The publisher regrets that the document header on top left of the first page should be“Research Highlights”instead of“Prospective”.The publisher would like to apologise for any inconvenience caused.
Cascading thermal runaway(TR)propagation poses a critical safety concern for large-format sodium-ion battery(SIB)systems because of the heightened risks of fires or explosions.However,effectively suppressing TR propag...Cascading thermal runaway(TR)propagation poses a critical safety concern for large-format sodium-ion battery(SIB)systems because of the heightened risks of fires or explosions.However,effectively suppressing TR propagation without introducing unintended side effects remains a significant challenge.Herein,we demonstrate a localized energy release method to mitigate TR,by reducing the state of charge(SOC)of cells adjacent to the thermally runaway unit.We discover that as the SOCs decreased from 100%to 25%,the TR trigger temperature decreased significantly,and the maximum temperature decrease from 367 to 229℃.Meanwhile,the volume of gas decreased to one-third of its original value,while the range of explosion limits significantly narrowed.The analysis of the morphology of the debris further confirms that the structural damage is greater at higher SOC levels.Moreover,an Entropy Weight and Technique for Order Preference by Similarity to an Ideal Solution(EW-TOPSIS)method has been established to assess the safety status of SIBs,showing that the TR possibility is nearly linear with the SOCs,and the TR hazard is exponentially related to the SOCs.Finally,when the SOC of cells adjacent to the TR cell is reduced to 25%,TR can be directly blocked without the need for additional cooling or thermal insulation methods.This study not only advances the understanding of TR behavior in SIBs but also offers a straightforward approach to mitigating the TR risk in SIB systems.展开更多
OBJECTIVE:To determine direct targeting of localized adiposity through Morus alba Linne bark injection based on pharmacology network analysis.METHODS:Male C57BL/6J mice were fed a high-fat diet(HFD)to induce obesity.A...OBJECTIVE:To determine direct targeting of localized adiposity through Morus alba Linne bark injection based on pharmacology network analysis.METHODS:Male C57BL/6J mice were fed a high-fat diet(HFD)to induce obesity.After 6 weeks on HFD,the water extract of Morus alba L.bark(MAB,2 mg/mL)was locally injected into one inguinal fat pad,while saline was injected into the other side,3 times/week for 6 weeks(n=6/group).The water extract of MAB was freeze-dried and then diluted in saline before use.RESULTS:HFD-fed mice treated with local MAB topical injection showed reduced adipocyte weight and size in inguinal fat pads by dual-energy X-ray absorptiometry.No toxicity changes seen in liver,spleen,kidney tissue,or alanine aminotransferase/aspartate aminotransferase levels in serum by MAB injection.Protein levels of phosphorylated insulin receptor substrate-1 and glucose transporter type 4,and mRNA expression of adiponectin,were increased in inguinal adipose tissue injected with MAB locally.Locally MAB injection led to a decrease in glucose-6-phosphatase and phosphoenolpyruvate carboxykinase,linked to gluconeogenesis,while forkhead box protein O1,which regulates these factors,was increased.Moreover,there was an increase in adenosine 5‘-monophosphate-activated protein kinase,related to lipogenesis,as well as elevated levels of hormone-sensitive lipase and fatty acid synthase,both associated with lipolysis.These results support the'insulin signaling pathway'and'regulation of lipolysis in adipocytes'identified in the Kyoto Encyclopedia of Genes and Genomes pathway through network analysis.CONCLUSION:This study suggests that MAB topical injection exhibits localized fat reduction by inhibiting insulin resistance,gluconeogenesis and lipogenesis mediator,while activating lipolysis enzymes within targeted adipose site.展开更多
Corrosion poses a major threat to the safety of transportation pipelines.Therefore,it is crucial to have an in-depth understanding of corrosion mechanisms in pipeline steels for the effective management of pipeline in...Corrosion poses a major threat to the safety of transportation pipelines.Therefore,it is crucial to have an in-depth understanding of corrosion mechanisms in pipeline steels for the effective management of pipeline integrity.Conducting research on corrosion mechanisms relies on the use of efficient and reliable corrosion monitoring and analysis techniques.The advancements in corrosion monitoring techniques specifically designed for the localized corrosion monitoring were aimed to be introduced,and a comprehensive overview of recent progress in understanding the localized corrosion mechanisms in pipeline steels was provided.Based on the different corrosive environments encountered,the localized corrosion issues inside pipelines are classified into two categories:localized corrosion primarily influenced by electrochemical processes and localized corrosion controlled by both electrochemical and mechanical factors.Additionally,a thorough analysis of the synergistic effects between micro-cell and macro-cell currents,as well as the interplay of mechanics and electrochemistry is presented.Finally,recommendations for future research on the mechanisms of internal localized corrosion in pipelines are provided.展开更多
When only a portion of the shield lining structures in a full-line tunnel are overloaded,their bearing and failure characteristics are significantly different from those in the full-line overloaded case.In existing st...When only a portion of the shield lining structures in a full-line tunnel are overloaded,their bearing and failure characteristics are significantly different from those in the full-line overloaded case.In existing studies,one or several segmental lining rings have been studied,with overload applied to selected lining rings to analyze the performance evolution of the lining structures;however,this approach fails to reveal the bearing and failure characteristics of shield lining rings under localized overload.To address this research gap,we employ 3D finite element modeling to investigate the mechanical performance and failure mechanisms of shield segmental linings under localized overload conditions,and compare the results with full-line overload scenarios.Additionally,the impact of reinforcing shield segmental linings with steel rings is studied to address issues arising from localized overloads.The results indicate that localized overloads lead to significant ring joint dislocation and higher stress on longitudinal bolts,potentially causing longitudinal bolt failure.Furthermore,the overall deformation of lining rings,segmental joint opening,and stress in circumferential bolts and steel bars is lower compared to full-line overloads.For the same overload level,the convergence deformation of the lining under full-line overload is 1.5 to 2.0 times higher than that under localized overload.For localized overload situations,a reinforcement scheme with steel rings spanning across two adjacent lining rings is more effective than installing steel rings within individual lining rings.This spanning ring reinforcement strategy not only enhances the structural rigidity of each ring,but also limits joint dislocation and reduces stress on longitudinal bolts,with the reduction in maximum ring joint dislocation ranging from 70%to 82%and the reduction in maximum longitudinal bolt stress ranging from 19%to 57%compared to reinforcement within rings.展开更多
