With the growing penetration of wind power in power systems, more accurate prediction of wind speed and wind power is required for real-time scheduling and operation. In this paper, a novel forecast model for shortter...With the growing penetration of wind power in power systems, more accurate prediction of wind speed and wind power is required for real-time scheduling and operation. In this paper, a novel forecast model for shortterm prediction of wind speed and wind power is proposed,which is based on singular spectrum analysis(SSA) and locality-sensitive hashing(LSH). To deal with the impact of high volatility of the original time series, SSA is applied to decompose it into two components: the mean trend,which represents the mean tendency of the original time series, and the fluctuation component, which reveals the stochastic characteristics. Both components are reconstructed in a phase space to obtain mean trend segments and fluctuation component segments. After that, LSH is utilized to select similar segments of the mean trend segments, which are then employed in local forecasting, so that the accuracy and efficiency of prediction can be enhanced. Finally, support vector regression is adopted forprediction, where the training input is the synthesis of the similar mean trend segments and the corresponding fluctuation component segments. Simulation studies are conducted on wind speed and wind power time series from four databases, and the final results demonstrate that the proposed model is more accurate and stable in comparison with other models.展开更多
图半监督学习(Graph based semi-supervised learning,GSL)方法需要花费大量时间构造一个近邻图,速度比较慢.本文提出了一种哈希图半监督学习(Hash graph based semi-supervised learning,HGSL)方法,该方法通过局部敏感的哈希函数进行...图半监督学习(Graph based semi-supervised learning,GSL)方法需要花费大量时间构造一个近邻图,速度比较慢.本文提出了一种哈希图半监督学习(Hash graph based semi-supervised learning,HGSL)方法,该方法通过局部敏感的哈希函数进行近邻搜索,可以有效降低图半监督学习方法所需的构图时间.图像分割实验表明,该方法一方面可以达到更好的分割效果,使分割准确率提高0.47%左右;另一方面可以大幅度减小分割时间,以一幅大小为300像素×800像素的图像为例,分割时间可减少为图半监督学习所需时间的28.5%左右.展开更多
基金supported by the Guangdong Innovative Research Team Program(No.201001N0104744201)the State Key Program of the National Natural Science Foundation of China(No.51437006)
文摘With the growing penetration of wind power in power systems, more accurate prediction of wind speed and wind power is required for real-time scheduling and operation. In this paper, a novel forecast model for shortterm prediction of wind speed and wind power is proposed,which is based on singular spectrum analysis(SSA) and locality-sensitive hashing(LSH). To deal with the impact of high volatility of the original time series, SSA is applied to decompose it into two components: the mean trend,which represents the mean tendency of the original time series, and the fluctuation component, which reveals the stochastic characteristics. Both components are reconstructed in a phase space to obtain mean trend segments and fluctuation component segments. After that, LSH is utilized to select similar segments of the mean trend segments, which are then employed in local forecasting, so that the accuracy and efficiency of prediction can be enhanced. Finally, support vector regression is adopted forprediction, where the training input is the synthesis of the similar mean trend segments and the corresponding fluctuation component segments. Simulation studies are conducted on wind speed and wind power time series from four databases, and the final results demonstrate that the proposed model is more accurate and stable in comparison with other models.
文摘图半监督学习(Graph based semi-supervised learning,GSL)方法需要花费大量时间构造一个近邻图,速度比较慢.本文提出了一种哈希图半监督学习(Hash graph based semi-supervised learning,HGSL)方法,该方法通过局部敏感的哈希函数进行近邻搜索,可以有效降低图半监督学习方法所需的构图时间.图像分割实验表明,该方法一方面可以达到更好的分割效果,使分割准确率提高0.47%左右;另一方面可以大幅度减小分割时间,以一幅大小为300像素×800像素的图像为例,分割时间可减少为图半监督学习所需时间的28.5%左右.