genes.Our results revealed the function of csn-miR171b-3p_2 in tea plants and provided new insights into the mechanism of tea plant resistance to drought stress. 展开更多
关键词 Camellia sinensis miR171 Scarecrow-like Drought stress
在线阅读 下载PDF
Unfolded protein response in endoplasmic reticulum stress associated with retinal degenerative diseases:A promising therapeutic target
5
作者 Hongbing Zhang Yalin Mu +1 位作者 Hongsong Li Xiaogang Li 《Neural Regeneration Research》 2026年第4期1339-1352,共14页
The unfolded protein response is a cellular pathway activated to maintain proteostasis and prevent cell death when the endoplasmic reticulum is overwhelmed by unfolded proteins.However,if the unfolded protein response... The unfolded protein response is a cellular pathway activated to maintain proteostasis and prevent cell death when the endoplasmic reticulum is overwhelmed by unfolded proteins.However,if the unfolded protein response fails to restore endoplasmic reticulum homeostasis,it can trigger proinflammatory and pro-death signals,which are implicated in various malignancies and are currently being investigated for their role in retinal degenerative diseases.This paper reviews the role of the unfolded protein responsein addressing endoplasmic reticulumstress in retinal degenerative diseases.The accumulation of ubiquitylated misfolded proteins can lead to rapid destabilization of the proteome and cellular demise.Targeting endoplasmic reticulum stress to alleviate retinal pathologies involves multiple strategies,including the use of chemical chaperones such as 4-phenylbutyric acid and tauroursodeoxycholic acid,which enhance protein folding and reduce endoplasmic reticulum stress.Small molecule modulators that influence endoplasmic reticulum stress sensors,including those that increase the expression of the endoplasmic reticulum stress regulator X-box binding protein 1,are also potential therapeutic agents.Additionally,inhibitors of the RNAse activity of inositol-requiring transmembrane kinase/endoribonuclease 1,a key endoplasmic reticulum stress sensor,represent another class of drugs that could prevent the formation of toxic aggregates.The activation of nuclear receptors,such as PPAR and FXR,may also help mitigate ER stress.Furthermore,enhancing proteolysis through the induction of autophagy or the inhibition of deubiquitinating enzymes can assist in clearing misfolded proteins.Combination treatments that involve endoplasmicreticulum-stress-targeting drugs and gene therapies are also being explored.Despite these potential therapeutic strategies,significant challenges remain in targeting endoplasmic reticulum stress for the treatment of retinal degeneration,and further research is essential to elucidate the mechanisms underlying human retinal diseases and to develop effective,well-tolerated drugs.The use of existing drugs that target inositol-requiring transmembrane kinase/endoribonuclease 1 and X-box binding protein 1 has been associated with adverse side effects,which have hindered their clinical translation.Moreover,signaling pathways downstream of endoplasmic reticulum stress sensors can contribute to therapy resistance.Addressing these limitations is crucial for developing drugs that can be effectively used in treating retinal dystrophies.In conclusion,while the unfolded protein response is a promising therapeutic target in retinal degenerative diseases,additional research and development efforts are imperative to overcome the current limitations and improve patient outcomes. 展开更多
关键词 age-related macular degeneration AUTOPHAGY diabetic retinopathy endoplasmic reticulum stress INFLAMMASOME INFLAMMATION mitochondrial diseases MUTATION nuclear receptors photoreceptor cells PROTEOSTASIS proteotoxic stress retinal diseases retinitis pigmentosa
暂未订购
The role of m^(6)A in plant development,stress response,and agricultural practices
6
作者 Jin Qi Shaoxia Li +3 位作者 Jun Su Yushi Lu Wenjin Yu Changxia Li 《Horticultural Plant Journal》 2026年第1期19-35,共17页