Autosamplers are indispensable key equipment in modern laboratories,playing a pivotal role in fields such as biomedicine,environmental monitoring,food safety,and materials science.However,domestic autosampler enterpri...Autosamplers are indispensable key equipment in modern laboratories,playing a pivotal role in fields such as biomedicine,environmental monitoring,food safety,and materials science.However,domestic autosampler enterprises are facing formidable challenges,confronted by the technological barriers and brand dominance of international giants,as well as increasingly fierce homogeneous competition in the domestic market.This article aims to thoroughly analyze the current market landscape and,based on seven key dimensions—strategic positioning,product technology,sales channels,brand building,service and support,supply chain optimization,and talent development—propose a series of effective market-winning strategies.This will provide theoretical guidance and practical reference for domestic autosampler enterprises to achieve breakthroughs and sustainable development amidst fierce market competition.展开更多
In recent years,adeno-associated viruses(AAVs)have emerged as leading vectors in gene therapy,with several FDA-approved treatments and ongoing clinical trials demonstrating their effectiveness in treating inherited re...In recent years,adeno-associated viruses(AAVs)have emerged as leading vectors in gene therapy,with several FDA-approved treatments and ongoing clinical trials demonstrating their effectiveness in treating inherited retinal diseases,hemophilia,and Duchenne muscular dystrophy,among others.However,AAV-based therapies still face challenges,including immune responses and side effects,due to high viral doses.To address these challenges,various strategies have been developed,such as creating new viral capsids,optimizing gene expression regulation,and improving delivery methods.Localized delivery is a promising direction,utilizing the tissue tropism of AAVs to reduce systemic side effects and lower the required viral dose,thus improving targeting and efficiency,especially for organs that are difficult to treat with conventional methods.These innovations have opened new pathways for the clinical application of AAVs.This review aims to provide a comprehensive summary of the various applications of AAVs,offer valuable insights for future research directions,and holds significant importance for researchers and clinicians in the field.As AAV therapy continues to evolve,this article emphasizes its transformative potential in treating genetic diseases,indicating the central role of AAV in the future of gene therapy.展开更多
Owing to anionic redox,cathode materials containing layered Li-rich Mn-based oxides(LLOs)are promising for the development of next-generation lithium-ion batteries(LIBs)with a large energy density(~500–600 Wh·kg...Owing to anionic redox,cathode materials containing layered Li-rich Mn-based oxides(LLOs)are promising for the development of next-generation lithium-ion batteries(LIBs)with a large energy density(~500–600 Wh·kg^(−1)).However,these LLOs are easily degraded during cycling,which limits their lifespan.So far,the degradation mechanism is still under debate.Herein,LLOs are post-treated through implantation with energetic Ti ion flux(Ti-LLO),which modifies the structure of LLOs both at the surface and within the bulk.Unlike the dominant R3m phase(73.24%)observed in LLOs,the phase structure of Ti-LLO is altered,with Li-rich C2/m accounting for 67.72%in the bulk,alongside the formation of a thin(approximately 2 nm),uniform,and continuous Li-Ti-O spinel layer at the surface.Apart from phase structure changes,chemical valence states of transition metals and O,as well as their evolution,are analyzed and compared to charge transport kinetics to elucidate their contributions to the enhanced discharge capacity in Ti-LLOs.Besides,the role of the Li-Ti-O spinel layer at the surface in providing anticorrosion protection at the interface of LLOs/electrolyte during cycling is evaluated.As a result,we demonstrate that a superhigh discharge capacity(335.3 mAh·g^(−1))at 0.1 C can be achieved,along with prolonged cycling stability(showing capacity retention of approximately 80%after 500 cycles at 1 C)through these modifications.Moreover,we confirmed the universality of the strategy by implanting other ions,which offers practical strategies for achieving high performance in LLO cathode materials through thermodynamics and kinetics pathways.展开更多
The nonisospectral effectλ_t=α(t)λsatisfied by spectral parameterλopens up a new scheme for constructing localized waves to some nonlinear partial differential equations.In this paper,we perform this effect on a c...The nonisospectral effectλ_t=α(t)λsatisfied by spectral parameterλopens up a new scheme for constructing localized waves to some nonlinear partial differential equations.In this paper,we perform this effect on a complex nonisospectral nonpotential sine-Gordon equation by the bilinearization reduction method.From an integrable nonisospectral Ablowitz–Kaup–Newell–Segur equation,we construct some exact solutions in double Wronskian form to the reduced complex nonisospectral nonpotential sine-Gordon equation.These solutions,including soliton solutions,Jordan-block solutions and interaction solutions,exhibit localized structure,whose dynamics are analyzed with graphical illustration.The research ideas and methods in this paper can be generalized to other negative order nonisospectral integrable systems.展开更多
304H austenitic stainless steel wire was investigated,emphasizing microstructural deformation,martensite phase transformation,and residual magnetic properties during drawing.Utilizing several microstructural observati...304H austenitic stainless steel wire was investigated,emphasizing microstructural deformation,martensite phase transformation,and residual magnetic properties during drawing.Utilizing several microstructural observation techniques,the volume fraction of martensite,modes of grain deformation in distinct regions,and the phase relationship between austenite and martensite were comprehensively characterized.In addition,a finite element simulation with representative volume elements specific to different zones also offers insights into strain responses during the drawing process.Results from the first-pass drawing reveal that there exists a higher volume fraction of martensite in the central region of 304H austenitic stainless steel wire compared to edge areas.This discrepancy is attributed to a concentrated presence of shear slip system{111}<110>γcrystallographic orientation,primarily accumulating in the central region obeying the Kurdjumov-Sachs path.Subsequent to the second drawing pass,the cumulative shear deformation within distinct regions of the steel wire became more pronounced.This resulted in a progressive augmentation of the volume fraction of martensite in both the central and peripheral regions of the steel wire.Concurrently,this led to a discernible elevation in the overall residual magnetism of the steel wire.展开更多
Under investigation is the n-component nonlinear Schrödinger equation with higher-order effects,which describes the ultrashort pulses in the birefringent fiber.Based on the Lax pair,the eigenfunction and generali...Under investigation is the n-component nonlinear Schrödinger equation with higher-order effects,which describes the ultrashort pulses in the birefringent fiber.Based on the Lax pair,the eigenfunction and generalized Darboux transformation are derived.Next,we construct several novel higher-order localized waves and classified them into three categories:(i)higher-order rogue waves interacting with bright/antidark breathers,(ii)higher-order breather fission/fusion,(iii)higherorder breather interacting with soliton.Moreover,we explore the effects of parameters on the structure,collision process and energy distribution of localized waves and these characteristics are significantly different from previous ones.Finally,the dynamical properties of these solutions are discussed in detail.展开更多
This paper investigates the following mixed local and nonlocal elliptic problem fea-turing concave-convex nonlinearities and a discontinuous right-hand side:{L(u)=H(u−μ)|u|^(p−2)u+λ|u|^(q−2)u,x∈Ω,u≥0,x∈Ω,u=0,x...This paper investigates the following mixed local and nonlocal elliptic problem fea-turing concave-convex nonlinearities and a discontinuous right-hand side:{L(u)=H(u−μ)|u|^(p−2)u+λ|u|^(q−2)u,x∈Ω,u≥0,x∈Ω,u=0,x∈R^(N)\Ω,where Ω R^(N)(N>2)is a bounded domain,μ≥0 and λ>0 are real parameters,H denotes the Heaviside function(H(t)=0 for t<0,H(t)=1 for t>0),and the mixed local and nolocal operator is defined as L(u)=−Δu+(−Δ)^(s)u with(−Δ)^(s) being the restricted fractional Laplace(0<s<1).The exponents satisfy 1<q<2<p.By employing a novel non-smooth variational principle,we establish the existence of an M-solution for this problem and identify a range for the exponent p.展开更多
Conventional proton exchange membrane(PEM)electrolysis technology relies on ultrapure water,as cationic impurities(such as Na^(+),Ca^(2+) and Fe^(3+))can occupy H+transport sites in the membrane[1],leading to a sharp ...Conventional proton exchange membrane(PEM)electrolysis technology relies on ultrapure water,as cationic impurities(such as Na^(+),Ca^(2+) and Fe^(3+))can occupy H+transport sites in the membrane[1],leading to a sharp rise in cathode pH,catalyst deactivation,and membrane degradation[2].This forces the system to be equipped with complex water purification equipment and even necessitates the replacement of membrane electrode assemblies(MEAs),increasing the levelized cost of hydrogen(LCOH)[3].To address this,Tao Ling's group recently proposed a"local pH regulation"strategy in Nature Energy[4].展开更多
A high speed LIGBT with localized lifetime control by using high dose and low en ergy helium implantation(LC-LIGBT) is proposed.Compared with conventional LIGB Ts,particle irradiation results show that trade-off relat...A high speed LIGBT with localized lifetime control by using high dose and low en ergy helium implantation(LC-LIGBT) is proposed.Compared with conventional LIGB Ts,particle irradiation results show that trade-off relationship between turn- off time and forward voltage drop is improved.At the same time,the forward volta ge drop and turn-off time of such device are researched,when localized lifetime control region place near the p+-n junction,even in p+ anode.The results s how for the first time,helium ions,which stop in the p+ anode,also contribute to the forward voltage drop increasing and turn-off time reducing.展开更多
The paper had studied localized design and construction of roof garden.Starting from the history of roof garden,it summarized development of roof garden.It was considered that roof garden could not only provide public...The paper had studied localized design and construction of roof garden.Starting from the history of roof garden,it summarized development of roof garden.It was considered that roof garden could not only provide public rest space,realize thermal insulation and noise reduction of architectures,help water-storage and urban drainage;but also beautify environment,ameliorate regional climate,enrich urban landscape,help to increase ground greening area and improve ecological quality.Finally,some designing principles for roof garden had been proposed,including ① enhancing security consciousness and highlighting roof load design;② emphasizing ecological use and stressing greening coverage;③ manifesting artistic feature;④ investing cautiously,saving construction cost and paying attention to later maintenance.展开更多