N6-methyladenosine(m^(6)A)modification,the most abundant internal modification in messenger RNA(mRNA)and long non-coding RNA(lncRNA),has emerged as a critical epitranscriptomic regulatory mechanism in eukaryotes.While... N6-methyladenosine(m^(6)A)modification,the most abundant internal modification in messenger RNA(mRNA)and long non-coding RNA(lncRNA),has emerged as a critical epitranscriptomic regulatory mechanism in eukaryotes.While the importance of m^(6)A modification in various biological processes has been recognized,a comprehensive understanding of its diverse roles in plant biology and agricultural applications remains fragmented.This review analyzes recent advances inm^(6)A modification's biological functions in plants.m^(6)A modification plays crucial roles in multiple aspects of plant life,including seed germination,organ development,and reproductive structure formation.Furthermore,m^(6)A has been found to significantly influence plant responses to environmental stresses,including salt,drought,temperature,and heavy metal exposure.We also uncover m^(6)A involvement in important agricultural traits.This review provides insights into the mechanistic understanding of m^(6)A modification in plants and highlights its applications in agricultural improvement,offering a foundation for future research in crop enhancement and stress resistance. 展开更多
关键词 N6-methyladenosine Epitranscriptomics Plant development stress Agricultural production
在线阅读 下载PDF
Melatonin:a key player in alleviating heavy metal stress in plants―current insights and future directions
7
作者 Wenhan Dong 《Horticultural Plant Journal》 2026年第1期36-48,共13页
Heavy metal(HM)contamination severely impacts global agricultural production.HMs toxicity effectively damaged the physiological functions such as imbalanced redox homeostasis,altered antioxidant enzyme activity,damage... Heavy metal(HM)contamination severely impacts global agricultural production.HMs toxicity effectively damaged the physiological functions such as imbalanced redox homeostasis,altered antioxidant enzyme activity,damage root system architecture,hindered photosynthetic apparatus,cellular toxicity,restricted mineral accumulation,and changed the metabolite production.Using phytohormones may be a successful strategy for enhancing and stimulating plant tolerance to HMs toxicity without affecting the environment.Melatonin(MT),a novel plant growth regulator,and powerful antioxidant molecule,enhances plant resilience to HMs stress by enhancing seedling growth,protecting the photosynthetic system,increasing nutritional status,balanced redox homeostasis,and restricting HMs accumulation from root to shoot.In addition,MT enhances the activity of antioxidant enzymes and triggers the ascorbate-glutathione(AsA-GSH)cycle,which helps remove excessive ROS.MT improves RuBisCO activity to improve photosynthesis and reduce the breakdown of chlorophyll.To identify future research needs,it is crucial to understand the comprehensive and intricate regulatory mechanisms of exogenous and endogenous MT-mediated reduction of heavy metal toxicity in plants.Melatonin has several functions,and this review sheds light on those functions and the molecular processes by which it alleviates HMs toxicity.More research is needed to fully understand how melatonin affects plant tolerance to heavy metals stress. 展开更多
关键词 MELATONIN Heavy metals PHOTOSYNTHESIS Cell wall Cellular function stress management
在线阅读 下载PDF
Systematic review of mitochondrial dysfunction and oxidative stress in aging:A focus on neuromuscular junctions
8
作者 Senlin Chai Ning Zhang +8 位作者 Can Cui Zhengyuan Bao Qianjin Wang Wujian Lin Ronald Man Yeung Wong Sheung Wai Law Rebecca Schönmehl Christoph Brochhausen Wing Hoi Cheung 《Neural Regeneration Research》 2026年第5期1947-1960,共14页
Mitochondrial dysfunction and oxidative stress are widely regarded as primary drivers of aging and are associated with several neurodegenerative diseases.The degeneration of motor neurons during aging is a critical pa... Mitochondrial dysfunction and oxidative stress are widely regarded as primary drivers of aging and are associated with several neurodegenerative diseases.The degeneration of motor neurons during aging is a critical pathological factor contributing to the progression of sarcopenia.However,the morphological and functional changes in mitochondria and their interplay in the degeneration of the neuromuscular junction during aging remain poorly understood.A defined systematic search of the Pub Med,Web of Science and Embase databases(last accessed on October 30,2024)was conducted with search terms including'mitochondria','aging'and'NMJ'.Clinical and preclinical studies of mitochondrial dysfunction and neuromuscular junction degeneration during aging.Twentyseven studies were included in this systematic review.This systematic review provides a summary of morphological,functional and biological changes in neuromuscular junction,mitochondrial morphology,biosynthesis,respiratory chain function,and mitophagy during aging.We focus on the interactions and mechanisms underlying the relationship between mitochondria and neuromuscular junctions during aging.Aging is characterized by significant reductions in mitochondrial fusion/fission cycles,biosynthesis,and mitochondrial quality