Starch degradation in cells is closely associated with cereal seed germination, photosynthesis in leaves, carbohydrate storage in tuber and tuberous roots, and fleshy fruit development. Based on previously reported ...Starch degradation in cells is closely associated with cereal seed germination, photosynthesis in leaves, carbohydrate storage in tuber and tuberous roots, and fleshy fruit development. Based on previously reported in vitro assays, β amylase is considered as one of the key enzymes catalyzing starch breakdown, but up to date its role in starch breakdown in living cells remains unclear because the enzyme was shown often extrachloroplastic in living cells. Recently we have shown for the first time that β_amylase is predominantly immuno_localized to plastids in living cells of developing apple fruit. But it remains to know whether this model of β_amylase compartmentation is more widespread in plant living cells. The present experiment, conducted in tuberous root of sweet potato ( Ipomea batatas Lam. cv. Xushu 18) and via immunogold electron_microscopy technique, showed that β amylase visualized by gold particles was predominantly localized in plastids especially at periphery of starch granules, but the gold particles were scarcely found in other subcellular compartments, indicating that the enzyme is subcellularly compartmented in the same zone as its starch substrates. The density of gold particles (β amylase) in plastids was increasing during growing season, but the predominantly plastid_distributed pattern of β amylase in cells was shown unchanged throughout the tuberous root development. These data prove that the enzyme is compartmented in its functional sites, and so provide evidence to support the possible widespread biological function of the enzyme in catalyzing starch breakdown in plant living cells or at least in living cells of plant storage organs.展开更多
Microstructures of the localized shear bands generated during explosion with a thick-walled cylinder specimen in Ti-6AI-4V alloy, were characterized by TEM and SEM. The results show that the twinning is a major mode o...Microstructures of the localized shear bands generated during explosion with a thick-walled cylinder specimen in Ti-6AI-4V alloy, were characterized by TEM and SEM. The results show that the twinning is a major mode of deformation, and the distortion-free grains in the bands with the size of 10μm in diameter were proposed to be the re-crystallization during dynamic explosion. The further observations show that the α→α2 phase transformation may occur in the bands, and this kind of transformation could be confirmed by its dark field image and electron diffraction analysis. Analysis shows that there is specified orientation between the α and α2 Phases.展开更多
To clarify the corrosion mechanism associated with the precipitate of T1(Al2CuLi)in Al-Li alloys,the simulated bulk precipitate of T1 was fabricated through melting and casting.Its electrochemical behavior and couplin...To clarify the corrosion mechanism associated with the precipitate of T1(Al2CuLi)in Al-Li alloys,the simulated bulk precipitate of T1 was fabricated through melting and casting.Its electrochemical behavior and coupling behavior with α(Al)in 3.5% NaCl solution were investigated.Meanwhile,the simulated Al alloy containing T1 particle was prepared and its corrosion morphology was observed.The results show that there exists a dynamic conversion corrosion mechanism associated with the precipitate of T1.At the beginning,the precipitate of T1 is anodic to the alloy base and corrosion occurs on its surface.However,during its corrosion process,its potential moves to a positive direction with immersion time increasing,due to the preferential dissolution of Li and the enrichment of Cu.As a result,the corroded T1 becomes cathodic to the alloy base at a later stage,leading to the anodic dissolution and corrosion of the alloy base at its adjacent periphery.It is suggested that the localized corrosion associated with the precipitate of T1 in Al-Li alloys is caused by the alternate anodic dissolution of the T1 precipitate and the alloy base at its adjacent periphery.展开更多
Radical prostatectomy (RP) continues to be an effective surgical therapy for prostate carcinoma, particularly for organ-confined prostate cancer (PCa). Recently, RP has also been used in the treatment of locally a...Radical prostatectomy (RP) continues to be an effective surgical therapy for prostate carcinoma, particularly for organ-confined prostate cancer (PCa). Recently, RP has also been used in the treatment of locally advanced prostate cancer. However, little research has been performed to elucidate the perioperative complications associated with RP in patients with clinically localized or locally advanced PCa. We sought to analyse the incidence of complications in these two groups after radical retropubic prostatectomy (RRP). From June 2002 to July 2010, we reviewed 379 PCa patients who underwent RRP in our hospital. Among these cases, 196 had clinically localized PCa (Tla-T2c group 1), and 183 had locally advanced PCa ( ≥ T3,: group 2). The overall complication incidence was 21.9%, which was lower than other studies have reported. Perioperative complications in patients with locally advanced PCa mirror those in patients with clinically localized PCa (26.2% vs. 17.8%, P=0.91). Our results showed that perioperative complications could not be regarded as a factor to consider in regarding RP in patients with cT3 or greater.展开更多
The subwavelength confinement feature of localized surface plasmon resonance(LSPR) allows plasmonic nanostructures to be functionalized as powerful platforms for detecting various molecular analytes as well as weak ...The subwavelength confinement feature of localized surface plasmon resonance(LSPR) allows plasmonic nanostructures to be functionalized as powerful platforms for detecting various molecular analytes as well as weak processes with nanoscale spatial resolution. One of the main goals of this field of research is to lower the absolute limit-of-detection(LOD)of LSPR-based sensors. This involves the improvement of(i) the figure-of-merit associated with structural parameters such as the size, shape and interparticle arrangement and,(ii) the spectral resolution. The latter involves advanced target identification and noise reduction techniques. By highlighting the strategies for improving the LOD, this review introduces the fundamental principles and recent progress of LSPR sensing based on different schemes including 1) refractometric sensing realized by observing target-induced refractive index changes, 2) plasmon rulers based on target-induced relative displacement of coupled plasmonic structures, 3) other relevant LSPR-based sensing schemes including chiral plasmonics,nanoparticle growth, and optomechanics. The ultimate LOD and the future trends of these LSPR-based sensing are also discussed.展开更多
文摘The publisher regrets that the document header on top left of the first page should be“Research Highlights”instead of“Prospective”.The publisher would like to apologise for any inconvenience caused.