control,which may lead to neuromuscular junction dysfunction,denervation and poor physical performance.Motor nerve terminals that exhibit redox sensitivity are among the first to exhibit abnormalities,ultimately leading to an early decline in muscle strength through impaired neuromuscular junction transmission function.Parg coactivator 1 alpha is a crucial molecule that regulates mitochondrial biogenesis and modulates various pathways,including the mitochondrial respiratory chain,energy deficiency,oxidative stress,and inflammation.Mitochondrial dysfunction is correlated with neuromuscular junction denervation and acetylcholine receptor fragmentation,resulting in muscle atrophy and a decrease in strength during aging.Physical therapy,pharmacotherapy,and gene therapy can alleviate the structural degeneration and functional deterioration of neuromuscular junction by restoring mitochondrial function.Therefore,mitochondria are considered potential targets for preserving neuromuscular junction morphology and function during aging to treat sarcopenia. 展开更多
关键词 AGING mitochondrial dysfunction neuromuscular junction oxidative stress SARCOPENIA systematic review
暂未订购
Stress Uniformity and Dynamic Mechanical Properties of Cubic Concretes in SHPB Tests
9
作者 LI Mei CUI Jian +1 位作者 SHI Yanchao TANG Baijian 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期162-170,共9页
Based on the split hopkinson pressure bar(SHPB)tests results,the cubic specimens have been numerically modeled in this paper to investigate the impact of key factors,such as the rise time,duration,and incident pulse s... Based on the split hopkinson pressure bar(SHPB)tests results,the cubic specimens have been numerically modeled in this paper to investigate the impact of key factors,such as the rise time,duration,and incident pulse shape,on achieving stress uniformity.After analysis,the paper provides actionable methods aimed at optimizing the conditions for stress uniformity within the cubic specimen.Finally,the lateral inertia effect of cubic specimen has been scrutinized to address the existing gap in this academic area. 展开更多
关键词 concrete cubic specimen stress uniformity impact loads lateral inertia effect
原文传递
Tongxinbi formula attenuates post-MI cardiac injury through Keap1/Nrf2-mediated control of oxidative stress and inflammation
10
作者 Zi-Jie Zhu Jia Liu +4 位作者 Yu-Lan Qian Chao Zhang Shi-Hai Yan Hua-Qin Tong Dao-Cheng Wang 《Traditional Medicine Research》 2026年第4期1-10,共10页
Background:Myocardial infarction(MI)remains a major global public health challenge.Although advances in reperfusion therapy have reduced acute mortality,post-infarction cardiac remodeling continues to pose a substanti... Background:Myocardial infarction(MI)remains a major global public health challenge.Although advances in reperfusion therapy have reduced acute mortality,post-infarction cardiac remodeling continues to pose a substantial threat to long-term cardiovascular health.Oxidative stress and the ensuing inflammatory response are key drivers of this pathological process,leading to cardiomyocyte death,myocardial fibrosis,and functional impairment.Among the regulatory pathways involved,the kelch-like ECH-associated protein 1(Keap1)/nuclear factor erythroid 2-related factor 2(Nrf2)axis has emerged as a critical therapeutic target for mitigating post-MI cardiac injury.Methods:A murine MI model was established by permanent ligation of the left anterior descending coronary artery.Mice received oral Tongxinbi formula(TXB)at low,medium,or high doses(9/18/36 g/kg)once daily for 28 days.Cardiac function was assessed by echocardiography;myocardial fibrosis by Masson’s trichrome;and endothelial integrity by CD31 immunofluorescence.Plasma markers of endothelial function and inflammation were quantified.In vitro,oxidative stress was induced by H2O2 in vascular endothelial cells and cardiomyocytes,followed by treatment with TXB drug-containing serum.Western blot and RT-qPCR were used to measure components of the Keap1/Nrf2 pathway;ELISA quantified oxidative stress and inflammatory indices.Conditioned-medium experiments evaluated endothelial cell–mediated paracrine protection of cardiomyocytes.Results:TXB significantly improved cardiac function and reduced myocardial fibrosis after MI,in association with preservation of microvascular structure and systemic attenuation of oxidative stress and inflammation.In vitro,TXB activated the endothelial Keap1/Nrf2 pathway,enhanced cellular antioxidant defenses,increased VEGF secretion,and,via endothelial cell-mediated paracrine signaling,alleviated cardiomyocyte injury under oxidative stress.Conclusion:TXB exerts anti-fibrotic and cardioprotective effects by activating Nrf2 signaling and engaging endothelial-mediated paracrine mechanisms,collectively mitigating oxidative stress and inflammation in the post-MI setting. 展开更多
关键词 myocardial infarction oxidative stress Keap1/Nrf2 signaling pathway endothelial dysfunction
暂未订购
Melatonin and mitochondrial stress: New insights into age-related neurodegeneration
11
作者 Silvia Carloni Francesca Luchetti +3 位作者 Maria Gemma Nasoni Walter Balduini Walter Manucha Russel J.Reiter 《Neural Regeneration Research》 2026年第4期1564-1565,共2页
Aging,mitochondria,and neurodegenerative diseases:Aging is often viewed as the buildup of changes that lead to the gradual transformations associated with getting older,along with a rising likelihood of disease and mo... Aging,mitochondria,and neurodegenerative diseases:Aging is often viewed as the buildup of changes that lead to the gradual transformations associated with getting older,along with a rising likelihood of disease and mortality.Although organis m-wide deterioration is observed during aging,organs with high metabolic demand,such as the brain,are more vulnerable. 展开更多
关键词 buildup changes neurodegenerative diseases aging neurodegenerative diseases MITOCHONDRIA mitochondrial stress MELATONIN age related neurodegeneration AGING
暂未订购
Neuroserpin alleviates cerebral ischemia-reperfusion injury by suppressing ischemia-induced endoplasmic reticulum stress
12
作者 Yumei Liao Qinghua Zhang +15 位作者 Qiaoyun Shi Peng Liu Peiyun Zhong Lingling Guo Zijian Huang Yinghui Peng Wei Liu Shiqing Zhang István Adorján Yumi Fukuzaki Eri Kawashita Xiao-Qi Zhang Nan Ma Xiaoshen Zhang Zoltán Molnár Lei Shi 《Neural Regeneration Research》 2026年第1期333-345,共13页
Neuroserpin,a secreted protein that belongs to the serpin superfamily of serine protease inhibitors,is highly expressed in the central nervous system and plays multiple roles in brain development and pathology.As a na... Neuroserpin,a secreted protein that belongs to the serpin superfamily of serine protease inhibitors,is highly expressed in the central nervous system and plays multiple roles in brain development and pathology.As a natural inhibitor of recombinant tissue plasminogen activator,neuroserpin inhibits the increased activity of tissue plasminogen activator in ischemic conditions and extends the therapeutic windows of tissue plasminogen activator for brain ischemia.However,the neuroprotective mechanism of neuroserpin against ischemic stroke remains unclear.In this study,we used a mouse model of middle cerebral artery occlusion and oxygen-glucose deprivation/reperfusion-injured cortical neurons as in vivo and in vitro ischemia-reperfusion models,respectively.The models were used to investigate the neuroprotective effects of neuroserpin.Our findings revealed that endoplasmic reticulum stress was promptly triggered following ischemia,initially manifesting as the acute activation of endoplasmic reticulum stress transmembrane sensors and the suppression of protein synthesis,which was followed by a later apoptotic response.Notably,ischemic stroke markedly downregulated the expression of neuroserpin in cortical neurons.Exogenous neuroserpin reversed the activation of multiple endoplasmic reticulum stress signaling molecules,the reduction in protein synthesis,and the upregulation of apoptotic transcription factors.This led to a reduction in neuronal death induced by oxygen/glucose deprivation and reperfusion,as well as decreased cerebral infarction and neurological dysfunction in mice with middle cerebral artery occlusion.However,the neuroprotective effects of neuroserpin were markedly inhibited by endoplasmic reticulum stress activators thapsigargin and tunicamycin.Our findings demonstrate that neuroserpin exerts neuroprotective effects on ischemic stroke by suppressing endoplasmic reticulum stress. 展开更多
关键词 endoplasmic reticulum stress ischemia-reperfusion injury NEURON neuronal apoptosis NEUROPROTECTION NEUROSERPIN protein synthesis secretory protein stroke transcriptomic analysis
暂未订购
Stress granules:Guardians of cellular health and triggers of disease
13
作者 Meghal Desai Keya Gulati +2 位作者 Manasi Agrawal Shruti Ghumra Pabitra K.Sahoo 《Neural Regeneration Research》 2026年第2期588-597,共10页