基金supported by the National Key R&D Program of China(2023YFB2407900)the National Natural Science Foundation of China(52302512)+1 种基金State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(KFZD202305)Zhejiang Province Science and Technology Program Grant(2024C0127(SD2))。
文摘Cascading thermal runaway(TR)propagation poses a critical safety concern for large-format sodium-ion battery(SIB)systems because of the heightened risks of fires or explosions.However,effectively suppressing TR propagation without introducing unintended side effects remains a significant challenge.Herein,we demonstrate a localized energy release method to mitigate TR,by reducing the state of charge(SOC)of cells adjacent to the thermally runaway unit.We discover that as the SOCs decreased from 100%to 25%,the TR trigger temperature decreased significantly,and the maximum temperature decrease from 367 to 229℃.Meanwhile,the volume of gas decreased to one-third of its original value,while the range of explosion limits significantly narrowed.The analysis of the morphology of the debris further confirms that the structural damage is greater at higher SOC levels.Moreover,an Entropy Weight and Technique for Order Preference by Similarity to an Ideal Solution(EW-TOPSIS)method has been established to assess the safety status of SIBs,showing that the TR possibility is nearly linear with the SOCs,and the TR hazard is exponentially related to the SOCs.Finally,when the SOC of cells adjacent to the TR cell is reduced to 25%,TR can be directly blocked without the need for additional cooling or thermal insulation methods.This study not only advances the understanding of TR behavior in SIBs but also offers a straightforward approach to mitigating the TR risk in SIB systems.
基金Supported by Korea Health Technology R&D Project through the National Research Foundation of Korea,funded by the Korean Government(Project Number:NRF-2019R1I1A2A01063598)Undergraduate Research Program of the College of Korean Medicine,Kyung Hee University,Republic of Korea,in 2023(Project Number:2023)。
文摘OBJECTIVE:To determine direct targeting of localized adiposity through Morus alba Linne bark injection based on pharmacology network analysis.METHODS:Male C57BL/6J mice were fed a high-fat diet(HFD)to induce obesity.After 6 weeks on HFD,the water extract of Morus alba L.bark(MAB,2 mg/mL)was locally injected into one inguinal fat pad,while saline was injected into the other side,3 times/week for 6 weeks(n=6/group).The water extract of MAB was freeze-dried and then diluted in saline before use.RESULTS:HFD-fed mice treated with local MAB topical injection showed reduced adipocyte weight and size in inguinal fat pads by dual-energy X-ray absorptiometry.No toxicity changes seen in liver,spleen,kidney tissue,or alanine aminotransferase/aspartate aminotransferase levels in serum by MAB injection.Protein levels of phosphorylated insulin receptor substrate-1 and glucose transporter type 4,and mRNA expression of adiponectin,were increased in inguinal adipose tissue injected with MAB locally.Locally MAB injection led to a decrease in glucose-6-phosphatase and phosphoenolpyruvate carboxykinase,linked to gluconeogenesis,while forkhead box protein O1,which regulates these factors,was increased.Moreover,there was an increase in adenosine 5‘-monophosphate-activated protein kinase,related to lipogenesis,as well as elevated levels of hormone-sensitive lipase and fatty acid synthase,both associated with lipolysis.These results support the'insulin signaling pathway'and'regulation of lipolysis in adipocytes'identified in the Kyoto Encyclopedia of Genes and Genomes pathway through network analysis.CONCLUSION:This study suggests that MAB topical injection exhibits localized fat reduction by inhibiting insulin resistance,gluconeogenesis and lipogenesis mediator,while activating lipolysis enzymes within targeted adipose site.
基金sponsored by the National Key R&D Program of China(No.2022YFC2806200)the National Natural Science Foundation of China(No.52001055)the Open Foundation of State Key Laboratory of Structural Analysis for Industrial Equipment(GZ22118).
文摘Corrosion poses a major threat to the safety of transportation pipelines.Therefore,it is crucial to have an in-depth understanding of corrosion mechanisms in pipeline steels for the effective management of pipeline integrity.Conducting research on corrosion mechanisms relies on the use of efficient and reliable corrosion monitoring and analysis techniques.The advancements in corrosion monitoring techniques specifically designed for the localized corrosion monitoring were aimed to be introduced,and a comprehensive overview of recent progress in understanding the localized corrosion mechanisms in pipeline steels was provided.Based on the different corrosive environments encountered,the localized corrosion issues inside pipelines are classified into two categories:localized corrosion primarily influenced by electrochemical processes and localized corrosion controlled by both electrochemical and mechanical factors.Additionally,a thorough analysis of the synergistic effects between micro-cell and macro-cell currents,as well as the interplay of mechanics and electrochemistry is presented.Finally,recommendations for future research on the mechanisms of internal localized corrosion in pipelines are provided.
基金supported by the National Natural Science Foundation of China(No.52008308).