Stress granules are membraneless organelles that serve as a protective cellular response to external stressors by sequestering non-translating messenger RNAs(mRNAs)and regulating protein synthesis.Stress granules form... Stress granules are membraneless organelles that serve as a protective cellular response to external stressors by sequestering non-translating messenger RNAs(mRNAs)and regulating protein synthesis.Stress granules formation mechanism is conserved across species,from yeast to mammals,and they play a critical role in minimizing cellular damage during stress.Composed of heterogeneous ribonucleoprotein complexes,stress granules are enriched not only in mRNAs but also in noncoding RNAs and various proteins,including translation initiation factors and RNA-binding proteins.Genetic mutations affecting stress granule assembly and disassembly can lead to abnormal stress granule accumulation,contributing to the progression of several diseases.Recent research indicates that stress granule dynamics are pivotal in determining their physiological and pathological functions,with acute stress granule formation offering protection and chronic stress granule accumulation being detrimental.This review focuses on the multifaceted roles of stress granules under diverse physiological conditions,such as regulation of mRNA transport,mRNA translation,apoptosis,germ cell development,phase separation processes that govern stress granule formation,and their emerging implications in pathophysiological scenarios,such as viral infections,cancer,neurodevelopmental disorders,neurodegeneration,and neuronal trauma. 展开更多
关键词 apoptosis axon regeneration biomolecular condensates germline cell development mRNA transport NEURODEGENERATION NEURODEVELOPMENT PATHOPHYSIOLOGY physiological functions stress granules translation viral infection
暂未订购
Emerging role of microglia in the developing dopaminergic system:Perturbation by early life stress
14
作者 Kaijie She Naijun Yuan +4 位作者 Minyi Huang Wenjun Zhu Manshi Tang Qingyu Ma Jiaxu Chen 《Neural Regeneration Research》 2026年第1期126-140,共15页
Early life stress correlates with a higher prevalence of neurological disorders,including autism,attention-deficit/hyperactivity disorder,schizophrenia,depression,and Parkinson's disease.These conditions,primarily... Early life stress correlates with a higher prevalence of neurological disorders,including autism,attention-deficit/hyperactivity disorder,schizophrenia,depression,and Parkinson's disease.These conditions,primarily involving abnormal development and damage of the dopaminergic system,pose significant public health challenges.Microglia,as the primary immune cells in the brain,are crucial in regulating neuronal circuit development and survival.From the embryonic stage to adulthood,microglia exhibit stage-specific gene expression profiles,transcriptome characteristics,and functional phenotypes,enhancing the susceptibility to early life stress.However,the role of microglia in mediating dopaminergic system disorders under early life stress conditions remains poorly understood.This review presents an up-to-date overview of preclinical studies elucidating the impact of early life stress on microglia,leading to dopaminergic system disorders,along with the underlying mechanisms and therapeutic potential for neurodegenerative and neurodevelopmental conditions.Impaired microglial activity damages dopaminergic neurons by diminishing neurotrophic support(e.g.,insulin-like growth factor-1)and hinders dopaminergic axon growth through defective phagocytosis and synaptic pruning.Furthermore,blunted microglial immunoreactivity suppresses striatal dopaminergic circuit development and reduces neuronal transmission.Furthermore,inflammation and oxidative stress induced by activated microglia can directly damage dopaminergic neurons,inhibiting dopamine synthesis,reuptake,and receptor activity.Enhanced microglial phagocytosis inhibits dopamine axon extension.These long-lasting effects of microglial perturbations may be driven by early life stress–induced epigenetic reprogramming of microglia.Indirectly,early life stress may influence microglial function through various pathways,such as astrocytic activation,the hypothalamic–pituitary–adrenal axis,the gut–brain axis,and maternal immune signaling.Finally,various therapeutic strategies and molecular mechanisms for targeting microglia to restore the dopaminergic system were summarized and discussed.These strategies include classical antidepressants and antipsychotics,antibiotics and anti-inflammatory agents,and herbal-derived medicine.Further investigations combining pharmacological interventions and genetic strategies are essential to elucidate the causal role of microglial phenotypic and functional perturbations in the dopaminergic system disrupted by early life stress. 展开更多
关键词 Chinese herbal drugs dopamine early life stress epigenetics gut-brain axis hypothalamo–pituitary–adrenal axis innate immune memory MICROGLIA neuroinflammation Parkinson disease PHAGOCYTOSIS REWARD
暂未订购