文摘When only a portion of the shield lining structures in a full-line tunnel are overloaded,their bearing and failure characteristics are significantly different from those in the full-line overloaded case.In existing studies,one or several segmental lining rings have been studied,with overload applied to selected lining rings to analyze the performance evolution of the lining structures;however,this approach fails to reveal the bearing and failure characteristics of shield lining rings under localized overload.To address this research gap,we employ 3D finite element modeling to investigate the mechanical performance and failure mechanisms of shield segmental linings under localized overload conditions,and compare the results with full-line overload scenarios.Additionally,the impact of reinforcing shield segmental linings with steel rings is studied to address issues arising from localized overloads.The results indicate that localized overloads lead to significant ring joint dislocation and higher stress on longitudinal bolts,potentially causing longitudinal bolt failure.Furthermore,the overall deformation of lining rings,segmental joint opening,and stress in circumferential bolts and steel bars is lower compared to full-line overloads.For the same overload level,the convergence deformation of the lining under full-line overload is 1.5 to 2.0 times higher than that under localized overload.For localized overload situations,a reinforcement scheme with steel rings spanning across two adjacent lining rings is more effective than installing steel rings within individual lining rings.This spanning ring reinforcement strategy not only enhances the structural rigidity of each ring,but also limits joint dislocation and reduces stress on longitudinal bolts,with the reduction in maximum ring joint dislocation ranging from 70%to 82%and the reduction in maximum longitudinal bolt stress ranging from 19%to 57%compared to reinforcement within rings.
文摘Autosamplers are indispensable key equipment in modern laboratories,playing a pivotal role in fields such as biomedicine,environmental monitoring,food safety,and materials science.However,domestic autosampler enterprises are facing formidable challenges,confronted by the technological barriers and brand dominance of international giants,as well as increasingly fierce homogeneous competition in the domestic market.This article aims to thoroughly analyze the current market landscape and,based on seven key dimensions—strategic positioning,product technology,sales channels,brand building,service and support,supply chain optimization,and talent development—propose a series of effective market-winning strategies.This will provide theoretical guidance and practical reference for domestic autosampler enterprises to achieve breakthroughs and sustainable development amidst fierce market competition.
基金supported by the Guiding Funds of Central Government for Supporting the Development of the Local Science and Technology(2024BSB012)National Natural Science Foundation of China(No.81772833).
文摘In recent years,adeno-associated viruses(AAVs)have emerged as leading vectors in gene therapy,with several FDA-approved treatments and ongoing clinical trials demonstrating their effectiveness in treating inherited retinal diseases,hemophilia,and Duchenne muscular dystrophy,among others.However,AAV-based therapies still face challenges,including immune responses and side effects,due to high viral doses.To address these challenges,various strategies have been developed,such as creating new viral capsids,optimizing gene expression regulation,and improving delivery methods.Localized delivery is a promising direction,utilizing the tissue tropism of AAVs to reduce systemic side effects and lower the required viral dose,thus improving targeting and efficiency,especially for organs that are difficult to treat with conventional methods.These innovations have opened new pathways for the clinical application of AAVs.This review aims to provide a comprehensive summary of the various applications of AAVs,offer valuable insights for future research directions,and holds significant importance for researchers and clinicians in the field.As AAV therapy continues to evolve,this article emphasizes its transformative potential in treating genetic diseases,indicating the central role of AAV in the future of gene therapy.
基金supported by the National Key Research and Development Program of China(2022YFB2502000)the National Natural Science Foundation of China(52201277,52207244,52207245)+1 种基金the Xi'an Young Talent Lifting Program(959202413060)the National Outstanding Youth Foundation of China(52125104).
文摘Owing to anionic redox,cathode materials containing layered Li-rich Mn-based oxides(LLOs)are promising for the development of next-generation lithium-ion batteries(LIBs)with a large energy density(~500–600 Wh·kg^(−1)).However,these LLOs are easily degraded during cycling,which limits their lifespan.So far,the degradation mechanism is still under debate.Herein,LLOs are post-treated through implantation with energetic Ti ion flux(Ti-LLO),which modifies the structure of LLOs both at the surface and within the bulk.Unlike the dominant R3m phase(73.24%)observed in LLOs,the phase structure of Ti-LLO is altered,with Li-rich C2/m accounting for 67.72%in the bulk,alongside the formation of a thin(approximately 2 nm),uniform,and continuous Li-Ti-O spinel layer at the surface.Apart from phase structure changes,chemical valence states of transition metals and O,as well as their evolution,are analyzed and compared to charge transport kinetics to elucidate their contributions to the enhanced discharge capacity in Ti-LLOs.Besides,the role of the Li-Ti-O spinel layer at the surface in providing anticorrosion protection at the interface of LLOs/electrolyte during cycling is evaluated.As a result,we demonstrate that a superhigh discharge capacity(335.3 mAh·g^(−1))at 0.1 C can be achieved,along with prolonged cycling stability(showing capacity retention of approximately 80%after 500 cycles at 1 C)through these modifications.Moreover,we confirmed the universality of the strategy by implanting other ions,which offers practical strategies for achieving high performance in LLO cathode materials through thermodynamics and kinetics pathways.
基金supported by the National Natural Science Foundation of China(Grant No.12071432)Zhejiang Provincial Natural Science Foundation(Grant No.LZ24A010007)。
文摘The nonisospectral effectλ_t=α(t)λsatisfied by spectral parameterλopens up a new scheme for constructing localized waves to some nonlinear partial differential equations.In this paper,we perform this effect on a complex nonisospectral nonpotential sine-Gordon equation by the bilinearization reduction method.From an integrable nonisospectral Ablowitz–Kaup–Newell–Segur equation,we construct some exact solutions in double Wronskian form to the reduced complex nonisospectral nonpotential sine-Gordon equation.These solutions,including soliton solutions,Jordan-block solutions and interaction solutions,exhibit localized structure,whose dynamics are analyzed with graphical illustration.The research ideas and methods in this paper can be generalized to other negative order nonisospectral integrable systems.
基金funded by National Natural Science Foundation of China(52201084 and 52231003)Major Program(JD)of Hubei Province(2023BAA019)+2 种基金China Scholarship Council(CSC)Postdoctoral Station of metallurgical Engineering of Wuhan University of Science and Technology(WUST)Postdoctoral workstation of Zhejiang Jincheng New Material Co.,Ltd.
文摘304H austenitic stainless steel wire was investigated,emphasizing microstructural deformation,martensite phase transformation,and residual magnetic properties during drawing.Utilizing several microstructural observation techniques,the volume fraction of martensite,modes of grain deformation in distinct regions,and the phase relationship between austenite and martensite were comprehensively characterized.In addition,a finite element simulation with representative volume elements specific to different zones also offers insights into strain responses during the drawing process.Results from the first-pass drawing reveal that there exists a higher volume fraction of martensite in the central region of 304H austenitic stainless steel wire compared to edge areas.This discrepancy is attributed to a concentrated presence of shear slip system{111}<110>γcrystallographic orientation,primarily accumulating in the central region obeying the Kurdjumov-Sachs path.Subsequent to the second drawing pass,the cumulative shear deformation within distinct regions of the steel wire became more pronounced.This resulted in a progressive augmentation of the volume fraction of martensite in both the central and peripheral regions of the steel wire.Concurrently,this led to a discernible elevation in the overall residual magnetism of the steel wire.
基金Project supported by the National Natural Science Foundation of China(Grant No.12271096)the Natural Science Foundation of Fujian Province(Grant No.2021J01302)。
文摘Under investigation is the n-component nonlinear Schrödinger equation with higher-order effects,which describes the ultrashort pulses in the birefringent fiber.Based on the Lax pair,the eigenfunction and generalized Darboux transformation are derived.Next,we construct several novel higher-order localized waves and classified them into three categories:(i)higher-order rogue waves interacting with bright/antidark breathers,(ii)higher-order breather fission/fusion,(iii)higherorder breather interacting with soliton.Moreover,we explore the effects of parameters on the structure,collision process and energy distribution of localized waves and these characteristics are significantly different from previous ones.Finally,the dynamical properties of these solutions are discussed in detail.
基金Supported by the National Natural Science Foundation of China(Grant No.12361026)the Discipline Con-struction Fund Project of Northwest Minzu University.
文摘This paper investigates the following mixed local and nonlocal elliptic problem fea-turing concave-convex nonlinearities and a discontinuous right-hand side:{L(u)=H(u−μ)|u|^(p−2)u+λ|u|^(q−2)u,x∈Ω,u≥0,x∈Ω,u=0,x∈R^(N)\Ω,where Ω R^(N)(N>2)is a bounded domain,μ≥0 and λ>0 are real parameters,H denotes the Heaviside function(H(t)=0 for t<0,H(t)=1 for t>0),and the mixed local and nolocal operator is defined as L(u)=−Δu+(−Δ)^(s)u with(−Δ)^(s) being the restricted fractional Laplace(0<s<1).The exponents satisfy 1<q<2<p.By employing a novel non-smooth variational principle,we establish the existence of an M-solution for this problem and identify a range for the exponent p.
基金the Natural Science Foundation of Guangxi,China(No.2021GXNSFBA220058)the National Natural Science Foundation of China(Nos.22272036, 22362008)Guangxi Normal University Research Grant,China(No.2022TD).
文摘Conventional proton exchange membrane(PEM)electrolysis technology relies on ultrapure water,as cationic impurities(such as Na^(+),Ca^(2+) and Fe^(3+))can occupy H+transport sites in the membrane[1],leading to a sharp rise in cathode pH,catalyst deactivation,and membrane degradation[2].This forces the system to be equipped with complex water purification equipment and even necessitates the replacement of membrane electrode assemblies(MEAs),increasing the levelized cost of hydrogen(LCOH)[3].To address this,Tao Ling's group recently proposed a"local pH regulation"strategy in Nature Energy[4].
文摘A high speed LIGBT with localized lifetime control by using high dose and low en ergy helium implantation(LC-LIGBT) is proposed.Compared with conventional LIGB Ts,particle irradiation results show that trade-off relationship between turn- off time and forward voltage drop is improved.At the same time,the forward volta ge drop and turn-off time of such device are researched,when localized lifetime control region place near the p+-n junction,even in p+ anode.The results s how for the first time,helium ions,which stop in the p+ anode,also contribute to the forward voltage drop increasing and turn-off time reducing.
文摘The paper had studied localized design and construction of roof garden.Starting from the history of roof garden,it summarized development of roof garden.It was considered that roof garden could not only provide public rest space,realize thermal insulation and noise reduction of architectures,help water-storage and urban drainage;but also beautify environment,ameliorate regional climate,enrich urban landscape,help to increase ground greening area and improve ecological quality.Finally,some designing principles for roof garden had been proposed,including ① enhancing security consciousness and highlighting roof load design;② emphasizing ecological use and stressing greening coverage;③ manifesting artistic feature;④ investing cautiously,saving construction cost and paying attention to later maintenance.