Synergistic mechanism of corn steep liquor and myo-inositol co-application in alleviating salt stress in Chinese cabbage
15
作者 Xinjun Zhang Fengbo Ma +5 位作者 Xiaojing Ma Jiahong Zuo Xueming Fan Kangguo Mu Wenna Zhang Qing Chen 《Horticultural Plant Journal》 2026年第1期207-211,共5页
Salinization of agricultural land is becoming increasingly severe worldwide,posing a significant threat to food security.The exogenous application of bioactive substances has been widely used to enhance plant resistan... Salinization of agricultural land is becoming increasingly severe worldwide,posing a significant threat to food security.The exogenous application of bioactive substances has been widely used to enhance plant resistance to salt stress.In this study,we used corn steep liquor(CSL),myo-inositol(MI),and their combination to improve salt tolerance in Chinese cabbage(Brassica rapa L.ssp.pekinensis)under salt stress conditions.All three treatments significantly increased plant biomass and nutrient uptake,and improved soil physicochemical properties,while alleviating oxidative damage and ion toxicity. 展开更多
关键词 corn steep liquor exogenous application bioactive substances improve salt tolerance chinese cabbage brassica enhance plant resistance salt stressin salt stress corn steep liquor csl myo inositol mi myo inositol
在线阅读 下载PDF
Brain region-specific roles of brain-derived neurotrophic factor in social stress-induced depressive-like behavior 被引量:3
16
作者 Man Han Deyang Zeng +7 位作者 Wei Tan Xingxing Chen Shuyuan Bai Qiong Wu Yushan Chen Zhen Wei Yufei Mei Yan Zeng 《Neural Regeneration Research》 SCIE CAS 2025年第1期159-173,共15页
Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice ... Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region–specific,particularly involving the corticolimbic system,including the ventral tegmental area,nucleus accumbens,prefrontal cortex,amygdala,and hippocampus.Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology.In this review,we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression.We focused on associated molecular pathways and neural circuits,with special attention to the brain-derived neurotrophic factor–tropomyosin receptor kinase B signaling pathway and the ventral tegmental area–nucleus accumbens dopamine circuit.We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature,severity,and duration of stress,especially in the above-mentioned brain regions of the corticolimbic system.Therefore,BDNF might be a biological indicator regulating stress-related processes in various brain regions. 展开更多
关键词 AMYGDALA chronic mild stress chronic social defeat stress corticolimbic system DEPRESSION HIPPOCAMPUS medial prefrontal cortex nucleus accumbens social stress models ventral tegmental area
暂未订购
Endoplasmic reticulum stress and autophagy in cerebral ischemia/reperfusion injury:PERK as a potential target for intervention 被引量:5
17
作者 Ju Zheng Yixin Li +8 位作者 Ting Zhang Yanlin Fu Peiyan Long Xiao Gao Zhengwei Wang Zhizhong Guan Xiaolan Qi Wei Hong Yan Xiao 《Neural Regeneration Research》 SCIE CAS 2025年第5期1455-1466,共12页
Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cereb... Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury. 展开更多
关键词 APOPTOSIS ATF4 AUTOPHAGY C/EBP homologous protein cerebral ischemia/reperfusion injury EIF2Α endoplasmic reticulum stress PERK
暂未订购
Significant reduction of anisotropy in stress relaxation aging and mechanical properties improvement for 2195 Al-Cu-Li alloy subjected to plastic loading 被引量:3
18
作者 Liwen ZHANG Heng LI +2 位作者 Tianjun BIAN Changhui WU Yanfeng YANG 《Chinese Journal of Aeronautics》 2025年第1期217-234,共18页
Although the plastic loading can enhance creep deformation and yield strength,the anisotropic Stress Relaxation Aging(SRA)behavior and mechanism under plastic loading remain unclear,which presents a significant challe... Although the plastic loading can enhance creep deformation and yield strength,the anisotropic Stress Relaxation Aging(SRA)behavior and mechanism under plastic loading remain unclear,which presents a significant challenge in accurately shaping aluminum alloy panels.In this study,the SRA behavior of 2195-T4 Al-Cu-Li alloys were thoroughly studied under initial loading stresses within the elastic(210/250 MPa)and plastic(380/420 MPa)ranges at 180℃by stress relaxation and tensile tests as well as microstructure characterization.The findings reveal that compared with those under elastic loadings,in-plane anisotropy(IPA)values of the stress relaxation amount,yield strength and fracture elongation under plastic loadings are reduced by 60%–80%,70%–90% and 72%–89%,respectively.Similarly,IPA values of