文摘Starch degradation in cells is closely associated with cereal seed germination, photosynthesis in leaves, carbohydrate storage in tuber and tuberous roots, and fleshy fruit development. Based on previously reported in vitro assays, β amylase is considered as one of the key enzymes catalyzing starch breakdown, but up to date its role in starch breakdown in living cells remains unclear because the enzyme was shown often extrachloroplastic in living cells. Recently we have shown for the first time that β_amylase is predominantly immuno_localized to plastids in living cells of developing apple fruit. But it remains to know whether this model of β_amylase compartmentation is more widespread in plant living cells. The present experiment, conducted in tuberous root of sweet potato ( Ipomea batatas Lam. cv. Xushu 18) and via immunogold electron_microscopy technique, showed that β amylase visualized by gold particles was predominantly localized in plastids especially at periphery of starch granules, but the gold particles were scarcely found in other subcellular compartments, indicating that the enzyme is subcellularly compartmented in the same zone as its starch substrates. The density of gold particles (β amylase) in plastids was increasing during growing season, but the predominantly plastid_distributed pattern of β amylase in cells was shown unchanged throughout the tuberous root development. These data prove that the enzyme is compartmented in its functional sites, and so provide evidence to support the possible widespread biological function of the enzyme in catalyzing starch breakdown in plant living cells or at least in living cells of plant storage organs.
基金supported by the National Natural Science Foundation of China(No.50071064 and 19891180-2)the US Army Research Office MURI Program under Contract DAAH04-96-1-0376the Department of Energy Grant DEFG0300SF2202.
文摘Microstructures of the localized shear bands generated during explosion with a thick-walled cylinder specimen in Ti-6AI-4V alloy, were characterized by TEM and SEM. The results show that the twinning is a major mode of deformation, and the distortion-free grains in the bands with the size of 10μm in diameter were proposed to be the re-crystallization during dynamic explosion. The further observations show that the α→α2 phase transformation may occur in the bands, and this kind of transformation could be confirmed by its dark field image and electron diffraction analysis. Analysis shows that there is specified orientation between the α and α2 Phases.
基金Project(50401012) supported by the National Natural Science Foundation of China
文摘To clarify the corrosion mechanism associated with the precipitate of T1(Al2CuLi)in Al-Li alloys,the simulated bulk precipitate of T1 was fabricated through melting and casting.Its electrochemical behavior and coupling behavior with α(Al)in 3.5% NaCl solution were investigated.Meanwhile,the simulated Al alloy containing T1 particle was prepared and its corrosion morphology was observed.The results show that there exists a dynamic conversion corrosion mechanism associated with the precipitate of T1.At the beginning,the precipitate of T1 is anodic to the alloy base and corrosion occurs on its surface.However,during its corrosion process,its potential moves to a positive direction with immersion time increasing,due to the preferential dissolution of Li and the enrichment of Cu.As a result,the corroded T1 becomes cathodic to the alloy base at a later stage,leading to the anodic dissolution and corrosion of the alloy base at its adjacent periphery.It is suggested that the localized corrosion associated with the precipitate of T1 in Al-Li alloys is caused by the alternate anodic dissolution of the T1 precipitate and the alloy base at its adjacent periphery.
文摘Radical prostatectomy (RP) continues to be an effective surgical therapy for prostate carcinoma, particularly for organ-confined prostate cancer (PCa). Recently, RP has also been used in the treatment of locally advanced prostate cancer. However, little research has been performed to elucidate the perioperative complications associated with RP in patients with clinically localized or locally advanced PCa. We sought to analyse the incidence of complications in these two groups after radical retropubic prostatectomy (RRP). From June 2002 to July 2010, we reviewed 379 PCa patients who underwent RRP in our hospital. Among these cases, 196 had clinically localized PCa (Tla-T2c group 1), and 183 had locally advanced PCa ( ≥ T3,: group 2). The overall complication incidence was 21.9%, which was lower than other studies have reported. Perioperative complications in patients with locally advanced PCa mirror those in patients with clinically localized PCa (26.2% vs. 17.8%, P=0.91). Our results showed that perioperative complications could not be regarded as a factor to consider in regarding RP in patients with cT3 or greater.
基金Project supported by the National Key Basic Research Program(Grant No.2015CB932400)the National Key Research and Development Program of China(Grant Nos.2017YFA0205800 and 2017YFA0303504)the National Natural Science Foundation of China(Grant Nos.11674255 and 11674256)
文摘The subwavelength confinement feature of localized surface plasmon resonance(LSPR) allows plasmonic nanostructures to be functionalized as powerful platforms for detecting various molecular analytes as well as weak processes with nanoscale spatial resolution. One of the main goals of this field of research is to lower the absolute limit-of-detection(LOD)of LSPR-based sensors. This involves the improvement of(i) the figure-of-merit associated with structural parameters such as the size, shape and interparticle arrangement and,(ii) the spectral resolution. The latter involves advanced target identification and noise reduction techniques. By highlighting the strategies for improving the LOD, this review introduces the fundamental principles and recent progress of LSPR sensing based on different schemes including 1) refractometric sensing realized by observing target-induced refractive index changes, 2) plasmon rulers based on target-induced relative displacement of coupled plasmonic structures, 3) other relevant LSPR-based sensing schemes including chiral plasmonics,nanoparticle growth, and optomechanics. The ultimate LOD and the future trends of these LSPR-based sensing are also discussed.