precipitate size in grains and PrecipitationFree Zones(PFZ)width at grain boundaries under plastic loading decrease by 31.4%and 94.4%respectively.These results indicate plastic loading significantly weakens the anisotropic SRA behavior,owing to numerous uniformly distributed fine T1phases and small IPA values of both T1precipitates size and PFZ width in various loading directions.Compared with those of elastic loadingaged alloys,yield strength of plastic loading-aged alloys shows high strength-ductility because of the combined effect of closely dispersed fine T1precipitates,narrowed PFZ and numerous sheared and rotated T1phases at different locations during tensile process.The uniformly distributed larger Kernel Average Misorientation(KAM)and Schmidt factor values of the plastic loading-aged alloy,as well as the cross-slip generated,also help to enhance the strength and ductility of the alloy. 展开更多
关键词 Aluminum-lithium alloy stress relaxation aging Precipitation-free zones In-plane anisotropy stress relaxation
原文传递
Enhancing Plant Resilience to Biotic and Abiotic Stresses through Exogenously Applied Nanoparticles:A Comprehensive Review of Effects and Mechanism 被引量:1
19
作者 Jalil Ahmad Muhammad Munir +6 位作者 Nashi Alqahtani Tahira Alyas Muhammad Ahmad Sadia Bashir Fasiha Qurashi Abdul Ghafoor Hassan Ali–Dinar 《Phyton-International Journal of Experimental Botany》 2025年第2期281-302,共22页
A steady rise in the overall population is creating an overburden on crops due to their global demand.On the other hand,given the current climate change and population growth,agricultural practices established during ... A steady rise in the overall population is creating an overburden on crops due to their global demand.On the other hand,given the current climate change and population growth,agricultural practices established during the Green Revolution are no longer viable.Consequently,innovative practices are the prerequisite of the time struggle with the rising global food demand.The potential of nanotechnology to reduce the phytotoxic effects of these ecological restrictions has shown significant promise.Nanoparticles(NPs)typically enhance plant resilience to stressors by fortifying the physical barrier,optimizing photosynthesis,stimulating enzymatic activity for defense,elevating the concentration of stress-resistant compounds,and activating the expression of genes associated with defense mechanisms.In this review,we thoroughly cover the uptake and translocations of NPs crops and their potential valuable functions in enhancing plant growth and development at different growth stages.Additionally,we addressed how NPs improve plant resistance to biotic and abiotic stress.Generally,this review presents a thorough understanding of the significance of NPs in plants and their prospective value for plant antioxidant and crop development. 展开更多
关键词 CROP abiotic stress ANTIOXIDANT biotic stress NANOPARTICLES
在线阅读 下载PDF
Fine control of growth and thermotolerance in the plant response to heat stress 被引量:3
20
作者 Yulong Zhao Song Liu +2 位作者 Kaifeng Yang Xiuli Hu Haifang Jiang 《Journal of Integrative Agriculture》 2025年第2期409-428,共20页
Global warming impacts plant growth and development,which in turn threatens food security.Plants can clearly respond to warm-temperature(such as by thermomorphogenesis)and high-temperature stresses.At the molecular le... Global warming impacts plant growth and development,which in turn threatens food security.Plants can clearly respond to warm-temperature(such as by thermomorphogenesis)and high-temperature stresses.At the molecular level,many small molecules play crucial roles in balancing growth and defense,and stable high yields can be achieved by fine-tuning the responses to external stimuli.Therefore,it is essential to understand the molecular mechanisms underlying plant growth in response to heat stress and how plants can adjust their biological processes to survive heat stress conditions.In this review,we summarize the heat-responsive genetic networks in plants and crop plants based on recent studies.We focus on how plants sense the elevated temperatures and initiate the cellular and metabolic responses that allow them to adapt to the adverse growing conditions.We also describe the trade-off between plant growth and responses to heat stress.Specifically,we address the regulatory network of plant responses to heat stress,which will facilitate the discovery of novel thermotolerance genes and provide new opportunities for agricultural applications. 展开更多
关键词 heat stress signal transduction tolerance mechanisms trade-off
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部